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3Laboratoire Univers et Théories, UMR 8102 du CNRS, Observatoire de Paris, Université PSL,
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A new code for computing fully general relativistic solutions of strongly magnetized rapidly rotating
compact stars is developed as a part of the Compact Object CALculator (COCAL) code. The full set of
Einstein’s equations, Maxwell’s equations, and magnetohydrodynamic equations are consistently solved
assuming perfect conductivity, stationarity, and axisymmetry, and strongly magnetized solutions associated
with mixed poloidal and toroidal components of magnetic fields are successfully obtained in generic
(noncircular) spacetimes. We introduce the formulation of the problem and the numerical method in detail,
then present examples of extremely magnetized compact star solutions and their convergence tests. It is
found that, in extremely magnetized stars, the stellar matter can be expelled from the region of strongest
toroidal fields. Hence, we conjecture that a toroidal electrovacuum region may appear inside of the
extremely magnetized compact stars, which may seem like the neutron star becoming the strongest toroidal
solenoid coil in the Universe.
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I. INTRODUCTION

A magnetar, a neutron star associated with very strong
surface magnetic fields around 1014–1015 G, has become a
widely accepted model for soft gamma repeaters and
anomalous x-ray pulsars [1]. Although electromagnetic
fields of observed magnetars are very strong, their electro-
magnetic energy may not be expected to dominate over
internal or gravitational energies. Therefore, in most
theoretical models of magnetars, the electromagnetic fields

are treated separately from the hydrostatic equilibrium of
the compact stars as, e.g., in [2], or they are treated as
perturbations. With the perturbative techniques, general
relativistic stars having purely poloidal magnetic fields and
both toroidal and poloidal magnetic fields were calculated
in [3,4], respectively. Effects of stable stratification on
structures of stars with mixed poloidal-toroidal magnetic
fields were included in [5].
However, the electromagnetic fields of newly born

magnetars could be strong enough to have a comparable
amount of energy or could be highly concentrated and
distributed anisotropically so that the fields may largely
alter the hydrostatic equilibrium of stars globally or locally,
respectively. From a theoretical viewpoint, it is also
interesting to compute extreme solutions such as compact
stars associated with the electromagnetic fields in their
strongest limit and to investigate their impact onto the
hydrostatic as well as the spacetime structure [6].

*uryu@sci.u-ryukyu.ac.jp
†yoshida@astr.tohoku.ac.jp
‡eric.gourgoulhon@obspm.fr
§c.markakis@damtp.cam.ac.uk∥fujisawa@resceu.s.u-tokyo.ac.jp
¶tsokaros@illinois.edu
**ktngc@sci.u-ryukyu.ac.jp
††eriguchi@ea.c.u-tokyo.ac.jp

PHYSICAL REVIEW D 100, 123019 (2019)

2470-0010=2019=100(12)=123019(34) 123019-1 © 2019 American Physical Society

https://orcid.org/0000-0001-5156-6096
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.100.123019&domain=pdf&date_stamp=2019-12-19
https://doi.org/10.1103/PhysRevD.100.123019
https://doi.org/10.1103/PhysRevD.100.123019
https://doi.org/10.1103/PhysRevD.100.123019
https://doi.org/10.1103/PhysRevD.100.123019


Several numericalmethods have been developed in the last
three decades for computing such stationary and axisym-
metric equilibriums of relativistic compact stars, which are
largely deformed due to strong electromagnetic fields and
rapid rotation. The first success was achieved by theMeudon
group for computing compact stars associated with poloidal
magnetic fields [7]. Those associated with purely toroidal
magnetic fields were solved by Kiuchi and Yoshida [8] and
later byFrieben andRezzolla [9].More recently, theFlorence
group published a series of articles for computing magnet-
ized compact stars with purely poloidal, toroidal, as well as
mixedmagnetic fields [10]. In their computations, simplified
formulations for the gravitational fields have been used,
which has enabled systematic computations of solutions in a
wide region of parameter space.
In our previous paper [11], we presented preliminary

results for stationary and axisymmetric equilibriums of
relativistic rotating stars associated with strong electromag-
netic fields, in particular, with mixed toroidal and poloidal
magnetic fields. Following [11], we detail below the for-
mulations and a numerical methods for computing such
equilibriums, including improvements on our earlier work
[11].We then present a few examples of solutions associated
with extremely strong electromagnetic fields and results of
convergence tests. In the newly calculated solutions, it is
found that the toroidal magnetic fields concentrate near, but
well below, the equatorial surface and that the fields expel
the matter when their strength becomes of order 1017 G or
higher for typical neutron stars. From this finding, we can
conjecture that a neutron star associatedwith such extremely
strong toroidalmagnetic fieldsmayhave a toroidalmagneto-
vacuum tunnel in it; that is, such a neutron starmay become a
toroidal solenoid itself.
This paper is organized as follows. The formulation for

stationary and axisymmetric equilibriums of relativistic
stars associated with electromagnetic fields is described
in Sec. II with emphasis on the 3þ 1 decomposition of
Maxwell’s equations and the derivation of a system of first
integrals and integrability conditions for ideal magneto-
hydrodynamic (MHD) flows. In Sec. III, the derived
formulation is further modified into the form implemented
in the present numerical code, the COCAL code, and then the
numerical method used in the code is briefly described. In
Sec. IV, three new numerical solutions calculated from the
latest version of the COCAL code for magnetized rotating
equilibriums are presented, and their convergence test with
respect to resolution and number of multipoles included in
the Poisson solver are presented.

II. FORMULATION

A. Summary for formulation

In the following, relativistic rotating stars associated with
electromagnetic fields are modeled in the framework of a
stationary and axisymmetric Einstein-Maxwell charged and

magnetized perfect-fluid spacetime. We assume that the
equilibriums of magnetized stars satisfy the ideal MHD
condition. Because of the nature of mixed poloidal and
toroidal components of magnetic fields as well as a possible
existence of meridional flows of matter, the spacetime is no
longer circular; it is not invariant under a simultaneous
inversion of t → −t and ϕ → −ϕ [12]. To incorporate all
metric components that describe such noncircular space-
times, we apply the waveless formulation which is devel-
oped for solving initial datasets for numerical relativity
simulations [13–15]. The waveless formulation is based on
a 3þ 1 decomposition and conformal decomposition of
the spatial metric, which are commonly used in numerical
relativity. Under appropriate gauge conditions, and time and
rotational symmetries, the metric components are obtained
by solving a system of elliptic partial differential equations
(PDEs) on an asymptotically flat spacelike slice Σ.
An analogous formulation is also applied to recast

Maxwell’s equations into 3þ 1 form, with the electromag-
netic 1-form obtained by solving elliptic PDEs. The
formulation for the electromagnetic fields is detailed below,
which differs from the standard formulation from which the
well-known Grad-Shafranov equation is derived.
A formulation for a system of ideal MHD equations has

been discussed in our previous paper [16]. In [16],
integrability conditions to guarantee consistency of the
stationary and axisymmetric system and associated set of
first integrals have been derived. The basic idea of the
formulation used in [11] as well as in the present paper is
essentially the same as that of [16], but an alternative choice
of variables results in somewhat different set of equations to
be solved. In the formulation of [16], the electromagnetic
2-form F ¼ dA and its Hodge dual ⋆F are decomposed
covariantly using the 1-form basis dual to symmetry
vectors tα and ϕα and three scalar fields which are the
same in both decompositions of F and ⋆F (see, e.g.,
Eqs. (2.35) and (2.36) in [16]). An analogous decompo-
sition is applied to the vorticity 2-form dðhuÞ; then, after
careful algebraic manipulations, the relativistic transfield
equation (a generalized form of the Grad-Shafranov equa-
tion with meridional flows) is derived.
In the following formulation, unlike in [16], we use the

contravariant tensor Fαβ instead of ⋆F and an orthogonal
basis of a reference flat metric defined in Sec. II F 1 to
decompose the set of equations. This choice is probably
more common in formulations of numerical relativity and
hence results in a more familiar form of the equations,
although redundant components remain in the equations.
Another difference is that we do not reduce the number of
variables by imposing axial symmetry in our formalism.
This allows enough generality in the new part of the code
that will enable easy extension for computing, for example,
nonaxisymmetric configurations of electromagnetic fields,
electromagnetic standing waves, or a magnetic dipole field
misaligned with the rotation axis, in the future. This also
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minimizes the effort to develop and debug a new code for
such a rather complex problem, as computing tools having
already been implemented in COCAL, such as its multipole
moment elliptic PDE solver, can be utilized.
The 3þ 1 decomposition and the waveless formulation

for Einstein’s equations are briefly summarized below, the
details of which are found, e.g., in [6,17–19] and in our
previous papers [13,15,20], respectively. The derivations of
the formulations for Maxwell’s equations and the first
integrals of the ideal MHD equations are presented in full
detail in the following subsections. Related formulations
are also found in [4,16,21]. In this paper, we use abstract
index notation for tensors; the greek letters α; β; γ;… are
for abstract four-dimensional (4D) indices, the latin lower-
case letters a; b; c;… are for three-dimensional (3D)
indices, and the latin uppercase letters A;B;C;… are for
two-dimensional indices.
In the above, we expressed the 2-forms, F;⋆F; dA, and

dðhuÞ, omitting indices. Such index-free notation may also
be used with caution, in particular, when calculations
involve forms and vectors. A dot denotes an inner product,
that is, a contraction between adjacent indices. For exam-
ple, a vector v and a p-form ω have inner product

v · ω ¼ vγωγα…β; ω · v ¼ ωα…βγvγ: ð1Þ
In particular, the Cartan identity for a p-form ω in index-
free notation is written

£vω ¼ v · dωþ dðv · ωÞ: ð2Þ

Certain relations in index-free notation are summarized in
the Appendix A 2.

B. Framework and notations

1. 3 + 1 decomposition of spacetime

We consider globally hyperbolic spacetimes ðM; gαβÞ,
M ¼ R × Σ, admitting two symmetries: stationarity asso-
ciated with a timelike Killing vector tα and axisymmetry
associated with a spacelike rotational Killing vector ϕα. The
spacetime is foliated by spacelike hypersurfaces Σt ¼
χtðΣ0Þ parametrized by a time coordinate t, where χt is
a diffeomorphism generated by tα and Σ0 is an initial slice.
Because of the time-translation symmetry, Σt are identical
for any t. The spacelike vector ϕα generates a congruence of
circles in Σt parametrized by ϕ of which the length is 2π.
Those parameters t and ϕ are chosen as coordinates.
The future pointing unit normal 1-form nα is defined by

nα ¼ −α∇αt, and it is related to tα as

tα ¼ αnα þ βα; ð3Þ

where α and βα are the lapse function and the shift vector,
respectively, and the shift is spacelike, βαnα ¼ 0. The
projection tensor to a slice Σt is defined,

γαβ ¼ gαβ þ nαnβ; ð4Þ

and its pullback to Σt is written γab. Then, the metric gαβ in
a chart fxαg is split into 3þ 1 form in a chart ft; xag,

ds2 ¼ gαβdxαdxβ

¼ −α2dt2 þ γabðdxa þ βadtÞðdxb þ βbdtÞ: ð5Þ

For the spatial metric γab, a conformal decomposition is
introduced as

γab ¼ ψ4γ̃ab; ð6Þ

where ψ is the conformal factor and γ̃ab is the spatial
conformal metric. This decomposition is specified through
a condition γ̃ ¼ f, where γ̃ is the determinant of γ̃ab and f is
the determinant of the reference flat metric fab, which takes
a simple expression of the flat metric in the chart fxag. The
differences between the spatial conformal metric and the
flat metric, hab and hab, are defined by

γ̃ab ¼ fab þ hab; and γ̃ab ¼ fab þ hab; ð7Þ

where γ̃ab and fab are the inverses of the corresponding
metrics. Because of the conformal decomposition, the
weight of the Levi-Civita tensor becomes

ffiffiffiffiffiffi
−g

p ¼ αψ6
ffiffiffĩ
γ

p
¼ αψ6

ffiffiffi
f

p
: ð8Þ

We denote spatial derivative operators Da, D̃a, and D
∘
a,

which are compatible with spatial metrics γab, γ̃ab, and fab,
respectively, and a spacetime derivative operator compat-
ible with the metric gαβ by ∇α.
Since we write down all field equations, equations of

motion, and other associated relations, including coordinate

conditions, using the flat derivative operator D
∘
a, we have

freedom to choose fxag, a coordinate system of the
reference frame associated with fab, without changing the
spacetime geometry. In this paper, as in elementary vector
analysis, we only choose one of Cartesian, cylindrical, or
spherical coordinates associated with a set of orthogonal
bases for fxag (see Appendix A 1). Under a choice of
orthogonal basis, a difference in theweight (8) arises from f,
which may or may not be included in ψ depending on
whether one chooses a coordinate or noncoordinate basis.
The extrinsic curvature of Σt is defined by

Kab ¼ −
1

2
γαaγ

β
b£nγαβ ¼ −

1

2α
ð∂tγab − £βγabÞ; ð9Þ

where the Lie derivatives £ are defined on either M or Σt
depending on the vector to derive along and ∂t is the
pullback of £t defined on M to Σt. The trace of Kab is
written K, and the trace-free part of Kab is defined by
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Aab ¼ Kab −
1

3
γabK: ð10Þ

Substitution of Eq. (9) to the trace-free part (10) results in
conformal Killing operators with respect to tα and βα,

Aab ¼ −
1

2α

�
γαaγ

β
b£αnγαβ −

1

3
γabγ

αβ£αnγαβ

�

¼ ψ4

2α

�
£βγ̃ab −

1

3
γ̃abγ̃

cd£βγ̃cd

�

−
ψ4

2α

�
∂tγ̃ab −

1

3
γ̃abγ̃

cd∂tγ̃cd

�
; ð11Þ

while the trace of Eq. (9) becomes

K ¼ 6

αψ
ð£βψ − ∂tψÞ þ

1

2αγ̃
ð£βγ̃ − ∂tγ̃Þ: ð12Þ

As a result, under the condition γ̃ ¼ f with an assumption
∂tγ̃ ¼ ∂tf ¼ 0, the time derivatives of γ̃ab and ψ are
separately related to Aab and K, respectively.
In actual computations,we introduce conformally rescaled

Kab and Aab defined by K̃ab ¼ψ−4Kab and Ãab ¼ ψ−4Aab,
for which their indices are raised (lowered) with γ̃ab (γ̃ab).

2. Stress-energy tensors for the perfect-fluid and
electromagnetic fields

A strongly magnetized (and possibly charged) compact
star is described by Einstein-Maxwell, charged and mag-
netized, perfect-fluid spacetime. The stress-energy tensor
Tαβ is the sum of the perfect-fluid stress-energy tensor Tαβ

M

and the electromagnetic stress-energy tensor Tαβ
F ,

Tαβ ¼ Tαβ
M þ Tαβ

F ; ð13Þ

where Tαβ
M is defined by

Tαβ
M ¼ ϵuαuβ þ pqαβ ð14Þ

and Tαβ
F is defined by

Tαβ
F ¼ 1

4π

�
FαγFβ

γ −
1

4
gαβFγδFγδ

�
: ð15Þ

In the definition of Tαβ
M , uα is the fluid 4-velocity, p is the

pressure, ϵ is the energy density, and

qαβ ¼ gαβ þ uαuβ ð16Þ

is the projection tensor onto a surface orthogonal to uα.
Here, we assume that the fluids satisfy equations of state
(EOS) of the form

p ¼ pðρ; sÞ; ϵ ¼ ϵðρ; sÞ; ð17Þ

where ρ is the baryon-mass density1 and s is the entropy
per unit baryon mass, although later we assume a simpler
one-parameter EOS.
In the definition of Tαβ

F , the electromagnetic field 2-form
Fαβ is related to the electromagnetic potential 1-form Aα by

Fαβ ¼ ðdAÞαβ ≔ ∇αAβ −∇βAα: ð18Þ

In this Eq. (18), ðdAÞαβ is the exterior derivative of the
1-form Aα. Since Fαβ is a closed 2-form,

ðdFÞαβγ≔3∇½αFβγ� ¼∇αFβγþ∇βFγαþ∇γFαβ¼0: ð19Þ

3. Stationarity and axisymmetry

For stationary and axisymmetric systems, the Lie deriv-
atives of field andmatter variables, fgαβ; Aα; uα; h; sg, along
the time and axial symmetry vectors, asymptotically time-
like vector tα, and a spacelike rotation vector ϕα, vanish,

£ηgαβ ¼ 0; £ηAα ¼ 0;

£ηuα ¼ 0; £ηh ¼ 0; £ηs ¼ 0; ð20Þ

where ηα ¼ tα orϕα and h is the relativistic enthalpy defined
by h ¼ ðϵþ pÞ=ρ.
As mentioned earlier, we use the same set of field

equations for the gravity as the waveless formulation
derived and used in [13–15,20]. In this formulation, we
do not impose ϕ-symmetry explicitly onto the field
equations. The waveless condition becomes a part of the
time symmetry conditions imposed on the time derivatives
of field variables in the inertial frame. Consequently, our
formalism for solving the field equations may also be
applicable for computing quasiequilibrium solutions with-
out axial symmetry.

C. Formulation for gravitational fields

1. Summary of the waveless formulation

As in the common formulations of numerical relativity,
we decompose Einstein’s equations, Gαβ ¼ 8πTαβ, into
normal and transverse components with respect to the
hypersurface Σt [17–19]. In our equilibrium (or quasiequi-
librium) initial data formalism for numerical relativity, we
choose the following combinations of components,

ðGαβ − 8πTαβÞnαnβ ¼ 0 ð21Þ

ðGαβ − 8πTαβÞγαanβ ¼ 0 ð22Þ

1That is, ρ ≔ mBn, with n the number density of baryons and
mB the mean baryon mass.
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ðGαβ − 8πTαβÞ
�
γαβ þ 1

2
nαnβ

�
¼ 0 ð23Þ

ðGαβ − 8πTαβÞ
�
γαaγ

β
b −

1

3
γabγ

αβ

�
¼ 0; ð24Þ

and formally recast them into a system of elliptic PDEs
for the 3þ 1 variables fψ ; β̃a;αψ ; habg, respectively.
In the present computations, we separate the flat

Laplacians, Δ
∘
≔ D

∘
aD
∘

a operating on these variables,
represented by Φ, and moving other terms to the source
terms, S,2

Δ
∘
Φ ¼ S: ð25Þ

The source terms S of Eqs. (23) and (24) contain a time
derivative of the trace and trace-free parts of extrinsic
curvature ∂tK and ∂tAab, respectively, and, as mentioned
earlier, K and Aab contain ∂tψ and ∂tγ̃ab, respectively, as
Eqs. (12) and (11).
In most of the formulations for numerical relativity

simulations, gauge conditions are dynamically imposed
through the so-called α-driver and Γ-driver that determine
the lapse α and shift βa [17–19]. In our initial data
formulation, α and βa are part of the metric potentials to
be determined, and the gauge conditions are introduced by
prescribing the values of the trace K and the divergence

D
∘
bγ̃

ab. We normally choose maximal slicing and Dirac
gauge conditions,

K ¼ 0 and D
∘
bγ̃

ab ¼ 0; ð26Þ

for the four coordinate conditions. A method to impose
these conditions has been described in [15,20] and is
repeated in the next subsection.
In [13], a waveless condition is derived for the gravi-

tational fields, which results in all metric potentials,
including hab, having Coulomb type falloff in the asymp-
totics under the gauge (26). Such a waveless condition is to
impose an asymptotic behavior on the time derivative of
spatial conformal metric,

∂tγ̃
ab ¼ Oðr−3Þ: ð27Þ

In [15,20] as well as the present calculations, we impose a
stronger condition:

∂tγ̃
ab ¼ 0: ð28Þ

As mentioned above, the time derivative terms in the
gravitational field equations are f∂tψ ; ∂tγ̃ab; ∂tK; ∂tAabg.
Since the value of K is fixed by the gauge condition (26),
the time derivative of the conformal factor, ∂tψ , as seen
in Eq. (12), does not appear in the field equations.3

The maximal slicing condition, K ¼ 0, is assumed to be
satisfied not only instantaneously on the initial hypersur-
face but also on the neighboring slices; hence, ∂tK ¼ 0.
The waveless condition (28) fixes the value of ∂tγ̃ab. The
remaining ∂tAab, and other time derivative terms appearing
in the equations of motion for the matter, may be prescribed
by stationarity as in Eq. (20).4

The waveless formulation has been successfully applied
for computing equilibriums of single rotating stars as well
as quasiequilibrium initial data of nonaxisymmetric rotat-
ing stars and binary neutron stars [15,20] by replacing the
time symmetry vector with that in the rotating frame (the
helical Killing vector kα ¼ tα þ Ωϕα [24,25]) except for
∂tγ̃

ab on which the waveless condition (27) is imposed.5

The concrete form of Eq. (25) for each metric potential
fψ ; β̃a; αψ ; habg is presented in [13,15,20].

2. Imposition of the gauge conditions

Recently, we developed a novel formulation for impos-
ing arbitrary gauge conditions on the waveless initial
data and successfully computed a black hole toroid system
in Kerr-Schild coordinates [29]. The maximal slice and
Dirac conditions (26) are replaced by generalized gauge
conditions

K ¼ KG and D
∘
bγ̃

ab ¼ Ga; ð29Þ

where KG and Ga are, respectively, a function and a vector
given arbitrarily. Our computation for the strongly mag-
netized rotating star is therefore not limited to the choice
(26), that is, KG ¼ 0 and Ga ¼ 0. Since the asymptotic
flatness may be imposed in most of applications for
computing astrophysical compact objects, it will be con-
venient to choose gauge conditions which become the
maximal and Dirac gauges except for the vicinity of the
sources.
Taking into account the gauge invariance of the linear-

ized metric under transformations

2The manner of determining Kab in our formulation is analo-
gous to the one used in an initial data formulation often referred to
as the conformal thin-sandwich formalism [17–19,22,23].

3It may appear in a gauge condition (see Sec. II C 2 below).
4The discussion above is to elucidate that the formulation can

be applicable for quasistationary nonaxisymmetric data. One can
assume global time symmetry and discard all time derivative
terms from the beginning, which results in the same set of
equations used in the following computations.

5Under helical symmetry, nonaxisymmetric initial data asso-
ciated with standing gravitational waves may be calculated by
imposing the symmetry also to the time derivative ∂tγ̃

ab, then
rearranging the field equations to separate the Helmholtz operator
for γ̃ab in the left-hand side [24–28].
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δβa → δβa þD
∘

aξ ð30Þ

δγab → δγab −D
∘

aξb −D
∘

bξa; ð31Þ
we introduce a gauge potential ξ and gauge vector
potentials ξa to adjust βa and hab as

βa0 ¼ βa þ 1ffiffiffi
γ

p D
∘

aξ; ð32Þ

hab0 ¼ hab −D
∘

aξb −D
∘

bξa þ 2

3
fabD

∘
cξ

c: ð33Þ

To impose gauge conditions (29), we solve K0 ¼ KG and

D
∘
bhab0 ¼ Ga for these gauge potentials ξ and ξa, respec-

tively, where K0 is Eq. (12) in which βa0 is substituted in
place of βa. Then, the (primed) new variables are recon-
structed accordingly with Eqs. (32) and (33), and the
original variables are replaced by the new ones, βa0 →
βa and hab0 → hab, during iterations for solving the field
equations. Substituting Eqs. (32) and (33) to these con-
ditions, the gauge vector potentials ξ and ξa are solved
from elliptic equations,

Δ
∘
ξ ¼ SK; ð34Þ

SK ¼ ffiffiffi
γ

p �
αKG −D

∘
aβ

a −
6

ψ
ð£βψ − ∂tψÞ

�
; ð35Þ

and

Δ
∘
ξa ¼ Sa

D; ð36Þ

Sa
D ¼ −Ga þD

∘
bhab −

1

3
D
∘

aD
∘
bξ

b: ð37Þ

A time derivative term ∂tψ in the source (35) is
prescribed in computing initial data on Σt or may be
absorbed in the gauge condition KG. In the following, it is
set ∂tψ ¼ 0. The above system of elliptic equations (34)–
(37) is solved simultaneously and iteratively together with
the field equations [15,20,29].

D. Maxwell’s and relativistic ideal MHD equations

Hereafter in this section, we describe the formulations for
solving electromagnetic fields and equilibriums of magnet-
ized matter in detail. Maxwell’s equations are written

ðdFÞαβγ ¼ 0 ð38Þ

∇βFαβ ¼ 4πjα; ð39Þ

where jα is the electric current density. The converse of the
Poincaré lemma implies the existence of a potential 1-form
Aα, such that Fαβ ¼ ðdAÞαβ. By construction, the current
density is conserved,

∇αjα ¼ 0: ð40Þ

From the Bianchi identity

∇βTαβ ¼ ∇βT
αβ
M þ∇βT

αβ
F ¼ 0 ð41Þ

and the rest-mass conservation law

∇αðρuαÞ ¼ 0; ð42Þ
the relativistic MHD-Euler equations are derived;

uβðdðhuÞÞβα − T∇αs ¼
1

ρ
Fαβjβ; ð43Þ

where ðdðhuÞÞαβ ≔ ∇αðhuβÞ −∇βðhuαÞ is the canonical
vorticity 2-form. The system of equations for the matter is
closed by adding an EOS for the thermodynamic variables
and a relation for energy transport. Since we introduce a
one-parameter EOS for computing equilibriums, we do not
need to consider the latter relation.
Finally, we assume that the ideal MHD condition holds:

Fαβuβ ¼ 0: ð44Þ

This condition implies the conservation of the flux Fαβ as
recalled briefly in Appendix A 2 c.
In our previous paper [16], we showed that, under

stationarity and axisymmetry, the above system of
Maxwell’s equations and ideal MHD equations (38)–(44)
can be recast in a system of a single elliptic PDE for a master
potential, the relativistic master transfield equation, and first
integrals, where the master potential may be related to a flux
function, for example, the ϕ-component of the potential Aα.
In the absence of a meridional flow field, the PDE becomes
the well-known Grad-Shafranov equation. The formulation
in [16] is superior to the other formulations, since the single
governing equation for the master potential is derived in a
fully covariant form thanks to the use of exterior calculus
and the orthogonal decomposition of a tangent space into
subspaces spanned by the Killing vectors ðtα;ϕαÞ and a
remaining “meridional” spacelike 2-surface. It is also shown
that the system of the transfield equation and associated first
integrals is themost general formwhich contains all types of
limiting cases including purely poloidal/toroidal magnetic
fields, no-magnetic fields with meridional flows, and purely
circular flows. As mentioned earlier, however, we do not
follow this style of formulation presented in [16]; in
particular, we do not solve the master transfield equation
but solve Maxwell’s equations to determine all (3þ 1
decomposed) components of Aα.

E. Formulation for the electromagnetic field

In this subsection, we derive a 3þ 1 form of Maxwell’s
equations, which are recast in a set of elliptic PDEs for the
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components of the (3þ 1 decomposed) electromagnetic
potential 1-form Aα. Although these calculations are
straightforward (see, e.g., [18,30]), we present them in
detail since the resulting equations are implemented in the
COCAL code for actual computations.

1. 3 + 1 decomposition of electromagnetic fields

In this subsection, we introduce the 3þ 1 decomposed
variables for the electromagnetic potential 1-form Aα and
the Faraday tensor Fαβ, as well as a decomposition of its
divergence ∇βFαβ. To avoid confusion, for a given 4D
object, its projection to Σt defined on M is denoted with a
barred symbol, and the one defined on Σt itself is denoted
using the same symbol with 4D indices being replaced by
3D ones. For example, the 4D object Aα is related to Āα and
the 3D object Aa as follows:

Āα ¼ γα
βAβ ð45Þ

Aa ¼ γa
αAα ¼ γa

αĀα: ð46Þ

As usual, we omit the bar on a projected 4D object when
the 4D object is spatial.
We define the 3þ 1 variables of the electromagnetic

potential 1-form Aα and Faraday tensor Fαβ by

ΦΣ ¼ −Aαnα; Aa ¼ γa
αAα; ð47Þ

Fa ¼ γaαFαβnβ; Fab ¼ γaαγ
b
βFαβ: ð48Þ

Note that Fαβnαnβ ¼ 0 by antisymmetry. Then, Aα and Fαβ

are related to their spatial components by

Aα ¼ ΦΣnα þ Āα ¼ ΦΣnα þ γα
aAa; ð49Þ

Fαβ ¼ F̄αβ þ nαF̄β − nβF̄α: ð50Þ

As shown in Appendix B, the projected Faraday tensor,
Fa and Fab, and its divergence defined on Σ become

Fa ¼ −£nAa −
1

α
DaðαΦΣÞ: ð51Þ

Fab ¼ DaAb −DbAa; ð52Þ

nα∇βFαβ ¼ −DaFa; ð53Þ

γaα∇βFαβ ¼ 1

α
DbðαFabÞ − £nFa þ KFa: ð54Þ

2. 3 + 1 decomposition of Maxwell’s equations

Using Eq. (53), the projection of Maxwell’s equations
along the hypersurface normal nα is written

ð∇βFαβ − 4πjαÞnα ¼ −DaFa þ 4πρΣ ¼ 0; ð55Þ

where ρΣ is the projection of the current jα along the normal
nα defined by

ρΣ ¼ −jαnα ð56Þ

and Fa is derived from Eq. (51) by raising the index,

Fa ¼ −£nAa þ 2Ka
bAb −

1

α
DaðαΦΣÞ: ð57Þ

Note that the charge ρΣ is related to the time component of
the 4-current as

ρΣ ¼ −jαnα ¼ −jαð−α∇αtÞ ¼ αjt: ð58Þ

Using Eq. (54), the projection of Maxwell’s equations
onto the hypersurface Σt is written

ð∇βFαβ−4πjαÞγaα¼
1

α
DbðαFabÞ−£nFaþKFa−4πjaΣ¼0;

ð59Þ

where jaΣ is defined by

jaΣ ¼ γaαjα: ð60Þ

Note that the projected current jaΣ is related to the
components of the 4-current jα as6

jaΣ ¼ ðgaα þ nanαÞjα ¼ ja þ jtβa: ð61Þ

For later use, the dual of Eq. (59) is derived,

ð∇βFαβ − 4πjαÞγaα
¼ 1

α
DbðαFa

bÞ − £nFa − 2Ka
bFb þ KFa − 4πjΣa

¼ 0; ð62Þ

where the relation γab£nFb ¼ £nFa þ 2KabFb is used.

3. Imposition of stationarity

We assume that the Faraday tensor Fαβ respects the time
and rotational symmetry. Then, it follows from a discussion
in [16] (as being repeated in Appendix G) that the
electromagnetic potential 1-form Aα also respects the time
and rotational symmetry as mentioned in Sec. II B 3. In our
formulation, we impose the stationary condition explicitly
on the equations, £tAα ¼ 0. Since tα ¼ αnα þ βα, we have

6For later convenience, we use ja as a spatial part of 4D current
jα; hence, ja ≠ γaαjα.
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£nAa ¼
1

α
ð∂tAa − £βAaÞ ¼ −

1

α
£βAa; ð63Þ

£nFa ¼
1

α
ð∂tFa − £βFaÞ ¼ −

1

α
£βFa; ð64Þ

and similarly for the duals Aa and Fa. With this
symmetry, Maxwell’s equations (55) and the relation (51)
are rewritten,

ð∇βFαβ − 4πjαÞnα ¼ −DaFa þ 4πρΣ ¼ 0; ð65Þ

Fa ¼
1

α
£βAa −

1

α
DaðαΦΣÞ; ð66Þ

and Eq. (62) becomes

ð∇βFαβ − 4πjαÞγaα
¼ 1

α
DbðαFa

bÞ þ 1

α
£βFa − 2Aa

bFb þ
1

3
KFa − 4πjΣa

¼ 0; ð67Þ

where Aab is the trace-free part of the extrinsic curvature
Kab as defined in Eq. (10).

4. Conformal decomposition and equations
for electromagnetic potentials

To write down the final form of Maxwell’s equations
implemented in our actual numerical code, we introduce
a conformal decomposition of the spatial metric Eq. (6)
with the condition γ̃ ¼ f as explained in Sec. II B 1. We
introduce conformally rescaled quantities of the spatial
electromagnetic potential 1-form and vector,

Ãa ¼ Aa and Ãa ¼ γ̃abÃb ¼ ψ4Aa; ð68Þ

and for the spatial Faraday tensor

F̃ab ¼ Fab and F̃a ¼ Fa; ð69Þ

where tilded objects are rescaled quantities of which the
indices are raised or lowered by γ̃ab or γ̃ab, respectively.
Details on the conformal decomposition of 3þ 1 form

of Maxwell’s equations (65) and (67) are provided in
Appendix C. The projection of Eq. (65) along nα results in
an elliptic PDE for αΦΣ,

Δ
∘
ðαΦΣÞ ¼ S; ð70Þ

where the source S is written

S ¼ −habD
∘
aD
∘
bðαΦΣÞ −D

∘
aγ̃

abD
∘
bðαΦΣÞ

þ γ̃ab
α

ψ2
D̃a

�
ψ2

α

�
αFb þD

∘
aγ̃

ab£βAb

þ γ̃abD
∘
a£βAb − 4παψ4ρΣ: ð71Þ

The projection of Eq. (67) to Σt results in elliptic PDEs
for Aa,

Δ
∘
Aa ¼ Sa; ð72Þ

where the source Sa is written

Sa ≔ −hbcD
∘
bD
∘
cÃa þ γ̃bcD

∘
bðCd

caÃdÞ þ γ̃bcCd
bcD̃dÃa

þ γ̃bcCd
baD̃cÃd þ D̃aD̃bÃ

b þ 3R̃abÃ
b

þ F̃a
b ψ

2

α
D̃b

�
α

ψ2

�
þ ψ4

α
£βFa − 2ψ4Aa

bFb

þ 1

3
ψ4KFa − 4πψ4jΣa: ð73Þ

To shorten the expression of the source (73), we keep D̃a

instead of replacing it with D
∘
a and a connection Cc

ab in

some terms, where Cc
ab ≔

1
2
γ̃cdðD∘ aγ̃db þD

∘
bγ̃ad −D

∘
dγ̃abÞ.

The fifth term in the rhs of the source (73), D̃aD̃bÃ
b, may

be expanded as follows,

D̃aD̃bÃ
b ¼ D

∘
aD
∘

bÃb þD
∘
aðhbcD

∘
bÃc − γ̃bcCd

bcÃdÞ; ð74Þ

and then the Coulomb gauge condition D
∘

aAa ¼ 0 may be
imposed explicitly, or a simpler expression of this term may
be written applying the condition γ̃ ¼ f explicitly,

D̃aD̃bÃ
b ¼ D

∘
aD
∘
bÃ

b: ð75Þ

5. Imposition of Coulomb gauge

As discussed in Appendix G, we have freedom to choose
the spatial gauge for the spatial part of the electromagnetic
potentials. We impose Coulomb gauge analogously to that
for coordinate conditions discussed in Sec. II C 2:

D
∘

aAa ¼ 0: ð76Þ
Although we have not tested gauge conditions other than
(76), we formulate the method to impose more general
gauge conditions analogously to the imposition of coor-
dinate conditions discussed in Sec. II C 2,

D
∘

aAa ¼ AG; ð77Þ
where AG is a given arbitrary function.
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Considering the following gauge transformation,

Aa → Aa þD
∘
af; ð78Þ

we let A0
a defined by

A0
a ¼ Aa þD

∘
af ð79Þ

satisfy the gauge condition D
∘

aA0
a ¼ AG, which leads to

Δ
∘
f ¼ AG −D

∘
aAa: ð80Þ

The same as with the coordinate imposition Eqs. (34)–(37),
the above equation (80) is solved simultaneously and
iteratively together with the field equations. Then, sub-
stituting the solution f to Eq. (79), A0

a is calculated, and Aa
is replaced by A0

a → Aa.

F. First integrals of relativistic ideal MHD equations

A key to a successful formulation for computing
equilibriums of compact stars is to derive a set of first
integrals of a system of hydrostationary equations. For the
ideal MHD case, including the ideal MHD condition (44),
all equations for the magnetized matter have to be ana-
lytically and consistently integrated. In the formulation in
[16], those first integrals are thoroughly used to reduce the
number of variables in deriving a single master transfield
equation, in particular, to eliminate the current jα in
Maxwell’s equations. In the present formulation, we simply
solve the system of the first integrals simultaneously with
the field equations.
In what follows, we analyze the rest-mass conservation

law (42); each of the t, ϕ, and meridional xA components
of the relativistic MHD-Euler equations (43); the ideal
MHD condition (44); as well as Maxwell’s equations in its
original form (39), applying t and ϕ symmetries.

1. Coordinates and basis

To begin with, we introduce an orthogonal basis,
ftα;ϕα; eαAg, associated with the coordinates t, ϕ, and
two other spatial coordinates xA, where the t and ϕ
coordinates are adapted to the spacetime symmetries
generated by the two Killing vectors tα and ϕα. The
remaining two spatial meridional coordinates xA, with
indices denoted by uppercase latin letters A;B; � � � ¼ 1, 2,
may, for example, be (ϖ; z) for cylindrical or (r; θ) for
spherical coordinates, for example. These bases and natural
1-form bases generated from these coordinates are nor-
malized as

tα∇αt ¼ 1; ϕα∇αϕ ¼ 1; eαA∇αxB ¼ δA
B; ð81Þ

where δBA is the Kronecker delta and otherwise orthogonal.

In the following sections, we will use the 4D flat metric
ηαβ and 3D flat metric fab associated with these bases,

ηαβ ¼ −∇αt∇βtþ f2ϕ∇αϕ∇βϕþ fAB∇αxA∇βxB; ð82Þ

ηαβ ¼ −tαtβ þ f−2ϕ ϕαϕβ þ fABeαAe
β
B; ð83Þ

fab ¼ f2ϕ∇aϕ∇bϕþ fAB∇axA∇bxB; ð84Þ

fab ¼ f−2ϕ ϕaϕb þ fABeaAe
b
B; ð85Þ

where fϕ ¼ ϖ and fAB ¼ diagð1; 1Þ for the case with
cylindrical coordinates, while fϕ ¼ r sin θ and fAB ¼
diagð1; r2Þ with spherical coordinates.
Objects with contravariant indices are expanded using

these bases and are denoted, for example, as

uα ¼ uttα þ uϕϕα þ uAeαA; ð86Þ

for the 4-velocity uα. It is understood that the last term is
summed over A ¼ 1, 2. Similarly, objects with covariant
indices (such as p-forms) are expanded with respect to the
basis f∇αt;∇αϕ;∇αxAg.

2. Rest-mass conservation equation

The densitized rest-mass conservation equation is written

∇αðρuαÞ
ffiffiffiffiffiffi
−g

p ¼ ∂α½ρðuttα þ uϕϕα þ uAeαAÞ
ffiffiffiffiffiffi
−g

p �
¼ ∂AðρuA

ffiffiffiffiffiffi
−g

p Þ ¼ 0; ð87Þ

where we have applied the symmetries,

∂αðρuttα
ffiffiffiffiffiffi
−g

p Þ ¼ £tðρuα∇αt
ffiffiffiffiffiffi
−g

p Þ ¼ 0; ð88Þ

and similarly to a term associated with ϕα. This suggests
introducing a stream function

ffiffiffiffiffiffi−gp Ψ for the meridional
flow fields uA,

uA ¼ 1

ρ
ffiffiffiffiffiffi−gp ϵAB∂Bð

ffiffiffiffiffiffi
−g

p
ΨÞ; ð89Þ

where ϵAB is an antisymmetric matrix with a signature
ϵ12 ¼ −1,

ϵAB ¼
�
0 −1
1 0

�
: ð90Þ

The scalar functionΨ is introduced to make explicit that the
stream function

ffiffiffiffiffiffi−gp Ψ is a densitized scalar.

NEW CODE FOR …. IV. ROTATING … PHYS. REV. D 100, 123019 (2019)

123019-9



3. Components of electromagnetic 2-form
and vorticity 2-form

We write the components of F ¼ dA and impose
symmetries (for economical reasons, we omit spacetime
indices α; β; � � � in the following of this section and in the
next section):

(t;ϕ)-component:

Ftϕ ¼ −Fϕt ¼ ðt · FÞ · ϕ ¼ ðt · dAÞ · ϕ
¼ ½£tA − dðt · AÞ� · ϕ ¼ −£ϕðt · AÞ ¼ 0; ð91Þ

ðt; xAÞ-components:

FAt ¼ −FtA ¼ −ðt · FÞ · eA ¼ −ðt · dAÞ · eA
¼ eA · dðt · AÞ ¼ ∂AAt; ð92Þ

ðϕ; xAÞ-components:

FAϕ ¼ −FϕA ¼ −ðϕ · FÞ · eA ¼ −ðϕ · dAÞ · eA
¼ eA · dðϕ · AÞ ¼ ∂AAϕ; ð93Þ

ðxA; xBÞ components:

FAB ¼ −FBA ¼ ðdAÞAB ¼ ∂AAB − ∂BAA; ð94Þ

or explicitly,

FAB ¼−FBA¼ðeA ·FÞ ·eB ¼ðeA ·dAÞ ·eB
¼ ½£eAA−dðeA ·AÞ� ·eB¼ ∂AAB−∂BAA: ð95Þ

We introduce expressions for the spatial components of
the 2-form F and its dual as follows,

FAϕ ¼ ∂AAϕ ¼ −ϵABBB; ð96Þ

FAB ¼ ðdAÞAB ¼ ϵABBϕ; ð97Þ

FAB ¼ ðdAÞAB ¼ ϵABB; ð98Þ

where ϵAB and ϵA
B are also antisymmetric matrices with

signatures ϵ12 ¼ −1 and ϵ1
2 ¼ −1.

Analogously, the components of the vorticity 2-form
dðhuÞ are written as follows:
(t;ϕ)-component:

dðhuÞϕt ¼ −dðhuÞtϕ ¼ 0; ð99Þ

ðt; xAÞ-components:

dðhuÞAt ¼ −dðhuÞtA ¼ ∂AðhutÞ; ð100Þ

ðϕ; xAÞ-components:

dðhuÞAϕ ¼ −dðhuÞϕA ¼ ∂AðhuϕÞ; ð101Þ

ðxA; xBÞ-components:

dðhuÞAB ¼ −dðhuÞBA ¼ ∂AðhuBÞ − ∂BðhuAÞ: ð102Þ

We introduce expressions for the spatial components of
the 2-form dðhuÞ as follows7:

dðhuÞAϕ ¼ ∂AðhuϕÞ ¼ ϵA
BωB; ð103Þ

dðhuÞAB ¼ −ϵABωϕ: ð104Þ

4. Ideal MHD condition

Substituting the 4-velocity in terms of a basis (86) to the
ideal MHD condition F · u ¼ 0 and applying the sym-
metries to the 2-form F ¼ dA as discussed in the previous
section, each component is written as follows:

t-component:

t · ðF · uÞ ¼ t · ðF · eAÞuA ¼ uAFtA

¼ −uA∂AAt ¼ 0; ð105Þ

ϕ-component:

ϕ · ðF · uÞ ¼ ϕ · ðF · eAÞuA ¼ uAFϕA

¼ −uA∂AAϕ ¼ 0; ð106Þ

xA-components:

eA · ðF · uÞ ¼ eA · ðF · tÞut þ eA · ðF ·ϕÞuϕ þ eA · ðF · eBÞuB
¼ FAtut þFAϕuϕ þFABuB

¼ ut∂AAt þ uϕ∂AAϕ þ ðdAÞABuB ¼ 0: ð107Þ

Substituting the stream function
ffiffiffiffiffiffi−gp Ψ defined by

Eq. (89) to each of the t and ϕ components (105) and
(106) and then multiplying ρ

ffiffiffiffiffiffi−gp
, we have

ϵAB∂AAt∂Bð
ffiffiffiffiffiffi
−g

p
ΨÞ ¼ 0; ð108Þ

ϵAB∂AAϕ∂Bð
ffiffiffiffiffiffi
−g

p
ΨÞ ¼ 0: ð109Þ

These relations imply that the constant surfaces of the
scalars At and Aϕ and the scalar density

ffiffiffiffiffiffi−gp Ψ coincide.8

7The magnetic flux density B and the vorticity ω are related to
the Hodge dual of F and dðhuÞ, respectively, as B ¼ u · ⋆F and
ω⃗ ¼ ⋆dðhuÞ · u.

8This means that the stream function
ffiffiffiffiffiffi−gp Ψ depends on the

choice of coordinate conditions.
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Therefore, introducing the master potential ϒ as an
independent variable, they are written

At ¼ AtðϒÞ; Aϕ ¼ AϕðϒÞ;
and

ffiffiffiffiffiffi
−g

p
Ψ ¼ ½ ffiffiffiffiffiffi

−g
p

Ψ�ðϒÞ: ð110Þ

These are part of the integrability conditions.
To obtain the first integral of the xA-components (107),

we again substitute the definition of the stream function
(89) and ðdAÞAB ¼ ϵABBϕ to rewrite

ρut
ffiffiffiffiffiffi
−g

p ∂AAtþρuϕ
ffiffiffiffiffiffi
−g

p ∂AAϕ−Bϕ∂A½
ffiffiffiffiffiffi
−g

p
Ψ�¼0: ð111Þ

Because of the conditions (110), it is rewritten as

ðA0
tρut

ffiffiffiffiffiffi
−g

p þA0
ϕρu

ϕ ffiffiffiffiffiffi
−g

p
− ½ ffiffiffiffiffiffi

−g
p

Ψ�0BϕÞ∂Aϒ¼ 0; ð112Þ

where the primes A0
t, A0

ϕ, and ½
ffiffiffiffiffiffi−gp Ψ�0 stand for a derivative

with respect to the master potential ϒ,

A0
t ≔

dAtðϒÞ
dϒ

; A0
ϕ ≔

dAϕðϒÞ
dϒ

;

and ½ ffiffiffiffiffiffi
−g

p
Ψ�0 ≔ d½ ffiffiffiffiffiffi−gp Ψ�ðϒÞ

dϒ
: ð113Þ

Therefore, we have one of the first integrals, a consistency
relation for components to be satisfied,

A0
tρut

ffiffiffiffiffiffi
−g

p þ A0
ϕρu

ϕ ffiffiffiffiffiffi
−g

p
− ½ ffiffiffiffiffiffi

−g
p

Ψ�0Bϕ ¼ 0: ð114Þ

In the absence of meridional flows, ½ ffiffiffiffiffiffi−gp Ψ�0ðϒÞ ¼ 0,
Eq. (114) implies a relativistic version of Ferraro’s iso-
rotation law [31],

uϕ

ut
≔ ΩðϒÞ ¼ −

A0
t

A0
ϕ

: ð115Þ

5. Maxwell’s equations

For any coordinate basis of the 1-form ∇αx
ðx ¼ t;ϕ; xAÞ, the projections (components) of the diver-
gence of the Faraday tensor ∇βFαβ become

∇αx∇βFαβ ¼ ∇βðFαβ∇αxÞ − Fαβ∇β∇αx ¼ ∇βFxβ:

¼ ∇βðFxttβ þ Fxϕϕβ þ FxAeβAÞ

¼ £eAF
xA þ FxA 1ffiffiffiffiffiffi−gp £eA

ffiffiffiffiffiffi
−g

p

¼ 1ffiffiffiffiffiffi−gp £eAðFxA ffiffiffiffiffiffi
−g

p Þ; ð116Þ

where we have used ∇αtα ¼ 0 and ∇αϕ
α ¼ 0 for Killing

vectors tα and ϕα.

Then, the components of Maxwell’s equations ∇βFαβ ¼
4πjα become as follows:
t-component:

£eAðFtA ffiffiffiffiffiffi
−g

p Þ ¼ 4πjt
ffiffiffiffiffiffi
−g

p
; ð117Þ

ϕ-component:

£eAðFϕA ffiffiffiffiffiffi
−g

p Þ ¼ 4πjϕ
ffiffiffiffiffiffi
−g

p
; ð118Þ

xA-component:

£eBðFAB ffiffiffiffiffiffi
−g

p Þ ¼ 4πjA
ffiffiffiffiffiffi
−g

p
: ð119Þ

Since FtA, FϕA, and FAB are components, these equations
are also written

4πjt
ffiffiffiffiffiffi
−g

p ¼ ∂AðFtA ffiffiffiffiffiffi
−g

p Þ ð120Þ

4πjϕ
ffiffiffiffiffiffi
−g

p ¼ ∂AðFϕA ffiffiffiffiffiffi
−g

p Þ ð121Þ

4πjA
ffiffiffiffiffiffi
−g

p ¼ ∂BðFAB ffiffiffiffiffiffi
−g

p Þ
¼ ϵAB∂BðB

ffiffiffiffiffiffi
−g

p Þ; ð122Þ

where we substitute Eq. (98) to FAB in Eq. (122).

6. MHD-Euler equations

MHD-Euler equations (43) are also written in index-free
notation,

−dðhuÞ · u − Tds −
1

ρ
dA · j ¼ 0: ð123Þ

Substituting the current vector

jα ¼ jttα þ jϕϕα þ jAeαA ð124Þ

and using the Cartan identity and the t;ϕ symmetries, each
component becomes as follows:
t-component:

t ·

�
−dðhuÞ · u − Tds −

1

ρ
dA · j

�

¼ u · d½t · ðhuÞ� þ 1

ρ
j · dðt · AÞ

¼ uA∂AðhutÞ þ
1

ρ
jA∂AAt ¼ 0; ð125Þ
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ϕ-component:

ϕ ·

�
−dðhuÞ · u − Tds −

1

ρ
dA · j

�

¼ u · d½ϕ · ðhuÞ� þ 1

ρ
j · dðϕ · AÞ

¼ uA∂AðhuϕÞ þ
1

ρ
jA∂AAϕ ¼ 0; ð126Þ

xA-component:

− eA ·

�
−dðhuÞ · u − Tds −

1

ρ
dA · j

�
¼ −ðuttþ uϕϕþ uBeBÞ · dðhuÞ · eA
−
1

ρ
ðjttþ jϕϕþ jBeBÞ · dA · eA þ Tds · eA

¼ ut∂AðhutÞ þ uϕ∂AðhuϕÞ þ uBdðhuÞAB þ 1

ρ
jt∂AAt

þ 1

ρ
jϕ∂AAϕ þ

1

ρ
jBðdAÞAB þ T∂As ¼ 0: ð127Þ

Analogously to the ideal-MHD conditions, after a some-
what lengthy calculation, integrability conditions and a set of
first integrals ofMHD-Euler equations are derived as follows:

t-component:

−½ ffiffiffiffiffiffi
−g

p
Ψ�0hutþ

1

4π
A0
tB

ffiffiffiffiffiffi
−g

p ¼½ ffiffiffiffiffiffi
−g

p
Λt�ðϒÞ; ð128Þ

ϕ-component:

−½ ffiffiffiffiffiffi
−g

p
Ψ�0huϕ þ

1

4π
A0
ϕB

ffiffiffiffiffiffi
−g

p ¼ ½ ffiffiffiffiffiffi
−g

p
Λϕ�ðϒÞ;

ð129Þ
where these are combined and written using another
function of ϒ, ΛðϒÞ,

A0
ϕhut−A0

thuϕ¼ΛðϒÞ≔A0
t½ ffiffiffiffiffiffi−gp Λϕ�−A0

ϕ½
ffiffiffiffiffiffi−gp Λt�

½ ffiffiffiffiffiffi−gp Ψ�0 ;

ð130Þ

xA-components:

−
1

2
½A0

ϕð½
ffiffiffiffiffiffi
−g

p
Ψ�00hut þ ½ ffiffiffiffiffiffi

−g
p

Λt�0Þ
− A00

ϕð½
ffiffiffiffiffiffi
−g

p
Ψ�0hut þ ½ ffiffiffiffiffiffi

−g
p

Λt�Þ
þ A0

tð½
ffiffiffiffiffiffi
−g

p
Ψ�00huϕ þ ½ ffiffiffiffiffiffi

−g
p

Λϕ�0Þ
− A00

t ð½
ffiffiffiffiffiffi
−g

p
Ψ�0huϕ þ ½ ffiffiffiffiffiffi

−g
p

Λϕ�Þ�Bϕ

þ 1

2
ðA00

t huϕ − A00
ϕhut þ Λ0ÞðA0

tut − A0
ϕu

ϕÞρ ffiffiffiffiffiffi
−g

p

þ A0
tA0

ϕ½
ffiffiffiffiffiffi
−g

p
Ψ�0ωϕ þ A0

tA0
ϕs

0Tρ
ffiffiffiffiffiffi
−g

p

þ ðA0
tÞ2A0

ϕj
t ffiffiffiffiffiffi

−g
p þ A0

tðA0
ϕÞ2jϕ

ffiffiffiffiffiffi
−g

p ¼ 0: ð131Þ

Derivations of Eqs. (128)–(131) are detailed in
Appendix D.
For the case without meridional flow fields, uA ¼ 0, a set

of first integrals for the stationary and axisymmetric system
can be derived from the above set of equations by taking a
limit of the stream function, ½ ffiffiffiffiffiffi−gp Ψ�ðϒÞ → constant. In
this limit, the right-hand side of the first integral (130)
becomes finite as shown in [16]. In Appendix E, we present
a direct proof for the same case with pure rotational flows,
since our formulation is slightly different from that in [16].

III. FORMULATION FOR NUMERICAL
COMPUTATION AND NUMERICAL METHOD

In Sec. II, a set of elliptic PDEs for computing gravi-
tational fields fψ ; β̃a; αψ ; habg and electromagnetic fields
fαΦΣ; Aag of stationary and axisymmetric systems are
derived from Einstein’s and Maxwell’s equations. The
number of variables for gravitational fields is 11, as it is
augmented with the conformal factor ψ and a condition
γ̃ ¼ f is added to determine it. The number of electro-
magnetic potentials is 4, and four PDEs are derived from
Maxwell’s equations (39). The apparent number of vari-
ables and equations matches, though there are four addi-
tional coordinate conditions (26) to be imposed on the
metric and a gauge condition (76) on the electromagnetic
potentials. For a set of matter and electric currents,
fh; T; s; ρ; uα; jαg, 12 variables in total appear in a system
of ten equations in Sec. II D which are MHD-Euler
equations (43), the ideal MHD condition (44) (three
components), the continuity equations for the rest-mass
conservation and the current conservation, and normaliza-
tion of the 4-velocity u · u ¼ −1. Instead of solving the
equation for local thermal energy conservation and the two-
parameter EOS (17) [that is, h ¼ hðρ; sÞ] simultaneously
with the above system, we assume one-parameter (baro-
tropic) EOS.9 The apparent numbers of the variables and
equations for the matter and current also match. This is also
the case for the derived system of algebraic equations for
the first integrals and integrability conditions.
As shown in previous sections, for stationary and axisym-

metric ideal MHD, the system of equations for matter and
currents is integrable analytically when the t and ϕ compo-
nents of the electromagnetic potential 1-form and the
densitized stream function are homologous.We rewrite these
equations to be solved iteratively in our numerical code.

A. Formulation for solving Maxwell’s
equations in ideal MHD

Our formulation is to solve the 3þ 1 decomposed
Maxwell’s equations in the form of elliptic equations for

9The component along uα of the ideal MHD condition F ·u¼0
is trivial. The component along uα of the relativistic MHD-Euler
equation constrains the flow to be isentropic.
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the electromagnetic 1-form. Those are Eqs. (70) and (72)
and can be integrated by prescribing the current jα. The ideal
MHD condition constrains the four components of jα. In
particular, the t andϕ components appearing in Eq. (131) are
an inseparable combination, which is a consequence of the
integrability conditions (110) requiring the potentialsAt and
Aϕ to be functions of a single master potential ϒ. There are
several ways to rearrange the system of equations derived
in Sec. II F to compute jα. In the rearrangement used in
this paper, we choose that the master potential ϒ be equal
to Aϕ. This choice is general enough to generate interesting
solutions for rotating compact stars associated with mixed
toroidal and poloidal magnetic fields.

1. Form of the currents

As shown in Eq. (122), Maxwell’s equations relate
FAB ¼ ϵABB (98) with the xA components of the current jA,

jA
ffiffiffiffiffiffi
−g

p ¼ 1

4π
ϵAB∂Bð

ffiffiffiffiffiffi
−g

p
BÞ: ð132Þ

Multiplying Eq. (132) by A0
tA0

ϕ and using the first integral
of the t and ϕ components of MHD-Euler equations (128)
and (129), we have

A0
tA0

ϕj
A ffiffiffiffiffiffi

−g
p ¼ −

1

2
½A0

ϕð½
ffiffiffiffiffiffi
−g

p
Ψ�00hut þ ½ ffiffiffiffiffiffi

−g
p

Λt�0Þ
− A00

ϕð½
ffiffiffiffiffiffi
−g

p
Ψ�0hut þ ½ ffiffiffiffiffiffi

−g
p

Λt�Þ
þ A0

tð½
ffiffiffiffiffiffi
−g

p
Ψ�00huϕ þ ½ ffiffiffiffiffiffi

−g
p

Λϕ�0Þ
− A00

t ð½
ffiffiffiffiffiffi
−g

p
Ψ�0huϕ þ ½ ffiffiffiffiffiffi

−g
p

Λϕ�Þ�ϵAB∂Bϒ

þ 1

2
A0
ϕ½

ffiffiffiffiffiffi
−g

p
Ψ�0ϵAB∂BðhutÞ

þ 1

2
A0
t½

ffiffiffiffiffiffi
−g

p
Ψ�0ϵAB∂BðhuϕÞ: ð133Þ

The combination of the t- and ϕ-components of the
current jα has a similar form as above; from the first integral
of the MHD-Euler equations (131), we have

ðA0
tÞ2A0

ϕj
t ffiffiffiffiffiffi

−g
p þ A0

tðA0
ϕÞ2jϕ

ffiffiffiffiffiffi
−g

p ¼ 1

2
fA0

ϕð½
ffiffiffiffiffiffi
−g

p
Ψ�00hut þ ½ ffiffiffiffiffiffi

−g
p

Λt�0Þ − A00
ϕð½

ffiffiffiffiffiffi
−g

p
Ψ�0hut þ ½ ffiffiffiffiffiffi

−g
p

Λt�Þ
þ A0

tð½
ffiffiffiffiffiffi
−g

p
Ψ�00huϕ þ ½ ffiffiffiffiffiffi

−g
p

Λϕ�0Þ − A00
t ð½

ffiffiffiffiffiffi
−g

p
Ψ�0huϕ þ ½ ffiffiffiffiffiffi

−g
p

Λϕ�ÞgBϕ

−
1

2
ðA00

t huϕ − A00
ϕhut þ Λ0ÞðA0

tut − A0
ϕu

ϕÞρ ffiffiffiffiffiffi
−g

p
− A0

tA0
ϕ½

ffiffiffiffiffiffi
−g

p
Ψ�0ωϕ − A0

tA0
ϕs

0Tρ
ffiffiffiffiffiffi
−g

p
:

ð134Þ

The above expressions for jα are symmetric in t and ϕ,
and they can be used for taking the limit as either At or Aϕ

approaches to a constant. When Aϕ is not constant, one can,
without loss of generality, chooseϒ ¼ Aϕ because Aϕ is an
arbitrary function of the master potential ϒ. Since A0

ϕ ¼ 1

and A00
ϕ ¼ 0 for this case, we can derive simpler expressions

for jα with the help of Eqs. (114) and (129);

jA
ffiffiffiffiffiffi
−g

p ¼ ð½ ffiffiffiffiffiffi
−g

p
Ψ�00huϕ þ ½ ffiffiffiffiffiffi

−g
p

Λϕ�0ÞδABBB

− ½ ffiffiffiffiffiffi
−g

p
Ψ�0δABωB; ð135Þ

jϕ
ffiffiffiffiffiffi
−g

p þ A0
tjt

ffiffiffiffiffiffi
−g

p

¼ ð½ ffiffiffiffiffiffi
−g

p
Ψ�00huϕ þ ½ ffiffiffiffiffiffi

−g
p

Λϕ�0ÞBϕ − ½ ffiffiffiffiffiffi
−g

p
Ψ�0ωϕ

− ðA00
t huϕ þ Λ0Þρut ffiffiffiffiffiffi

−g
p

− s0Tρ
ffiffiffiffiffiffi
−g

p
; ð136Þ

where δAB is the Kronecker delta, and BA and ωA defined in
Eqs. (96) and (103) are substituted.

2. Calculation of jt

Among the four components of the current jα, there
are three independent components; the t and ϕ components

appear to be a combination as in Eq. (136). Therefore, we
propose using the t-component of Maxwell’s equations
to determine the t-component of the current jt. From
Eq. (55), using the relations ρΣ ¼−jαnα ¼ αjt and DaFa ¼
ψ−6D

∘
aðψ6FaÞ, jt is written

jt ¼ 1

4παψ6
D
∘
aðψ6FaÞ ¼ 1

4παψ6
D
∘
aðψ2γ̃abFbÞ: ð137Þ

Then, we move the jt term in Eq. (136) to the right-hand
side to isolate jϕ and use this jϕ as source of the spatial
components of Maxwell’s equations (72) for evaluating Aa.
This method works because jt is related to At under a
choice of ϒ ¼ Aϕ and hence At is a prescribed function of
Aϕ, At ¼ AtðAϕÞ on the support of ideal MHD fluid; that is,
Fa in Eq. (137) is related to At through Eq. (65) as

Fa ¼
1

α
£βAa þ

1

α
Dað−AtðϒÞ þ Aaβ

aÞ; ð138Þ

since At ¼ −αΦΣ þ Aaβ
a.

In actual computations, we also solve the nα component
of Maxwell’s equations (70) to cross-check the consistency
of this method by comparing a solution and a prescribed
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function AtðAϕÞ. It is also necessary to solve (70) in the
electro-vacuum spacetime outside of the compact stars
because the above argument is valid only on the support of
ideal MHD fluid.

B. Elliptic PDE solver

As discussed in a series of papers [20,29,32], one of the
basic concepts of the COCAL code is to develop a simple and
straightforward numerical method for computing datasets on
a 3D slice Σ. Our idea is to formulate vectorial or tensorial
elliptic PDEs in terms of Cartesian components and apply
the same elliptic PDE solver as that for the elliptic PDE
of a scalar function on spherical coordinates ðr; θ;ϕÞ. Our
scalar elliptic PDE solver, for example, for Eq. (25), uses a
multipole expansion of the Green’s function,

ΦðxÞ ¼ −
1

4π

Z
V

Sðx0Þ
jx − x0j d

3x0 þ χðxÞ; ð139Þ

where x and x0 are points in V, x;x0 ∈ V ⊂ Σ,

1

jx − x0j ¼
X∞
l¼0

rl<
rlþ1
>

Xl
m¼0

ϵm
ðl −mÞ!
ðlþmÞ!

× Pm
l ðcos θÞPm

l ðcos θ0Þ cosmðφ − φ0Þ; ð140Þ

where r> ≔ supfr; r0g, r< ≔ inffr; r0g, ϵm ¼ 1 for m ¼ 0,
ϵm ¼ 2 for m ≥ 1, and Pm

l ðcos θÞ are the associated
Legendre functions. We will truncate the expansion in l
at a certain positive integer L so that 0 ≤ l ≤ L.10

The function χðxÞ in Eq. (139) is a homogeneous

solution, Δ
∘
χðxÞ ¼ 0, to be used for imposing boundary

conditions on ΦðxÞ. The function χðxÞ may be included
in the Green’s function, if the boundary is a concentric
sphere on the spherical coordinate [32]. For this particular
problem, that is, computations of compact stars that have
flat asymptotics, among all elliptic PDEs, Eqs. (21)–(24),
(34)–(37), (70)–(73), and (80), all of them except for one
can be integrated setting χðxÞ to be constant, since errors
introduced to the potential are negligible if the boundary of
the computational domain is taken far enough from the
source. An exception for the choice for χðxÞ is Eq. (70) to
determine αΦΣ.
As mentioned in the previous subsection,ΦΣ is related to

At, and At is determined from the integrability condition
At ¼ AtðAϕÞ on the support of the ideal MHD fluids and
from Maxwell’s equations on electro-vacuum spacetime

outside of the fluids. We also assume that Aϕ as well as its
derivatives are continuous across the stellar surface, while
At and hence αΦΣ are continuous across the surface but
their derivatives are not. Therefore, in solving αΦΣ, we
impose a boundary condition not only at the boundary of
the computational domain but also at the stellar surface.
Our idea to impose the boundary condition at the stellar
surface is essentially the same as the one described in
Sec 3.1 of [7].
We assume that the stellar surface is a single valued

function of spherical coordinates θ and ϕ as r ¼ Rðθ;ϕÞ,
the origin r ¼ 0 of which is placed inside of the star. The
homogenous solution χðxÞ outside of fluid support is
regular at r → ∞, that is, χ ∝ r−l−1 for r ≥ Rðθ;ϕÞ, and
χðxÞ is determined so that Eq. (139) (in whichΦ is replaced
by αΦΣ) satisfies the boundary value

ðαΦΣÞB ≔ ½AtðAϕÞ þ Aaβ
a�jr¼Rðθ;ϕÞ: ð141Þ

To achieve this, we expand χðxÞ with coefficients
ðalm; blmÞ as

χðxÞ ¼
X∞
l¼0

Xl
m¼0

1

rlþ1
Ym

l ðθÞðalm cosmϕþ blm sinmϕÞ;

ð142Þ

where Ym
l ðθÞ is defined by

Ym
l ðθÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵmð2lþ 1Þðl −mÞ!

4πðlþmÞ!

s
Pm
l ðcos θÞ ð143Þ

and the expansion in l is also truncated at L here. To
determine ðalm; blmÞ from imposing boundary conditions,
we apply the method of least squares. Writing the boundary
value of the volume integral term in Eq. (139),

IB ≔ −
1

4π

Z
V

Sðx0Þ
jx − x0j

����
r¼Rðθ;ϕÞ

d3x0; ð144Þ

and χB ¼ χðxÞjr¼Rðθ;ϕÞ, we define the squared residuals,

I ≔
1

2

X
θj;ϕk

½ðαΦΣÞB − ðIB þ χBÞ�2; ð145Þ

and apply the method of least squares to minimize I; that is,
we solve a linear system,

∂I
∂alm ¼ 0 and

∂I
∂blm ¼ 0; ð146Þ

to determine a set of coefficients ðalm; blmÞ. In Eq. (145), a
summation is taken over all grid points ðθj;ϕkÞ, which will

10Obviously, in the present aim for computing axisymmetric
configurations, it is not necessary to expand in the azimuthal
angle ϕ. The Cartesian components of vector or tensor variables
have trivial dependencies on ϕ, which may be easily integrated
analytically. We, however, keep ϕ dependencies in the formu-
lation and the ϕ integrals as Eq. (139) in the numerical code for
future extensions.
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be introduced in a later section, and l is also truncated
here, 0 ≤ l ≤ L.

C. Equations for the matter variables

Finally, we introduce final forms of the first integrals
and integrability conditions which are suitable for the self-
consistent field (SCF) iteration scheme used in our numeri-
cal method.
We assume the one-parameter EOS to have a single

independent thermodynamic variable for simplicity and
assume homentropic flow, sðϒÞ ¼ constant. Because of
these choices, we have five independent variables for the
matter fh; uαg. In the following, the 4-velocity uα may also
be written in 3þ 1 form,

uα ¼ utðtα þ vαÞ ¼ utðαnα þ βα þ vαÞ; ð147Þ

where vα is the spatial component of the velocity that
satisfies vα∇αt ¼ 0 and both expressions uα and vα (or va)
are mixedly used. The meridional components uA are
written uA ¼ utvA.
Assuming a choice ϒ ¼ Aϕ, a possible arrangement of

equations for the SCF iteration of hydrodynamic variables
becomes as follows.
For the meridional velocity uA, the rest-mass conserva-

tion (89) is used:

uA ¼ 1

ρ
ffiffiffiffiffiffi−gp ϵAB∂B½

ffiffiffiffiffiffi
−g

p
Ψ�ðϒÞ

¼ 1

ραψ6
ffiffiffĩ
γ

p ½ ffiffiffiffiffiffi
−g

p
Ψ�0ϵAB∂BAϕ: ð148Þ

For the t-component of the 4-velocity, ut, the norm
u · u ¼ −1 is used:

ut ¼ 1

½α2 − ψ4γ̃abðva þ βaÞðvb þ βbÞ�1=2 : ð149Þ

For the ϕ-component of the 4-velocity, uϕ, the xA

component of ideal MHD condition (114) is used:

uϕ ¼ ½ ffiffiffiffiffiffi−gp Ψ�0Bϕ

A0
ϕρ

ffiffiffiffiffiffi−gp −
A0
t

A0
ϕ

ut

¼ ½ ffiffiffiffiffiffi−gp Ψ�0Bϕ

ραψ6
ffiffiffĩ
γ

p − A0
tut: ð150Þ

For a thermodynamic variable, the enthalpy h, the
combination of t- and ϕ-components of MHD-Euler
equations (130) is used:

h ¼ Λ
A0
ϕut − A0

tuϕ
¼ Λ

ut − A0
tuϕ

: ð151Þ

As mentioned earlier, even in the case of no meridional
flows (purely rotational flows), uA ¼ 0 and ½ ffiffiffiffiffiffi−gp Ψ�ðϒÞ ¼

constant, the above set of equations for matter is valid, and
Eq. (151) can be used as the same form (see Appendix D).

D. Assumptions for arbitrary functions

To specify a model of a rotating star, a concrete form
of each arbitrary function that appears in the integrability
conditions (110) and in the first integrals (128)–(130) has to
be prescribed. We partly follow a choice made in [33] for
these functions, which are used in our previous paper [11],
but we also introduce new functional forms below. As
mentioned in Sec. III A 1, we choose ϒ ¼ Aϕ as the
independent variable instead of the master potential ϒ.

1. Smoothed step function

We introduce a class of a two-parameter sigmoid
function Ξ0ðx;b; cÞ that varies from 0 to 1 in a region x ∈
½0; 1� of which the transition width is b ð0 < b < 1Þ and
transition center c ð0 < c < 1Þ,

Ξ0ðx; b; cÞ ¼ 1

2

�
tanh

�
x
b
− c

�
þ 1

�
; ð152Þ

and its integral Ξðx; b; cÞ,

Ξðx;b;cÞ¼ 1

2

�
b lncosh

�
x
b
−c

�
þx

�
þ constant: ð153Þ

We make use of these functions in a region where
Aϕ varies on the fluid support and its contour is closed as
will be explained later. Functions Ξ0ðAϕÞ and ΞðAϕÞ are
defined by

Ξ0ðAϕÞ ¼
1

2

�
tanh

�
1

b

Aϕ − Amax
ϕ;S

Amax
ϕ − Amax

ϕ;S
− c

�
þ 1

�
; ð154Þ

and

ΞðAϕÞ ¼
1

2

�
bðAmax

ϕ − Amax
ϕ;S Þ

× ln cosh

�
1

b

Aϕ − Amax
ϕ;S

Amax
ϕ − Amax

ϕ;S
− c

�
þ Aϕ

�
: ð155Þ

The smoothed step function Ξ0ðAϕÞ varies on a region
Aϕ ∈ ½Amax

ϕ;S ; A
max
ϕ �, where Amax

ϕ and Amax
ϕ;S are the maximum

values of Aϕ on the fluid support and that on the stellar
surface, respectively, Here, Amax

ϕ > Amax
ϕ;S is assumed. Note

that Eqs. (154) and (155) are not a mere substitution of

x ¼ Aϕ − Amax
ϕ;S

Amax
ϕ − Amax

ϕ;S
ð156Þ

to Eqs. (152) and (153), since the prime of Eq. (154) is with
respect to Aϕ, not x, and a constant of integration in
Eq. (155) is chosen appropriately.
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The parameters (b; c) determine the width and position
of the transition of Ξ0 and are set to be ðb; cÞ ¼ ð0.2; 0.5Þ in
the following applications. Other types of smooth step
functions such as those made from Hermite interpolation
polynomials could be used in the same manner.

2. Models

For the function ΛðAϕÞ, we choose

Λ ¼ −Λ0ΞðAϕÞ − Λ1Aϕ − E; ð157Þ

where Λ0, Λ1, and E are constants. Λ0 and Λ1 are set by
hand, while E is calculated from a condition to be imposed
on a solution. In case of pure rotational flows without
magnetic fields, the constant E agrees with the injection
energy [6].
For the function AtðAϕÞ, we choose

At ¼ −ΩcAϕ þ Ce; ð158Þ

where Ce is a constant that relates to the net electric charge
of the star, and Ωc is a constant. As discussed in [33], the
choice of the first term corresponds to the rigid rotation
in the limits of ½ ffiffiffiffiffiffi−gp Ψ�0 → 0 or Bϕ → 0, because of
relation (115).
The current (135) and (136) involve terms with a

derivative of function ½ ffiffiffiffiffiffi−gp Λϕ�ðAϕÞ coupled with the
magnetic fields. Since we assume no electric current
outside of the star, ½ ffiffiffiffiffiffi−gp Λϕ�0ðAϕÞ has to vanish outside
of the fluid support. This is why we prepare a smooth
function that varies between [0, 1] in a region Aϕ ∈
½Amax

ϕ;S ; A
max
ϕ � as in Sec. III D 1. We choose a smooth

function,

½ ffiffiffiffiffiffi
−g

p
Λϕ� ¼ Λϕ0ΞðAϕÞ; ð159Þ

½ ffiffiffiffiffiffi
−g

p
Λϕ�0 ¼ Λϕ0Ξ0ðAϕÞ; ð160Þ

where the parameter Λϕ0 is the range of the function,
½ ffiffiffiffiffiffi−gp Λϕ�0ðAϕÞ ∈ ½0;Λϕ0� set by hand.
In the later sections, we only present solutions without

the meridional circulation flows; hence for ½ ffiffiffiffiffiffi−gp Ψ�ðAϕÞ,
we set

½ ffiffiffiffiffiffi
−g

p
Ψ� ¼ constant; ð161Þ

½ ffiffiffiffiffiffi
−g

p
Ψ�0 ¼ 0: ð162Þ

We have also tested a few models for ½ ffiffiffiffiffiffi−gp Ψ�ðAϕÞ and
successfully computed solutions with meridional flows,
although so far we have calculated solutions of which the
meridional flows do not affect equilibrium of the stars.
For example, we may choose the same form as Eqs. (159)
and (160),

½ ffiffiffiffiffiffi
−g

p
Ψ� ¼ aΨΞðAϕÞ; ð163Þ

½ ffiffiffiffiffiffi
−g

p
Ψ�0 ¼ aΨΞ0ðAϕÞ; ð164Þ

where aΨ is a parameter to be set by hand.

3. Differentially rotating models

When magnetic fields and meridional flows exist inside
of compact stars, Eq. (150) implies that the stellar rotation
Ω ≔ uϕ=ut becomes inevitably differential in general
because a combination Bϕ=ρ

ffiffiffiffiffiffi−gp
is not a function of

Aϕ or ϒ. When there is no meridional flow uA ¼ 0,
½ ffiffiffiffiffiffi−gp Ψ�0 ¼ 0, on the other hand, the form of the function
At (158) results in a uniform rotation as mentioned.
It seems that the latter case with no meridional flows

½ ffiffiffiffiffiffi−gp Ψ�0 ¼ 0 is sometimes misinterpreted in the literature,
as stated in [7], that only the uniform rotationΩ ¼ constant
is allowed in this case. This statement seems to have been
made because a distribution of Aϕ usually becomes toroidal
and hence such a toroidal differential rotation ΩðAϕÞ was
considered to be unnatural. Such differential rotation laws
in which Ω depends on ϒ (or Aϕ) are, however, allowed
mathematically and may not necessarily be too unrealistic
to be rejected. For example, one can assume moderate, or
weak, differential rotations,

uϕ

ut
¼ A0

t

A0
ϕ

≔ Ωc þ δΩðϒÞ; ð165Þ

by setting max jδΩðϒÞj to be a few tens of percent, or less,
of Ωc. Various rotation laws can also be used for the case
with meridional flow uA ≠ 0 (that is, ½ ffiffiffiffiffiffi−gp Ψ�0 ≠ 0), but it is
more likely that some kind of instability such as the
magnetorotational instability may be induced.

4. Other models

In our previous paper [11], the functional form for
AtðAϕÞ was chosen the same as Eq. (158), and for the
function ΛðAϕÞ, Λ0 was set to be zero in Eq. (157). Our
previous choices for ½ ffiffiffiffiffiffi−gp Λϕ�ðAϕÞ and ½ ffiffiffiffiffiffi−gp Ψ�ðAϕÞ in
[11] were taken from those used in [33]. For ½ ffiffiffiffiffiffi−gp Λϕ�, we
have chosen

½ ffiffiffiffiffiffi
−g

p
Λϕ� ¼

a
kþ 1

ðAϕ − Amax
ϕ;S Þkþ1ΘðAϕ − Amax

ϕ;S Þ; ð166Þ

½ ffiffiffiffiffiffi
−g

p
Λϕ�0 ¼ aðAϕ − Amax

ϕ;S ÞkΘðAϕ − Amax
ϕ;S Þ; ð167Þ

where values of the constant coefficient a and index k are
set by hand and ΘðxÞ is the Heaviside function. In [33], it
was found that the solutions have comparable strength in
poloidal and toroidal components of magnetic fields when
the index is about k ¼ 0.1. We replace Eqs. (166) and (167)
with Eqs. (159) and (160) to bring a smoothness as well as
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better control in the behavior of the functional forms,
although either choice of the function reproduces qualita-
tively the same set of solutions. Also in [11], for
½ ffiffiffiffiffiffi−gp Ψ�ðAϕÞ, we have chosen

½ ffiffiffiffiffiffi
−g

p
Ψ� ¼ aΨ

pþ 1
ðAϕ − Amax

ϕ Þpþ1ΘðAϕ − Amax
ϕ Þ; ð168Þ

½ ffiffiffiffiffiffi
−g

p
Ψ�0 ¼ aΨðAϕ − Amax

ϕ ÞpΘðAϕ − Amax
ϕ Þ; ð169Þ

where the values of constant coefficient aΨ and index p are
given by hand, for which we set p ¼ 1 following [33].

E. Alternative form of the first integral of MHD-Euler
equations under pure rotational flows

When the flow fields are pure rotational uA ¼ 0, the
4-velocity uα becomes

uα ¼ utðtα þΩϕαÞ ¼ utkα: ð170Þ

For the stationary and axisymmetric perfect-fluid spacetime
without magnetic fields, the first integral of the relativistic
Euler equations can be derived as a consequence of the
Cartan identity (2). For the simplest uniformly rotating
case,Ω ¼ constant, the helical vector k ¼ tþ Ωϕ becomes
a Killing vector. Then, the Euler equations are written, with
the help of Eq. (2),

u · dðhuÞ ¼ ut½£khu − dðk · huÞ�
¼ −utdðk · huÞ ¼ 0; ð171Þ

and hence the first integral is derived as hu · k ¼ constant.
This relation is used for determining a thermodynamic
variable, the enthalpy h in this case, of uniformly rotating
nonmagnetized stars.
In the presence of magnetic fields, the corresponding

first integral (130) [or (E19)] for determining the relativistic
enthalpy h, in place of the above relation hu · k ¼ constant,
was not derived from the Cartan identity (2) as discussed
in previous sections. We show an alternative derivation of
the first integral of ideal MHD flow using the Cartan
identity (2), which is valid only for the case of pure
rotational flows (170).
The canonical momentum, πα ¼ huα, respects the sym-

metries £tπα ¼ £ϕπα ¼ 0. Although the angular velocity Ω
is a certain function which also respects the symmetries
£tΩ ¼ £ϕΩ ¼ 0, Ωϕα is not a Killing vector. Hence for a
certain p-form Q, a relation,

£ΩϕQ ¼ Ω£ϕQþ dΩ ∧ ðϕ ·QÞ; ð172Þ

is satisfied. Then, the first term of the MHD-Euler
equations (43) divided by the enthalpy h becomes

u
h
· dðhuÞ ¼ ut

h
k · dðhuÞ ¼ ut

h
½£kdðhuÞ − dðk · huÞ�

¼ ut

h
½dΩ ∧ ðϕ · huÞ − dðk · huÞ�

¼ utuϕdΩþ ut

h
d

�
h
ut

�
: ð173Þ

Hence, Eq. (43) is rewritten,

d ln
h
ut

þ utuϕdΩ −
T
h
dsþ 1

ρh
j · dA ¼ 0: ð174Þ

Substituting the current (124), the t- and ϕ-components
of Eq. (174) become
t-component:

j · dA · t ¼ j · ½−£tAþ dðt · AÞ� ¼ jA∂AAt ¼ 0; ð175Þ
ϕ-component:

j · dA · ϕ ¼ j · ½−£ϕAþ dðϕ · AÞ� ¼ jA∂AAϕ ¼ 0: ð176Þ

Above, we used t · dQ ¼ 0 and ϕ · dQ ¼ 0 for a scalar Q.
For the xA-components, we combine Eq. (174) dotted with
the basis eA,�
d ln

h
ut

þ utuϕdΩ −
T
h
dsþ 1

ρh
j · dA

�
· eA ¼ 0; ð177Þ

and

j ·dA ·eA¼fjt½£tA−dðt ·AÞ�þjϕ½£ϕA−dðϕ ·AÞ�
þjBeB ·dAg ·eA

¼−jteA ·dAt−jϕeA ·dAϕ−jBðdAÞAB¼0; ð178Þ

xA-component:

∂A ln
h
ut

−
T
h
∂Asþ utuϕ∂AΩ

−
1

ρh
½jt∂AAt þ jϕ∂AAϕ þ jBðdAÞAB� ¼ 0; ð179Þ

where eA · dQ ¼ ∂AQ for a scalar Q.
Substituting the xA-components of Maxwell’s equa-

tions (122) to the t and ϕ components of MHD-Euler
equations (175) and (176),

ϵAB∂Bð
ffiffiffiffiffiffi
−g

p
BÞ∂AAt ¼ 0; ð180Þ

ϵAB∂Bð
ffiffiffiffiffiffi
−g

p
BÞ∂AAϕ ¼ 0; ð181Þ

the integrability conditions,

At ¼ AtðϒÞ; Aϕ ¼ AϕðϒÞ;
and

ffiffiffiffiffiffi
−g

p
B ¼ ½ ffiffiffiffiffiffi

−g
p

B�ðϒÞ; ð182Þ
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are derived. Hence, using Eqs. (122) and (97), the current
term of xA-components (179) becomes

jBðdAÞAB ¼ −
1

4π
ffiffiffiffiffiffi−gp Bϕ½

ffiffiffiffiffiffi
−g

p
B�0∂Aϒ: ð183Þ

Substituting Eq. (183) and the integrability conditions
(182) for At and Aϕ and (115) for Ω into Eq. (179), we
have xA-component:

∂A ln
h
ut
−
T
h
∂Asþ

�
utuϕΩ0

−
1

ρh

�
A0
tjtþA0

ϕj
ϕ−

1

4π
ffiffiffiffiffiffi−gp Bϕ½

ffiffiffiffiffiffi
−g

p
B�0

��
∂Aϒ¼ 0:

ð184Þ
To derive a first integral of this Eq. (184), we have a few

choices to reduce the first two terms: we may assume any of
(i) s ¼ constant,
(ii) T=h ¼ ½T=h�ðsÞ,
(iii) ρh ¼ ½ρh�ðpÞ with dh − Tds ¼ dp=ρ, or
(iv) s ¼ sðϒÞ.

Then, the following argument goes analogously. Here, we
assume a homentropic fluid, s ¼ constant, for simplicity
and rewrite Eq. (184),

d ln
h
ut

¼ λdϒ; ð185Þ

or we separate the contribution of differential rotation by
defining jðΩÞ ≔ utuϕ and rewrite

d ln
h
ut

þ ½jðΩÞΩ0 − λ�dϒ ¼ 0: ð186Þ

From the converse of the Poincaré lemma, the integrability
condition becomes

λ ¼ λðϒÞ: ð187Þ
For the latter Eq. (186), the arbitrary function λðϒÞ is
related to the current as

A0
tjt þ A0

ϕj
ϕ ¼ ρhλþ 1

4π
ffiffiffiffiffiffi−gp Bϕ½

ffiffiffiffiffiffi
−g

p
B�0; ð188Þ

and the first integral is written

ln
h
ut

þ
Z

jðΩÞdΩðϒÞ −
Z

λðϒÞdϒ ¼ E; ð189Þ

where E is a constant.
We have implemented this formulation, assuming

ϒ ¼ Aϕ and Ω ¼ constant,

h
ut

¼ Ee−Λ; where Λ ¼ ΛðAϕÞ; ð190Þ

and although we do not show the result in this paper, we

have computed a few solutions which agree well with those
calculated from Eq. (151).

F. Remarks on numerical method

1. Finite difference and iteration

Given the forms of functions presented in Sec. III D, a set
of integral equations of the field equations (139) and
algebraic equations arranged from the first integrals and
integrability conditions (148)–(151) derived in Sec. III B
and III C are a full system of equations for computing
magnetized rotating compact stars. These equations are
discretized on spherical coordinates ðr; θ;ϕÞ ∈ ½ra; rb� ×
½0; π� × ½0; 2π� that cover a star and an asymptotic region,
where the origin ra ¼ 0 is located at the center of the star.
Then, a self-consistent field iteration method is applied
to calculate a converged solution. The numerical code is
developed in the COCAL code extending a previously
developed rotating compact star code in which the waveless
formulation is used [13,20,32]. A numerical method used in
the present code for magnetized compact stars, including
setups for coordinate grid points and grid spacing, finite
difference schemes for derivatives and integrals, and the
self-consistent iteration scheme, are common with the
above-mentioned rotating compact star code in COCAL.
Readers who are interested in the details of the code are
advised to consult [20,32].
In Table I, we reproduce a list of relevant parameters for

the coordinate grids presented in previous papers [20,32]
and, in Table II, present the numbers of grid points and
other grid parameters used in actual computations shown
in the later sections. An important difference from the
previous calculations for nonmagnetized rotating stars is
the inclusion of higher multipoles and higher resolution
in the θ direction. As we will see below, stronger toroidal
magnetic fields tend to concentrate near the equatorial
plane; hence, it is necessary to increase the number of terms
in the multipole expansion in (140) and (142) to as high as
L≳ 30, and accordingly the grid points in the θ direction
to Nθ ≳ 144.

TABLE I. Summary of grid parameters.

ra: Radial coordinate where the radial grids start.
rb: Radial coordinate where the radial grids end.
rc: Radial coordinate between ra and rb where the radial grid

spacing changes.
Nr: Number of intervals Δri in r ∈ ½ra; rb�.
Nf

r: Number of intervals Δri in r ∈ ½ra; 1�.
Nm

r : Number of intervals Δri in r ∈ ½ra; rc�.
Nθ: Number of intervals Δθj in θ ∈ ½0; π�.
Nϕ: Number of intervals Δϕk in ϕ ∈ ½0; 2π�.
L: Order of included multipoles.
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Typically, with the grid setup SE3 L ¼ 40 in Table II,
it takes 6 min per one iteration using one CPU thread of
Xeon E5-2687W v3 3.1 GHz, and for a convergence about
500–1000 iterations are required.

2. Parameters

In our formulation, parameters to specify a magnetized
rotating model appear in the integrability conditions shown
in Sec. III D 2. For the case without meridional flows, those
are Λ0, Λ1, and E in Eq. (157); Ωc and Ce in Eq. (158); and
Λϕ0 in Eq. (159). A set of parameters b and c contained in
smooth step functions ΞðAϕÞ in Eqs. (157) and (159) may
be distinct in general but is set to have the same value in
both equations. In addition to these parameters, we aug-
ment the number of parameters by introducing an equato-
rial radius R0 in coordinate length for rescaling the radial
coordinate r [34].
Another set of parameters is introduced from the EOS,

which is also one of the integrability conditions. In COCAL,
a piecewise polytropic EOS and a variant of such a
piecewise EOS to model, for example, quark matter, are
implemented [35]. In this paper, we simply use a (single
segment) polytropic EOS,

p ¼ KρΓ; ð191Þ

which introduces two parameters, the polytrpoic constantK
and the (constant) index Γ.
The values of the parameters fΛ0;Λ1;Λϕ0; b; cg are

prescribed and control the strength of electromagnetic fields.
As in the computations of nonmagnetized rotating compact
stars, three parameters, fE;Ωc; R0g, are determined from
three conditions, which are a given value of the maximum
rest-mass density ρc, at (or near) the center of the star; the
normalization of the equatorial radius, req, as req=R0 ¼ 1;
and the given value for the deformation rp=req at the north
pole, rp. These conditions are imposed on Eq. (151), and the
resulting set of three algebraic equations is simultaneously
solved to determine fE;Ωc; R0g during iteration.
Finally, the parameter Ce in Eq. (158) is left to be

determined. We fix this value from the condition that the
asymptotic (net) electric charge Q vanishes,

Q ¼ 1

4π

Z
∞
FαβdSαβ; ð192Þ

where
R
∞ is the surface integral over a sphere Sr with radius

r, in the limit,
R
∞ ≔ limr→∞

R
Sr
. This integral is evaluated

at a large radius of our computational region, typically
r ∼ 104R0, at every 30 iterations; then, the secant method is
applied to find a solution ofCe to haveQ ¼ 0. One can also
compute a charged solution with setting a finite value to Q.

IV. RESULTS

In [11], we presented preliminary results for relativistic
rotating star solutions associated with mixed poloidal and
toroidal magnetic fields. As mentioned in Sec. III D, we
modified the form of arbitrary functions from those used
in [11]. We also improved numerical codes to maintain
expected accuracy; for example, the virial relation is
satisfied in higher precision. The numerical computations
presented below are performed using smaller to larger
numbers of grid points and multipoles as shown in
Tables I and II for studying the convergence of the solutions.
In the following computations, we choose the polytropic

EOS (191) with indices Γ ¼ 2 or 3 and the constant K so
that the compactness of a spherical solution having rest
mass M0 ¼ 1.5 M⊙ becomes M=R ¼ 0.2. Reference
quantities for the Tolman-Oppenheimer-Volkov (TOV)
solutions for these EOS are tabulated in Table III. For

TABLE II. Grid parameters used for computing magnetized
rotating compact stars. Resolution types SD12-SD3 are used for
computing model P2, and SE12-SE3 are for P1 and P3.
Normalized radial coordinates ra, rb, and rc are in the unit of
equatorial radius R0 (in coordinate length).

Type ra rb rc Nf
r Nm

r Nr Nθ Nϕ L

SD12 0.0 106 1.1 60 66 144 72 48 30
SD2 0.0 106 1.1 80 88 192 96 48 30
SD23 0.0 106 1.1 120 132 288 144 48 30
SD3 0.0 106 1.1 160 176 384 192 48 30
SE12 0.0 106 1.1 60 66 144 96 48 40
SE2 0.0 106 1.1 80 88 192 128 48 40
SE23 0.0 106 1.1 120 132 288 192 48 40
SE3 0.0 106 1.1 160 176 384 256 48 20, 30, 40
SE3p 0.0 106 1.1 160 176 384 256 60 50
SE3t 0.0 106 1.1 160 176 384 384 60 50
SE3tp 0.0 106 1.1 160 176 384 384 72 60

TABLE III. Quantities of a TOV solution in G ¼ c ¼ M⊙ ¼ 1 units for the polytropic EOS p ¼ KρΓ with Γ ¼ 2 and 3. The values of
maximum-mass models of the corresponding EOS parameters are listed, where pc and ρc are the pressure and the rest-mass density at
the center, M0 is the rest mass, M the gravitational mass, and M=R the compactness (a ratio of the gravitational mass to the
circumferential radius). The polytropic constant K is chosen so that the value ofM0 becomesM0 ¼ 1.5 at the compactnessM=R ¼ 0.2.
To convert a unit of ρc to the cgs, multiply the values by M⊙ðGM⊙=c2Þ−3 ≈ 6.176393 × 1017 g cm−3.

Γ ðp=ρÞc ρc M0 M M=R Models

2 0.318244 0.00448412 1.51524 1.37931 0.214440 P1, P2
3 0.827497 0.00415972 2.24295 1.84989 0.316115 P3
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the model parameters to determine the strength of electro-
magnetic fields, we choose three sets listed in Table IV.
To our knowledge, since our first paper [11] was pub-
lished, COCAL is the only code that can calculate fully
relativistic rotating compact stars associated with mixed
poloidal and toroidal magnetic fields without any approxi-
mation in the formulation other than assumptions of
stationarity and axisymmetry.

TABLE IV. Listed are parameters of functions in the integra-
bility conditions (157) and (159) and of EOS (191), used in
computing solutions presented in Fig. 1 and Tables V and VI.

Models Λ0 Λ1 Λϕ0 b c Γ

P1 −3.0 0.3 2.3 0.2 0.5 2
P2 −1.7 0.1 1.7 0.2 0.5 2
P3 −0.2 0.3 1.0 0.2 0.5 3
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FIG. 1. Meridional sections of extremely magnetized solutions of rotating compact stars. Top, middle, and bottom rows correspond,
respectively, to models P1 (Γ ¼ 2, normal mass), P2 (Γ ¼ 2, supramassive), and P3 (Γ ¼ 3, normal mass). Panels in the left column: the
solid curves (in black) are contours of p=ρ, the arrows (in orange) correspond to the poloidal magnetic field, and the color density maps
(in red and blue) correspond to the toroidal magnetic fields. For the models P1 and P2, the contours of p=ρ are drawn at p=ρ ¼ 0.001,
0.002, 0.005, 0.01, 0.02, 0.05, 0.1, and for P3, the contours are drawn linearly every 0.02. Panels in the middle column: the metric
potentials are shown. Green curves correspond to equicontours of ψ , the red and blue color density maps correspond to β̃y, and the red and
blue curves correspond to contours of hxz. Panels in the right column: contours of t and ϕ components of electromagnetic 1-forms At and
Aϕ. Dashed red, purple, and blue curves correspond toAt, and solid green curves correspond toAϕ.At vanishes on the purple curves and is
positive (negative) on the red (blue) curves. A black curve in each panel in the middle and right columns represents the surface of the star.
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A. Extremely magnetized solutions

We present three solutions of magnetized rotating
compact stars in Fig. 1 and corresponding physical quan-
tities in Tables Vand VI. Definitions of these quantities are
summarized in Appendix F. The model parameter of each
solution is P1, P2, and P3, respectively, in Table IV, where
the model P1 is a normal mass solution with Γ ¼ 2 EOS,
P2 is a supramassive solution with Γ ¼ 2 and is rotating
near the Kepler limit, and P3 is a normal mass solution
with Γ ¼ 3.
As shown in Table VI, these solutions are associated with

extremely strong poloidal and toroidal magnetic fields
about an order of 1017–1018 G, while the mass and radius
of these compact stars are close to those of common
neutron stars. For the models P1 and P3, the maximum
values of the toroidal and poloidal components, Bmax

pol and
Bmax
tor , respectively, are comparable, and even for P2, Bmax

tor is
about 1=3 of Bmax

pol . As reported also in other works,
however, the bulk energy of the toroidal magnetic fields
Mtor is much smaller than that of the poloidal fields Mpol;
as shown in Table VI, the energy of the poloidal fields
accounts for more than 90% of the total electromagnetic
energy M.
In the top to bottom left panels of Fig. 1, the contours of

p=ρ and the poloidal and toroidal magnetic fields are
presented. Although the toroidal magnetic field component
Btor is not dominating in the whole electromagnetic energy,
Btor is concentrated near the equatorial surface so that its

maximum value is comparable to that of poloidal compo-
nent Bpol. This feature has been often observed in the other
Newtonian [36] or approximate calculations [4].
A new feature can be seen in these panels for models P1

and P2. When the toroidal field Btor is extremely strong, the
magnetic energy density locally dominates over the mass
energy density and hence expels the matter from the region
of extremely strong toroidal magnetic fields. In the middle
left panel for the model P2, we can observe that the p=ρ
contours are deformed around the Bmax

tor , and in the top left
panel for the model P1, there are small closed circles of the
density contours near the equatorial surface. For the model
P1, a profile of p=ρ along the equatorial radius near the
surface (and hence ρ or ε) almost drops to zero. Hence, we
expect that, with a little stronger magnetic fields, which can
be easily achieved by changing the parameters in Table IV,
the matter will be completely expelled from this region, and
hence a toroidal electro-vacuum tunnel will be formed
inside the compact star (see Sec. V for further discussion).
Roughly speaking, this happens because the pressure/

energy density of the electromagnetic fields dominates
over those of the matter in this toroidal region near the
surface. To see this, in Fig. 2, we show the plots of
spatial trace part of stress-energy tensor Ta

a ¼ Tαβγαβ ¼
ðTαβ

M þ Tαβ
F Þγαβ separating contributions from the matter

Tαβ
M (14) (Ta

a ¼ Tαβ
M γαβ) and the electromagnetic

fields Tαβ
F (15) (Ta

a ¼ Tαβ
F γαβ). As can be seen in

the left panel for the model P1, the dominance of the

TABLE V. Selected solutions for extremely magnetized rotating compact stars are presented. Models P1–P3 are calculated using the
corresponding parameters in Table IV. Listed quantities include the equatorial and polar radii in proper length R̄0 and R̄z, the ratio of the
maximum values of the pressure to the rest-mass density ðp=ρÞc, the angular velocity near the rotation axis Ωc, the ADM mass MADM,
the rest mass M0, the angular momentum J, the virial constant Ivir, and a residual of the equality of the Komar mass MK and the
Arnowitt–Deser–Misner (ADM) mass MADM. The definitions of these quantities are found in Appendix F (see also [32]). To convert a
unit of length from G ¼ c ¼ M⊙ ¼ 1 to kilometers, multiply GM⊙=c2 ¼ 1.477 km.

Model R̄0 R̄z=R̄0 ðp=ρÞc ρc½g=cm3� Ωc MADM M0 J=M2
ADM j1−MK=MADMj

P1 (Γ¼2, normal mass) 11.0609 0.71996 0.12322 1.0717 × 1015 0.026384 1.35908 1.46223 0.52809 1.96 × 10−5

P2 (Γ¼2, supramassive) 11.0787 0.64818 0.25582 2.2250 × 1015 0.043648 1.58645 1.74178 0.57113 4.06 × 10−5

P3 (Γ¼3, normal mass) 8.8439 0.71839 0.18830 1.2248 × 1015 0.033124 1.59179 1.80318 0.51282 7.26 × 10−5

TABLE VI. Continuing from Table V, listed for the same solutions are the maximum values of poloidal and toroidal magnetic fields,
Bmax
pol and Bmax

tor , the ratios of poloidal and toroidal magnetic field energies, Mpol and Mtor, and electric field energy Mele to the total
electromagnetic field energyM, the ratios of the kinetic, internal, and electromagnetic field energies to the gravitational energy, T =jWj,
Π=jWj, and M=jWj, respectively, and the virial constant Ivir, and the electric charge contribution from the volume integral of the star
QM. Details of the definitions are found in Appendix F. The maximums of magnetic field components Bmax

pol and Bmax
tor are defined by

those of spatial Faraday tensor Fab in Cartesian coordinates, Btor ≔ Fxy and Bpol ≔ −Fxz.

Model Bmax
pol [G] Bmax

tor [G] Mpol=M Mtor=M Mele=M T =jWj Π=jWj M=jWj Ivir=jWj QM

P1 6.5382 × 1017 6.5133 × 1017 0.93381 0.043905 0.022284 0.063996 0.29637 0.019832 3.2202 × 10−4 0.037041
P2 6.2207 × 1017 2.2065 × 1017 0.92609 0.033001 0.040905 0.083577 0.29918 0.001624 2.4514 × 10−4 0.024655
P3 1.7797 × 1018 1.4487 × 1018 0.93967 0.040486 0.019840 0.068800 0.29176 0.043991 1.3324 × 10−4 0.068080
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matter to the electromagnetic fields exchanges in this
region. In the right panel for model P2, there is a sizable
amount of contribution from Tαβ

F , but it does not dominate
over Tαβ

M .
In the middle panel of each row of Fig. 1, contours of

metric potentials around the compact stars are plotted.
Using the waveless formulation, we are able to compute
nonconformal flat components of the metric such as hxz as
shown in these panels.
In the right panel of each row of Fig. 1, contours of t

and ϕ components of the electromagnetic 1-form Aα are
shown. As mentioned in Sec. III D, integrability of ideal
MHD equations requires At to be a function of a master
potential which are seen to be correctly imposed on the
fluid support of compact stars. Since we assume electro-
vacuum spacetime outside of the star, the At component
is continuously but not smoothly connected at the stellar
surface. Since we also assume that the net charge at
infinity Q (evaluated at a larger radius from the source
in actual computations) vanishes, the contours of At
become positive (red dashed curves) near the poles and
negative (blue dashed curves) near the equator. These
panels show that the method of solving for At as
described in Sec. III B is working consistently in these
computations.

B. Convergence test

In Fig. 3, the convergence of integrated quantities is
plotted for the models P1, P2, and P3. Those are the
convergence of Ivir=jWj in the left panel and that of
j1 −MK=MADMj in the right panel. The relativistic virial
relation Ivir is defined as the volume integral of the
spatial trace of Einstein’s equations as (F14) in the
Appendix, and its residuals shown in the left panel

decrease as OðΔr2Þ as expected. Strictly speaking, the
numerically evaluated volume integral Ivir does not
approach to zero as the resolution goes much higher
because it is evaluated on a large but finite computa-
tional domain r ∈ ½0; 106R0�, and also evaluated from a
solution in which a large but a finite number of multi-
poles is used for approximation. Hence, what we can
conclude here is the fact that the actual value of Ivir=jWj
in our setup is smaller than the finite difference error and
hence cannot be probed with the present highest reso-
lutions such as SD3 or SE3.
The asymptotic Komar and ADM masses, MK and

MADM, are known to agree in the framework of the
waveless formulation under the gauge choice, Eq. (26)
[13]. The residual j1 −MK=MADMj of each model
decreases more slowly than OðΔr2Þ as shown in the right
panel, which is the same behavior as that of nonmagnetized
rotating compact stars [20]. Hence, we may conclude that
the strongly magnetized solutions are calculated with
precision comparable to that of the nonmagnetized solu-
tions in the COCAL code.
In Fig. 4, we show the profile of p=ρ along the x axis

(the radial coordinate in the equatorial plane) near the
surface for the model P1. As mentioned above,
extremely strong toroidal magnetic fields expel the
matter from the toroidal region. To resolve such a
relatively small scale toroidal structure, it is necessary
to increase the numbers of grid points and multipoles.
We performed convergence tests to examine the profile
of p=ρ with systematically increasing the resolution
under a fixed number of multipoles and also increasing
the number of multipoles under a fixed resolution. In the
top panel of Fig. 4, the number of multipoles is fixed to
L ¼ 40, and the resolution is increased from SE12 to
SE3 in Table II. It can be observed that the largest
error appears at the bottom of the p=ρ profile around
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x ¼ 0.89R0 and that the profile converges at the levels of
resolutions around SE23 to SE3.
The bottom panel of Fig. 4 shows a plot of a convergence

of p=ρ profiles near the equatorial surface of the model P1
with respect to the number of multipoles used in the elliptic
solver (139). In this test, resolution SE3 and modified
resolutions of it (SE3p, SE3t, and SE3tp in Table II) are
used. It is confirmed that those modified resolutions do not
affect the profile. For example, we compute the case with
L ¼ 50 with SE3p and SE3t with increasing Nθ, the
number of grid points in θ coordinate, but those profiles
overlap as seen in the plot. The profiles are also the same
when the number of Nϕ is increased, which is not related
to an accuracy of a solution but is necessary for computing
solutions with larger L. As seen in the panel, the profiles
gradually change as L increases from 20 to 60. Because of
the limit of computational resources, we do not perform
computations higher than L ¼ 60 with a resolution SE3tp.
The solutions still slightly changes from L ¼ 50 with SE3t
resolution to the L ¼ 60 with SE3tp resolution, but the
overall difference of the profile is getting smaller with
increasing L.

V. DISCUSSIONS AND CONCLUSIONS

In this paper, we have presented the full details of a
formulation and a numerical method for computing sta-
tionary and axisymmetric equilibriums of fully relativistic
rotating compact stars associated with mixed poloidal and
toroidal magnetic fields.
One of the new features of our method is to solve all

components of Maxwell’s equations to determine all
components of the electromagnetic potential 1-form Aα.
This allows us to compute electromagnetic configurations
under various circumstances. For example, our method may
be applicable for computing a magnetized nonaxisymmet-
ric quasiequilibrium configuration that appears as an out-
come of simulation [37].
As shown in Sec. IV, we have successfully calculated

solutions associated with extremely strong poloidal and
toroidal magnetic fields and found solutions of which the
mass energy density is expelled by the energy density of
toroidal magnetic fields. The maximum magnetic field
strength of the presented models is as extremely high as
1017–18 G as listed in Table VI. In the latest general
relativistic MHD (GRMHD) simulations, it is reported
that the magnetic field of the remnant massive neutron star
of binary neutron star merger can be as high as 1015.5–16 G
even if the initial magnetic field is moderate around 1013 G
as a result of magnetorotational instability (MRI) [38]. Also
from the GRMHD simulations, the MRI may amplify the
magnetic fields up to 1015–16 G in the newly born neutron
stars formed after the core collapse [39]. The magnetic
fields of these systems could be much stronger, when the
higher resolution is used in the simulations or when a
certain unknown mechanism further enhances the magnetic
fields. Otherwise, as the magnetic fields of our models are
much higher, our solutions may draw only a limited
theoretical interest.
As presented in Fig. 4, the structure of this toroidal

low density region can be calculated accurately using
a large number of multipoles in our Poisson solver
(Sec. III B). From the top left panel of Fig. 1, the size
of the toroidal region in the θ direction is around
0.03 radians and hence requires a resolution
Nθ > π=0.03 ∼ 100. The number Nθ ¼ 384 of the reso-
lution SE3tp is sufficient to resolve this structure. On the
other hand, a Legendre polynomial P0

60ðcos θÞ has only 60
nodes, which may resolve roughly π=60 ∼ 0.05 radians in
the θ direction, and hence this is a reason for slow
convergence in the number of multipoles L.
In Fig. 5, we show a dependence of the toroidal low

density region on the parameters to control the strength of
the magnetic fields. Varying systematically the values of
parametersΛ0 and Λϕ0, defined in Eqs. (157) and (159), the
maximum values of the toroidal and poloidal magnetic
fields, Bmax

tor and Bmax
pol , monotonically change as plotted in

the top panel of Fig. 5, and the profiles of p=ρ along the
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increasing multipoles from l ¼ 20 to 60.
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x axis near the surface change accordingly as in the
bottom panel.
We have observed that, with a slight change of param-

eters to have the toroidal fields be stronger, the rest-mass
density of the toroidal region became negative. Then,
resetting the negative value to zero, we were able to
continue iterations and to obtain configurations with the
toroidal magnetovacuum region. However, these are not
mathematically legitimate solutions because a correct
boundary condition for the electromagnetic field is not
imposed on the (interior) surface of the toroidal region (a
torus); a method to impose a boundary condition on a torus
has not been developed in the COCAL code. From this
observation, it seems that the magnetic field strength is
not limited by an appearance of such a toroidal magneto-
vacuum region; therefore, we conjectured an existence of a
compact star solution with a toroidal magnetovacuum
tunnel in it. Computations of such solutions will be
addressed in our future work, developing a method to
impose a correct boundary condition at the interior surface.
In this paper, we assumed an electro-vacuum spacetime

outside of the compact star, which resulted in a surface
charge distribution when we computed an asymptotically
charge neutral solution. This is the same assumption used
in the first relativistic computation of magnetized rotating

equilibrium by the Meudon group [7]. As more realistic
models, such magnetized compact stars would be sur-
rounded by the force-free magnetosphere (see, e.g., [40]).
Analogously, if the above-mentioned interior toroidal
region appears, it may be filled with the low density
plasma associated with the force-free magnetic field,
instead of being a vacuum. Technically, it may also be
possible to compute a black hole associated with electro-
magnetic fields, as the COCAL code is capable of producing
black hole data. Computations of such solutions amount to
imposing different boundary conditions at the surface (and
an interior torus if it exists) for the electromagnetic fields
and to treating the equilibriums of tenuous plasma con-
sistently. We think our new method developed in the COCAL

code is general enough to incorporate them without much
difficulty. Such models for compact objects associated with
force-free fields may be more favored in realistic astro-
physical situations, and computations of those models are
also a part of our future project.
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APPENDIX A: NOTATION AND RELATIONS

1. Orthogonal curvilinear coordinates and basis

When a system of coordinate functions xA is introduced
for a set of points xα in a space, the basis and dual basis
are, respectively, feαAg and f∇αxAg, where eαA ≔ ∂xα

∂xA. The
coordinates are called orthogonal when

eαA∇αxB ¼ £eAx
B ¼ δA

B ðA1Þ
for any pair of indices A and B. Derivatives of this
expression give

∇αðeβA∇βxBÞ ¼ ∇α£eAx
B ¼ £eA∇αxB ¼ 0; ðA2Þ

since ∇αδA
B ¼ 0. Projecting these to the basis eαB, we have

eαB£eA∇αxC ¼ £eAðeαB∇αxCÞ −∇αxC£eAe
α
B

¼ −∇αxC£eAe
α
B ¼ 0; ðA3Þ

for any dual basis ∇αxC. Therefore, we have

£eAe
α
B ¼ ½eαA; eβB� ¼ 0: ðA4Þ

2. Index-free notation for differential forms and vectors

In some manipulations of equations in Secs. II and III,
we use index-free notations for differential forms and
vectors for convenience. We summarize correspondences
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magnetic fields Bmax
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between index and index-free notations in this subsection.
For more details, see, e.g., Refs. [16,19].

a. Differential forms

For a 1-form w, we write an exterior derivative dwwhich
corresponds to the index notation as

dw ¼ ðdwÞαβ ¼ ∇αwβ −∇βwα: ðA5Þ

This notation is often used for an electromagnetic potential
1-form A and for a canonical momentum 1-form hu, where
u is a dual 1-form of the 4-velocity vector u (which is uα in
the abstract index notation). Faraday 2-form F ¼ dA is
written

Fαβ ¼ ∇αAβ −∇βAα: ðA6Þ

F is a closed 2-form, dF ¼ 0, which is written in index
notation,

dF ¼ 3∇½αFβγ� ¼ ∇αFβγ þ∇βFγα þ∇γFαβ ¼ 0: ðA7Þ

b. Inner product and Cartan identity

The inner product of a p-form ω and a vector u is
denoted with a dot in index-free notation,

u · ω ¼ uγωγα…β: ðA8Þ

Using this, the Cartan identity for a p-form ω is written

£uω ¼ u · dωþ dðu · ωÞ; ðA9Þ

in index-free notation. As a rule for the inner product
between a vector and a p-form, we assume that when the
vector is operated to p-form from left (right) the vector
is contracted with the leftmost (rightmost) index of the
p-form, e.g., u · F ¼ −F · u for a 2-form F.

c. Ideal MHD condition

The ideal MHD condition is written F · u ¼ 0. This
implies £uF ¼ 0. This is shown using dF ¼ 0 as

£uFαβ ¼ uγ∇γFαβ þ Fγβ∇αuγ þ Fαγ∇βuγ

¼ uγð∇γFαβ þ∇αFβγ þ∇βFγαÞ ¼ 0: ðA10Þ

Or, using a potential 1-form A (F ¼ dA),

£uF¼ £udA¼ d£uA¼ dðu ·dAþdðA ·uÞÞ¼ 0; ðA11Þ

where u · dA ¼ u · F ¼ 0, d2 ¼ 0, and the Cartan identity
are used.
Also, for any vector proportional to u, that is, with an

arbitrary scalar function λ, F · ðλuÞ ¼ 0 holds, which

implies £λuF ¼ 0. This guarantees that a flux of F over
any surface along a given family of flow lines is con-
served [41].

d. Integrability condition

When smooth functions A and f satisfy fdA ¼ C ¼
const, a relation is derived:

dðfdAÞ ¼ df ∧ dAþ fd2A ¼ df ∧ dA ¼ 0: ðA12Þ

Hence, f ¼ fðAÞ. As fðAÞdA ¼ dFðAÞ ¼ C ¼ const,
dFðAÞ=dA¼f. If the constantC¼0, then f ¼ dF=dA ¼ 0.

3. 4-velocity

We decompose the 4-velocity uα with respect to tα as

uα ¼ utðtα þ vαÞ; ðA13Þ

where vα is spatial vector vα∇αt ¼ 0. In the first integrals
and in the currents, t- and ϕ-components of uα appears,
which are calculated as follows,

ut ¼ uαtα ¼ utðαnα þ βα þ vαÞðαnα þ βαÞ
¼ ut½−α2 þ βaðβa þ vaÞ�
¼ ut½−α2 þ ψ4β̃aðβ̃a þ ṽaÞ�; ðA14Þ

uϕ ¼ uαϕα ¼ utðαnα þ βα þ VαÞϕα

¼ utðβa þ VaÞϕa ¼ utψ4ðβ̃a þ ṼaÞϕ̃a; ðA15Þ

where tα ¼ αnα þ βα is used.
The coordinate basis for vector ϕα is related to the

Cartesian basis x̂α and ŷα as

ϕα ¼ ϕ̃α ¼ −yx̂α þ xŷα ðA16Þ

and the basis for 1-form

∇αϕ ¼ −
y

x2 þ y2
∇αxþ

x
x2 þ y2

∇αy

¼ −
sinϕ
r sin θ

∇αxþ
cosϕ
r sin θ

∇αy: ðA17Þ

Hence, the ϕ-components of the 4-velocity are related to
those of Cartesian coordinates as

uϕ ¼ uαϕα ¼ −yux þ xuy; ðA18Þ

uϕ ¼ uα∇αϕ ¼ −
y

x2 þ y2
ux þ x

x2 þ y2
uy; ðA19Þ

and these become on the ϕ ¼ 0 (meridional) plane,

uϕjϕ¼0 ¼ xuy; ðA20Þ
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uϕjϕ¼0 ¼
1

x
uy: ðA21Þ

The same relations between ϕ-components and the
Cartesian components are used for the electric currents
jα (jϕ and jϕ).

APPENDIX B: 3 + 1 DECOMPOSITION OF
FARADAY TENSOR

In this Appendix, we derive the 3þ 1 form of Faraday
tensor and its divergence. The spatial projection of Fαβ ¼
ðdAÞαβ can be derived explicitly as follows. For F̄α, we use
the Cartan identity n · dA ¼ £nA − dðn · AÞ,

F̄α ¼ γα
βFβγnγ ¼ −γαβ½£nAβ −∇βðnγAγÞ�

¼ −γαβ£nðΦΣnβ þ ĀβÞ −DαΦΣ

¼ −γαβ£nĀβ −
1

α
DαðαΦΣÞ; ðB1Þ

where the relation, £nnα ¼ Dα ln α, is used. For F̄αβ,
since Fαβ ¼ ðdAÞαβ is independent of the geometry of
the manifold, its spatial projection becomes its spatial part,

F̄αβ ¼ DαĀβ −DβĀα; ðB2Þ

which can be shown more explicitly as

F̄αβ ¼ γα
γγβ

δFγδ;

¼ γα
γγβ

δ½ð∇γĀδ −∇δĀγÞ þΦΣð∇γnδ −∇δnγÞ�
¼ DαĀβ −DβĀα −ΦΣðKαβ − KβαÞ;
¼ DαĀβ −DβĀα; ðB3Þ

as Kαβ is a symmetric tensor. The divergence ∇βFαβ is also
decomposed with respect to Σt. The projection of ∇βFαβ to
the hypersurface normal nα becomes

nα∇βFαβ ¼ ∇βðFαβnαÞ − Fαβ∇βnα

¼ −∇αF̄α þ FαβðKαβ þ nβDα ln αÞ

¼ −
1

α
DαðαF̄αÞ þ F̄α 1

α
Dαα

¼ −DαF̄α: ðB4Þ

The projection of ∇βFαβ to the hypersurface Σt becomes

γαγ∇βFγβ ¼ γαγ∇βðF̄γβ þ nγF̄β − nβF̄γÞ
¼ DβF̄αβ þ F̄αγnβ∇βnγ − γαβ£nF̄β þ KF̄α

¼ 1

α
DβðαF̄αβÞ − £nF̄α þ KF̄α: ðB5Þ

Hence, on Σt, we have

Fa ¼ −£nAa −
1

α
DaðαΦΣÞ; ðB6Þ

Fab ¼ DaAb −DbAa; ðB7Þ

nα∇βFαβ ¼ −DaFa; ðB8Þ

γaα∇βFαβ ¼ 1

α
DbðαFabÞ − £nFa þ KFa: ðB9Þ

APPENDIX C: DERIVATION OF EQUATIONS
FOR ELECTROMAGNETIC POTENTIALS

In this Appendix, we derive the final form of
Maxwell’s equations implemented in the COCAL code
for computing electromagnetic potentials. Since we
introduce a conformal decomposition of the spatial metric
Eq. (6) as in Sec. II B 1, the divergence with respect to
the conformal metric γ̃ab is simplified to that of flat

metric fab, D̃aAa ¼ D
∘
aAa.

Projecting along nα, Eq. (65) becomes

ð∇βFαβ − 4πjαÞnα ¼ −DaFa þ 4πρΣ

¼ −
1

ψ6
D̃aðψ2γ̃abFbÞ þ 4πρΣ

¼ 1

ψ6
D̃a

�
ψ2

α
γ̃ab½D̃bðαΦΣÞ − £βAb�

	
þ 4πρΣ

¼ 1

αψ4

�
D̃aD̃aðαΦΣÞ

þ γ̃ab
α

ψ2
D̃a

�
ψ2

α

�
½D̃bðαΦΣÞ − £βAb�

− γ̃abD̃a£βAb þ 4παψ4ρΣ

	
¼ 0:

ðC1Þ

Separating the flat Laplacian from the first term,

D̃aD̃aðαΦΣÞ ¼
1ffiffiffĩ
γ

p D
∘
a½

ffiffiffĩ
γ

p
D̃aðαΦΣÞ�

¼ D
∘
a½γ̃abD

∘
bðαΦΣÞ�

¼ D
∘
aD
∘

aðαΦΣÞ þ habD
∘
aD
∘
bðαΦΣÞ

þD
∘
aγ̃

abD
∘
bðαΦΣÞ; ðC2Þ

an elliptic equation for αΦΣ is derived,

Δ
∘
ðαΦΣÞ ¼ S; ðC3Þ

where the source S is written
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S ¼ −habD
∘
aD
∘
bðαΦΣÞ −D

∘
aγ̃

abD
∘
bðαΦΣÞ

þ γ̃ab
α

ψ2
D̃a

�
ψ2

α

�
αFb þD

∘
aγ̃

ab£βAb

þ γ̃abD
∘
a£βAb − 4παψ4ρΣ: ðC4Þ

The second term of the source (C4) vanishes under the

Dirac gauge conditionD
∘
aγ̃

ab ¼ 0. Also note that the fourth
and fifth terms are derived as below since γ̃ ¼ f is satisfied:

γ̃abD̃a£βAb ¼ D
∘
aðγ̃ab£βAbÞ

¼ D
∘
aγ̃

ab£βAb þ γ̃abD
∘
a£βAb: ðC5Þ

Projecting to Σt, Eq. (67) becomes

ð∇βFαβ − 4πjαÞγaα
¼ 1

α
DbðαFa

bÞ þ 1

α
£βFa − 2Aa

bFb þ
1

3
KFa − 4πjΣa

¼ 0: ðC6Þ

The first term, from which an elliptic operator is separated
as below, is rewritten,

1

α
DbðαFa

bÞ¼ 1

αψ6
γacD̃bðαψ6FcbÞ

¼ 1

αψ2
D̃b

�
α

ψ2
Fac

�
γ̃bc

¼ 1

ψ4
γ̃bcD̃bFacþ

1

αψ2
γ̃bcD̃b

�
α

ψ2

�
Fac: ðC7Þ

Using an identity,

3R̃abṽb ¼ ðD̃bD̃a − D̃aD̃bÞṽb; ðC8Þ

where ṽa ¼ γ̃abvb, we have

γ̃bcD̃bFac ¼ γ̃bcD̃bðD̃aÃc − D̃cÃaÞ
¼ −D̃bD̃bÃa þ D̃aD̃bÃ

b þ 3R̃abÃ
b: ðC9Þ

Hence,

1

α
DbðαFa

bÞ ¼ 1

ψ4

�
−D̃bD̃bÃa þ D̃aD̃bÃ

b

þ 3R̃abÃ
b þ γ̃bc

ψ2

α
D̃b

�
α

ψ2

�
Fac

�
: ðC10Þ

From the first term of the right-hand side of Eq. (C10),
the flat Laplacian −Δ

∘
Ãa is isolated,

−D̃bD̃bÃa ¼ −Δ
∘
Ãa − hbcD

∘
bD
∘
cÃa þ γ̃bcD

∘
bðCd

caÃdÞ
þ γ̃bcCd

bcD̃dÃa þ γ̃bcCd
baD̃cÃd: ðC11Þ

We keep D̃a instead of replacing it by D
∘
a and a connection

Cc
ab in a couple of terms in Eq. (C11), to shorten the

equation. Then, a set of elliptic equations for Aa is derived,

Δ
∘
Aa ¼ Sa; ðC12Þ

where the source Sa is written

Sa ≔ −hbcD
∘
bD
∘
cÃa þ γ̃bcD

∘
bðCd

caÃdÞ þ γ̃bcCd
bcD̃dÃa

þ γ̃bcCd
baD̃cÃd þ D̃aD̃bÃ

b þ 3R̃abÃ
b

þ F̃a
b ψ

2

α
D̃b

�
α

ψ2

�
þ ψ4

α
£βFa − 2ψ4Aa

bFb

þ 1

3
ψ4KFa − 4πψ4jΣa; ðC13Þ

APPENDIX D: DERIVATION OF FIRST
INTEGRALS OF MHD-EULER EQUATIONS

In this Appendix, we derive a set of integrability
conditions and first integrals (D5)–(D11) of the relativistic
MHD-Euler equations (43).
For the t- and ϕ-components of the MHD-Euler equa-

tions (125) and (126), substituting Eq. (89) to uA and
Eq. (122) to that of the current jA in the above set of
equations, and multiplying by ρ

ffiffiffiffiffiffi−gp
, we have

ϵAB∂Bð
ffiffiffiffiffiffi
−g

p
ΨÞ∂AðhutÞ þ

1

4π
ϵAB∂BðB

ffiffiffiffiffiffi
−g

p Þ∂AAt ¼ 0;

ðD1Þ

ϵAB∂Bð
ffiffiffiffiffiffi
−g

p
ΨÞ∂AðhuϕÞ þ

1

4π
ϵAB∂BðB

ffiffiffiffiffiffi
−g

p Þ∂AAϕ ¼ 0:

ðD2Þ
Substituting the integrability conditions (110), these are
rewritten,

ϵAB
�
−½ ffiffiffiffiffiffi

−g
p

Ψ�0∂BðhutÞ þ
1

4π
A0
t∂BðB

ffiffiffiffiffiffi
−g

p Þ
	
∂Aϒ ¼ 0;

ðD3Þ
ϵAB

�
−½ ffiffiffiffiffiffi

−g
p

Ψ�0∂BðhuϕÞ þ
1

4π
A0
ϕ∂BðB

ffiffiffiffiffiffi
−g

p Þ
	
∂Aϒ ¼ 0:

ðD4Þ
These relations imply that the terms in parentheses are a
function of ϒ. Hence, introducing the densitized scalars
½ ffiffiffiffiffiffi−gp Λt�ðϒÞ and ½ ffiffiffiffiffiffi−gp Λϕ�ðϒÞ, for each component, the
sufficient conditions for the t- and ϕ-components are
written as
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t-component:

−½ ffiffiffiffiffiffi
−g

p
Ψ�0hut þ

1

4π
A0
tB

ffiffiffiffiffiffi
−g

p ¼ ½ ffiffiffiffiffiffi
−g

p
Λt�ðϒÞ; ðD5Þ

ϕ-component:

−½ ffiffiffiffiffiffi
−g

p
Ψ�0huϕ þ

1

4π
A0
ϕB

ffiffiffiffiffiffi
−g

p ¼ ½ ffiffiffiffiffiffi
−g

p
Λϕ�ðϒÞ: ðD6Þ

These are combined and written using another function
of ϒ, ΛðϒÞ,

A0
ϕhut − A0

thuϕ ¼ ΛðϒÞ ≔ A0
t½ ffiffiffiffiffiffi−gp Λϕ� − A0

ϕ½
ffiffiffiffiffiffi−gp Λt�

½ ffiffiffiffiffiffi−gp Ψ�0 :

ðD7Þ

For the xA-component (127), multiplying ρ
ffiffiffiffiffiffi−gp

and
substituting Eq. (89) and Eq. (122) as well as definitions
ðdAÞAB ¼ ϵABBϕ and dðhuÞAB ¼ −ϵABωϕ, we have

ρut
ffiffiffiffiffiffi
−g

p ∂AðhutÞ þ ρuϕ
ffiffiffiffiffiffi
−g

p ∂AðhuϕÞ þ ωϕ∂A½
ffiffiffiffiffiffi
−g

p
Ψ�

þ jt
ffiffiffiffiffiffi
−g

p ∂AAt þ jϕ
ffiffiffiffiffiffi
−g

p ∂AAϕ − Bϕ∂A

�
1

4π
B

ffiffiffiffiffiffi
−g

p �
þ ρT

ffiffiffiffiffiffi
−g

p ∂As ¼ 0; ðD8Þ

In Eq. (D8), the first two terms and the sixth termmultiplied
by A0

tA0
ϕ become as follows: substituting the integrals

of t- and ϕ-components of MHD-Euler equations (D5)
and (D6),

1

2
ρut

ffiffiffiffiffiffi
−g

p
A0
t½∂AðA0

thuϕ þ ΛÞ − hut∂AA0
ϕ� þ

1

2
ρut

ffiffiffiffiffiffi
−g

p
A0
tA0

ϕ∂AðhutÞ

þ 1

2
ρuϕ

ffiffiffiffiffiffi
−g

p
A0
ϕ½∂AðA0

ϕhut − ΛÞ − huϕ∂AA0
t� þ

1

2
ρuϕ

ffiffiffiffiffiffi
−g

p
A0
tA0

ϕ∂AðhuϕÞ

−
1

2
Bϕ∂AðA0

ϕ½
ffiffiffiffiffiffi
−g

p
Ψ�0hut þ A0

ϕ½
ffiffiffiffiffiffi
−g

p
Λt� þ A0

t½
ffiffiffiffiffiffi
−g

p
Ψ�0huϕ þ A0

t½
ffiffiffiffiffiffi
−g

p
Λϕ�Þ þ Bϕ

1

4π
B

ffiffiffiffiffiffi
−g

p ∂AðA0
tA0

ϕÞ

¼ 1

2
ðA0

tρut
ffiffiffiffiffiffi
−g

p þ A0
ϕρu

ϕ ffiffiffiffiffiffi
−g

p
− ½ ffiffiffiffiffiffi

−g
p

Ψ�0BϕÞ½A0
t∂AðhuϕÞ þ A0

ϕ∂AðhutÞ�

þ 1

2
ð∂AA0

thuϕ − ∂AA0
ϕhut þ ∂AΛÞðA0

tut − A0
ϕu

ϕÞρ ffiffiffiffiffiffi
−g

p

−
1

2
fA0

ϕð∂A½
ffiffiffiffiffiffi
−g

p
Ψ�0hut þ ∂A½

ffiffiffiffiffiffi
−g

p
Λt�Þ − ∂AA0

ϕð½
ffiffiffiffiffiffi
−g

p
Ψ�0hut þ ½ ffiffiffiffiffiffi

−g
p

Λt�Þ
þ A0

tð∂A½
ffiffiffiffiffiffi
−g

p
Ψ�0huϕ þ ∂A½

ffiffiffiffiffiffi
−g

p
Λϕ�Þ − ∂AA0

tð½
ffiffiffiffiffiffi
−g

p
Ψ�0huϕ þ ½ ffiffiffiffiffiffi

−g
p

Λϕ�ÞgBϕ: ðD9Þ
The terms in the first set of parentheses of the rhs vanish because of the first integral of the xA-components of the ideal

MHD condition (114), and all other terms are proportional to ∂Aϒ, as At, Aϕ,
ffiffiffiffiffiffi−gp Ψ, ffiffiffiffiffiffi−gp Λt,

ffiffiffiffiffiffi−gp Λϕ, and Λ are functions
of ϒ. Hence, with an assumption to the thermodynamic variable, that is, the entropy s to be a function of ϒ, s ¼ sðϒÞ,
Eq. (D8) multiplied by A0

tA0
ϕ is rewritten,

�
−
1

2
½A0

ϕð½
ffiffiffiffiffiffi
−g

p
Ψ�00hut þ ½ ffiffiffiffiffiffi

−g
p

Λt�0Þ − A00
ϕð½

ffiffiffiffiffiffi
−g

p
Ψ�0hut þ ½ ffiffiffiffiffiffi

−g
p

Λt�Þ þ A0
tð½

ffiffiffiffiffiffi
−g

p
Ψ�00huϕ þ ½ ffiffiffiffiffiffi

−g
p

Λϕ�0Þ

− A00
t ð½

ffiffiffiffiffiffi
−g

p
Ψ�0huϕ þ ½ ffiffiffiffiffiffi

−g
p

Λϕ�Þ�Bϕ þ
1

2
ðA00

t huϕ − A00
ϕhut þ Λ0ÞðA0

tut − A0
ϕu

ϕÞρ ffiffiffiffiffiffi
−g

p

þ A0
tA0

ϕ½
ffiffiffiffiffiffi
−g

p
Ψ�0ωϕ þ A0

tA0
ϕs

0Tρ
ffiffiffiffiffiffi
−g

p þ ðA0
tÞ2A0

ϕj
t ffiffiffiffiffiffi

−g
p þ A0

tðA0
ϕÞ2jϕ

ffiffiffiffiffiffi
−g

p 	
∂Aϒ ¼ 0: ðD10Þ

Therefore, we obtain the first integral of the xA-components of the MHD-Euler equations (D8) as

−
1

2
½A0

ϕð½
ffiffiffiffiffiffi
−g

p
Ψ�00hut þ ½ ffiffiffiffiffiffi

−g
p

Λt�0Þ − A00
ϕð½

ffiffiffiffiffiffi
−g

p
Ψ�0hut þ ½ ffiffiffiffiffiffi

−g
p

Λt�Þ þ A0
tð½

ffiffiffiffiffiffi
−g

p
Ψ�00huϕ þ ½ ffiffiffiffiffiffi

−g
p

Λϕ�0Þ

− A00
t ð½

ffiffiffiffiffiffi
−g

p
Ψ�0huϕ þ ½ ffiffiffiffiffiffi

−g
p

Λϕ�Þ�Bϕ þ
1

2
ðA00

t huϕ − A00
ϕhut þ Λ0ÞðA0

tut − A0
ϕu

ϕÞρ ffiffiffiffiffiffi
−g

p

þ A0
tA0

ϕ½
ffiffiffiffiffiffi
−g

p
Ψ�0ωϕ þ A0

tA0
ϕs

0Tρ
ffiffiffiffiffiffi
−g

p þ ðA0
tÞ2A0

ϕj
t ffiffiffiffiffiffi

−g
p þ A0

tðA0
ϕÞ2jϕ

ffiffiffiffiffiffi
−g

p ¼ 0: ðD11Þ
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APPENDIX E: FIRST INTEGRAL AND
INTEGRABILITY CONDITIONS FOR THE
CASE OF PURE ROTATIONAL FLOW

For the case without meridional flow fields, uA ¼ 0, the
system of first integrals and Maxwell’s equations under
stationarity and axisymmetry can be recast into a single
equation to be solved for a single independent variable
which may be called the Grad-Shafranov equation with a
toroidal flow fields. However as we have noted, we do not
reduce the number of variables in our formulation but rather
solve the hydrostationary equation and Maxwell’s equa-
tions simultaneously. Although the derivation presented in
Sec. II F can be applied for the case with pure rotational
flow, we repeat the derivation below for clarity.

1. Ideal MHD condition for purely rotational flow

We assume the 4-velocity uα of the flow field in the
absence of meridional flow uA ¼ 0 as

uα ¼ utðtα þΩϕαÞ ¼ utkα: ðE1Þ

The ideal MHD condition Fαβuβ ¼ 0 in this case becomes
t-component

t · F · uð¼ −uA∂AAtÞ≡ 0; ðE2Þ

ϕ-component

ϕ · F · uð¼ −uA∂AAϕÞ≡ 0; ðE3Þ

xA-component

eA · F · u ¼ ut∂AAt þ uϕ∂AAϕ ¼ 0: ðE4Þ
For the case with meridional flow, integrability conditions
can be found in the above ideal MHD condition alone.
The absence of the meridional stream function in this case
trivializes the t and ϕ components of ideal MHD con-
ditions, and hence the integrability conditions are not
derived from these equations.

2. MHD-Euler equations for pure rotational flow

Substituting uA ¼ 0 and jα ¼ jttα þ jϕϕα þ jAeαA, the
MHD-Euler equations become
t-component:

1

ρ
jA∂AAt ¼ 0; ðE5Þ

ϕ-component:

1

ρ
jA∂AAϕ ¼ 0; ðE6Þ

xA-component:

ut∂AðhutÞ þ uϕ∂AðhuϕÞ þ
1

ρ
jt∂AAt þ

1

ρ
jϕ∂AAϕ

þ 1

ρ
jBðdAÞAB þ T∂As ¼ 0: ðE7Þ

3. Integrability conditions for the case of
purely rotational flow

Substituting the xA-components of Maxwell’s equa-
tions (122) to the meridional current jA appearing in the
t- and ϕ-components of the MHD-Euler equations (E5)
and (E6), we have

1

4πρ
ffiffiffiffiffiffi−gp ϵAB∂Bð

ffiffiffiffiffiffi
−g

p
BÞ∂AAt ¼ 0; ðE8Þ

1

4πρ
ffiffiffiffiffiffi−gp ϵAB∂Bð

ffiffiffiffiffiffi
−g

p
BÞ∂AAϕ ¼ 0: ðE9Þ

These relations require integrability conditions for consis-
tency; namely, a master potential ϒ is introduced as
follows:

At ¼ AtðϒÞ; Aϕ ¼ AϕðϒÞ;
and

ffiffiffiffiffiffi
−g

p
B ¼ ½ ffiffiffiffiffiffi

−g
p

B�ðϒÞ: ðE10Þ

The xA-components of ideal MHD conditions (E4) and
the above integrability conditions for At and Aϕ imply

ut∂AAt þ uϕ∂AAϕ ¼ ðutA0
t þ uϕA0

ϕÞ∂Aϒ ¼ 0; ðE11Þ

and hence,

utA0
t þ uϕA0

ϕ ¼ 0; ðE12Þ

or, introducing the angular velocity Ω,

uϕ

ut
¼ Ω ¼ −

A0
t

A0
ϕ

: ðE13Þ

Therefore, Ω should be a function of ϒ as well,

Ω ¼ ΩðϒÞ: ðE14Þ

4. First integral of meridional components
of MHD-Euler equations

Derivation of the integrability of the xA-component of
MHD-Euler equations proceeds analogously to the case
with nonzero meridional flow. A difference is the absence
of the stream function

ffiffiffiffiffiffi−gp Ψ. In Eq. (130), the stream
function ½ ffiffiffiffiffiffi−gp Ψ�0ðϒÞ appears in the denominator of the
definition of an arbitrary function ½ ffiffiffiffiffiffi−gp Λ�ðϒÞ. In [16],
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we proved that such a combination always becomes finite,
and hence the relations derived in previous sections are
valid also for the case of pure rotational flow under simply
taking a limit ½ ffiffiffiffiffiffi−gp Ψ�ðϒÞ → constant. In this section, we
prove this fact by repeating the derivation of the previous
section and derive (130) directly as a part of integrability
conditions.
We recast the xA-components of MHD-Euler equations

in the same way as the case for generic flow in the previous
section. To proceed, we use a relation,

A0
ϕut − A0

tuϕ ¼ 1

2utuϕ
ðA0

tut − A0
ϕu

ϕÞ; ðE15Þ

derived from normalization of the 4-velocity u · u ¼ −1
and the integrability condition (E12). Multiplying by the

factor
2A0

tA
0
ϕ

A0
tu

t−A0
ϕu

ϕ, the kinetic term of the xA-components of

MHD-Euler equations for purely rotational flow (E7) is
rewritten,

2A0
tA0

ϕ

A0
tut−A0

ϕu
ϕ ½ut∂AðhutÞþuϕ∂AðhuϕÞ�

¼ ∂AðA0
ϕhut−A0

thuϕÞþðhuϕ∂AA0
t−hut∂AA0

ϕÞ; ðE16Þ

where a consistency Eq. (E12) is used. Also, the Lorenz
force term of Eq. (E7) becomes

1

ρ
½jt∂AAtþjϕ∂AAϕþjBðdAÞAB�

¼1

ρ

�
jt∂AAtþjϕ∂AAϕþ

1

4π
ffiffiffiffiffiffi−gp Bϕ∂AðB

ffiffiffiffiffiffi
−g

p Þ
�
; ðE17Þ

with Eqs. (97) and (122).
Because At, Aϕ, and B

ffiffiffiffiffiffi−gp
are functions of the master

potential ϒ as shown in Eq. (E10), the xA-components
of MHD-Euler equations (E7) multiplied by the factor

2A0
tA

0
ϕ

A0
tu

t−A0
ϕu

ϕ are rewritten, with an assumption of s ¼ sðϒÞ,

∂AðA0
ϕhut − A0

thuϕÞ þ
�
ðhuϕ∂AA0

t − hut∂AA0
ϕÞ

þ 2A0
tA0

ϕ

A0
tut − A0

ϕu
ϕ

�
1

ρ

�
jt∂AAt þ jϕ∂AAϕ

þ 1

4π
ffiffiffiffiffiffi−gp Bϕ½B

ffiffiffiffiffiffi
−g

p �0
�
þ Ts0

�	
∂Aϒ ¼ 0: ðE18Þ

The above relation suggests that, because of the converse of
the Poincaré lemma, the first term is a function of ϒ,

A0
ϕhut − A0

thuϕ ¼ ΛðϒÞ: ðE19Þ

This is compared with Eq. (130).

Since
ffiffiffiffiffiffi−gp

B ¼ ½ ffiffiffiffiffiffi−gp
B�ðϒÞ, we introduce the following

functions of ϒ:

1

4π
A0
t

ffiffiffiffiffiffi
−g

p
B ¼ ½ ffiffiffiffiffiffi

−g
p

Λt�ðϒÞ; ðE20Þ

1

4π
A0
ϕ

ffiffiffiffiffiffi
−g

p
B ¼½ ffiffiffiffiffiffi

−g
p

Λϕ�ðϒÞ: ðE21Þ

Taking derivatives of these with respect of ϒ and combin-
ing them, we have a relation,

1

4π
A0
tA0

ϕ½
ffiffiffiffiffiffi
−g

p
B�0 ¼ 1

2
ðA0

ϕ½
ffiffiffiffiffiffi
−g

p
Λt�0−A00

t ½
ffiffiffiffiffiffi
−g

p
Λϕ�

þA0
t½

ffiffiffiffiffiffi
−g

p
Λϕ�0−A00

ϕ½
ffiffiffiffiffiffi
−g

p
Λt�Þ: ðE22Þ

Finally, substituting Eqs. (E19) and (E22) to (E18), the
consistency of the xA components yields

−
1

2
ðA0

ϕ½
ffiffiffiffiffiffi
−g

p
Λt�0 − A00

ϕ½
ffiffiffiffiffiffi
−g

p
Λt� þ A0

t½
ffiffiffiffiffiffi
−g

p
Λϕ�0

− A00
t ½

ffiffiffiffiffiffi
−g

p
Λϕ�ÞBϕ þ

1

2
ðA00

t huϕ − A00
ϕhut þ Λ0Þ

× ðA0
thut − A0

ϕhu
ϕÞρ ffiffiffiffiffiffi

−g
p þ A0

tA0
ϕs

0Tρ
ffiffiffiffiffiffi
−g

p

þ ðA0
tÞ2A0

ϕj
t ffiffiffiffiffiffi

−g
p þ A0

tðA0
ϕÞ2jϕ

ffiffiffiffiffiffi
−g

p ¼ 0: ðE23Þ

This relation is compared with the result for the generic
flow (131); Eq. (E23) agrees with Eq. (131) in the
limit ½ ffiffiffiffiffiffi−gp Ψ�ðϒÞ → constant.

APPENDIX F: DEFINITIONS OF MASS,
ANGULAR MOMENTUM, AND VIRIAL

RELATION

For the reader’s convenience, we summarize definitions
of tabulated quantities in Tables V and VI (see also, e.g.,
Refs. [6,19]). Those include the rest mass,M0; ADMmass,
MADM; Komar mass, MK; total angular momentum, J; the
virial relation, Ivir; and other related quantities including
electromagnetic energy M and its decomposition.
In Table V, R̄0 and R̄z are the equatorial and polar radius

of a compact star in the proper length, respectively. The
proper equatorial radius R̄0 is defined by

R̄0 ≔
Z

R0

0

ψ2
ffiffiffiffiffiffi
γ̃xx

p
dx; ðF1Þ

and for R̄p, the integral is taken along the z axis. The
unbarred R0 and Rp are the equatorial and polar radii in the
coordinate length.
The rest mass M0 is written

M0 ≔
Z
Σ
ρuαdSα ¼

Z
Σ
ρutαψ6

ffiffiffĩ
γ

p
d3x; ðF2Þ
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where dSα ¼ ∇αt
ffiffiffiffiffiffi−gp

d3x and d3x ¼ r2 sin θdrdθdϕ on
the spherical coordinates. This is conserved irrespective
of the choice of a slice Σ for the rest-mass conservation
Eq. (42). The above volume integral over the hypersurface
Σ is nonzero only on the fluid support.
The ADM mass MADM is defined and calculated by

MADM ≔
1

16π

Z
∞
ðfacfbd − fabfcdÞD∘ bγcddSa

¼ −
1

2π

Z
∞
D̃aψdS̃a ðF3Þ

¼ 1

2π

Z
Σ

�
−
ψ

8
3R̃þ 1

8
ψ5

�
ÃabÃ

ab −
2

3
K2

�

þ 2πψ5ρH

� ffiffiffĩ
γ

p
d3x; ðF4Þ

where ρH ≔ Tαβnαnβ is a component of the stress-energy
tensor Tαβ normal to the hypersurface Σ. To check the
consistency of the solution, both the surface integral (F3)
and the volume integral (F4) are evaluated. Relative errors
between those values are approximately 0.01% for the
solutions presented in Sec. IV. The surface integral is
calculated on a sphere with radius around r ∼ 104R0, while
the volume integral is taken within a computational
domain within a radius around r ∼ 106R0. For the surface

integral (F3), we replace γ̃ab→fab, D̃a → D
∘
a, and dS̃a¼

∇ar
ffiffiffĩ
γ

p
d2x¼∇ar

ffiffiffi
f

p
d2x¼dSa. These are exact at spatial

infinity, and they introduce only a negligible numerical
error at the above radius where the surface integral (F3)
is evaluated.
The Komar massMK associated with the global timelike

Killing field tα is defined by

MK ≔ −
1

4π

Z
∞
∇αtβdSαβ ðF5Þ

¼ −
Z
Σ
ð2Tα

β − TgαβÞtβdSα

¼
Z
Σ
½αðρH þ SÞ − 2jaβa�ψ6

ffiffiffĩ
γ

p
d3x; ðF6Þ

and the asymptotic Komar mass of which the tα is a
symmetry of an asymptotically flat spacetime is defined by

MK ≔ −
1

4π

Z
∞
∇αtβdSαβ ¼

1

4π

Z
∞
DaαdSa ðF7Þ

¼ 1

4π

Z
Σ

�
ÃabÃ

ab þ 1

3
K2 − £nKþ4πðρH þ SÞ

�

× αψ6
ffiffiffĩ
γ

p
d3x; ðF8Þ

where the source terms ja ≔ −Tαβγ
α
anβ and S ≔ Tαβγ

αβ

are the components of the 3þ 1 decomposed stress-energy

tensor Tαβ. In deriving (F8), a relation, ðGαβ −
8πTαβÞðγαβ þ nαnβÞ ¼ 0 is used. Since Tαβ ¼ TM

αβ þ TF
αβ

contains electromagnetic contributions, the support of the
volume integral (F6) is noncompact. All integrals (F6)–(F8)
should reproduce the same value, when the waveless con-
dition (27) and the coordinate conditions (26) are imposed at
least asymptotically [13]. We computed Eqs. (F6)–(F8) to
check the consistency of the solutions and found that they
agree in the same order as MADM mentioned above.
For the total angular momentum J, the surface and

volume integrals are evaluated,

J ≔
1

8π

Z
∞
Ka

bϕ
bdSa ðF9Þ

¼ 1

8π

Z
Σ
DaðKa

bϕ
bÞdV

¼ 1

8π

Z
Σ

�
8πjaϕa þ Aa

bD̃aϕ
b −

4

ψ
KϕaD

∘
aψ

�
ψ6

ffiffiffĩ
γ

p
d3x;

ðF10Þ

and the difference between the values from Eqs. (F9) and
from Eqs. (F10) is typically Oð0.1Þ%. Also for J, a term
including ja in the volume integral contains contributions
from fluid as well as electromagnetic fields, and hence it is
integrated over a noncompact support. The values of
MADM, J, and j1 −MK=MADMj listed in Table V are those
of the volume integrals, (F4), (F6), and (F10).11

The relativistic virial theorem for an Einstein-Maxwell
spacetime coupled with charged and magnetized perfect
fluid [43] is computed to determine the accuracy of
solutions. It is a vanishing integral of the spatial trace of
Einstein’s equations over a hypersurface Σ,
Z
Σ

�
Ta

a −
1

8π
Ga

a

�
dV

¼ 2T þ 3ΠþMþW þMADM −MK ¼ 0: ðF14Þ

11In previous papers for nonmagnetized rotating stars [20,42],
the ratio of the kinetic energy and the gravitational energy, T=jWj,
was defined following [6],

W ≔ MADM −MP − T; ðF11Þ

T ≔
1

2

Z
Σ
ΩdJ; ðF12Þ

where the proper mass MP was defined by

MP ≔
Z
Σ
Tα

βuβdSα ¼
Z
Σ
ϵuαdSα: ðF13Þ

In the solutions presented in Sec. IV, Tα
β includes the electro-

magnetic TF
αβ, while uα is defined only on the fluid support.

Likewise, Ω in (F12) is undefined outside of a star, although dJ
has a nonzero electromagnetic contribution there. Because of this
ambiguity, we do not calculate the values of MP and T=jWj.
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The equality of the ADM mass and the Komar mass
MADM ¼ MK has been proved for stationary spacetimes
[44] and for the waveless formulation [13]. The integrals T ,
Π, M, and W are defined by

T ¼ 1

2

Z
Σ
ðϵþ pÞuauadV; ðF15Þ

Π ¼
Z
Σ
pdV; ðF16Þ

M ¼ 1

16π

Z
Σ
ð2FaFa þ FabFabÞdV ðF17Þ

W¼ 1

4π

Z
Σ

�
ψ−4ð2D̃a lnψD̃a lnψ − D̃a lnαD̃a lnαÞ

þ3

4

�
AabAab−

2

3
K2

�
þ 1

α
KβaD̃a lnαþ

1

4
3R̃ψ−4

�
dV;

ðF18Þ

which become the kinetic, internal, electromagnetic,
and gravitational energies, in the Newtonian limit. In the
integrand of W (F18), 3R̃ is a scalar curvature of a
conformally related spacelike hypersurface associated with
a conformal 3-metric γ̃ab. We define a virial integral Ivir as

Ivir ¼ j2T þ 3ΠþMþWj; ðF19Þ

the values for the selected solutions of which are presented
in Table VI. The magnetic energy term M (F17) is
decomposed into contributions from the electric fields as
well as the poloidal and toroidal magnetic fields, for which
we define, respectively,

Mele ¼
1

8π

Z
Σ
FaFadV; ðF20Þ

Mpol ¼
1

16π

Z
Σ
FABFABdV; ðF21Þ

Mtor ¼
1

8π

Z
Σ
FAϕFAϕdV; ðF22Þ

which are also listed in Table VI.
Finally, the electric charge Q defined in Eq. (192)

becomes

Q ¼ 1

4π

Z
∞
FαβdSαβ ¼

1

4π

Z
∞
FadSa; ðF23Þ

where dSαβ ¼ 1
2
ð∇αt∇βr − ∇αr∇βtÞ ffiffiffiffiffiffi−gp

d2x and dSa¼
∇ar

ffiffiffi
γ

p
d2x, which is evaluated on a large sphere S in the

asymptotics of Σ. Rewriting the charge Q in the form of
volume integral,

Q ¼ 1

4π

Z
Σ
∇βFαβdSα ¼

Z
Σ
jαdSα

¼ QM þQS; ðF24Þ

the volume integral over the MHD fluid supportQM and the
surface charge QS at the stellar surface should contribute to
the total chargeQ. In our formulation, the form ofQS is not
given, and the values of QM are listed in Table VI.

APPENDIX G: IMPOSITION OF SYMMETRY
OF THE ELECTROMAGNETIC

VECTOR POTENTIAL

When an exact 2-form F ¼ dA respects the symmetry
£tF ¼ 0, a gauge potential f exists such that A transformed
by A → Aþ df satisfies £tðAþ dfÞ ¼ 0.
Proof.—The Cartan identity t·dF¼£tF−dðt·FÞ implies

dðt · FÞ ¼ 0when £tF ¼ 0. Hence, because of the Poincaré
lemma, a function Φ exists such that t · F ¼ dΦ on a
simply connected manifold. This implies

£tA ¼ t · dAþ dðt · AÞ ¼ t · F þ dðt · AÞ ¼ dðΦþ t · AÞ:
ðG1Þ

Under a gauge transformation with a potential f,
A → Aþ df, (F → F), £tA is transformed as

£tðAþ dfÞ ¼ £tAþ d£tf ¼ dð£tf þΦþ t · AÞ: ðG2Þ

Hence, for an f that satisfies

£tf þΦþ t · A ¼ const; ðG3Þ

Aþ df satisfies the symmetry £tðAþ dfÞ ¼ 0.
We have the freedom to choose another gauge potential f̂

that respects the symmetry £tf̂ ¼ 0. This gauge potential
does not affect the above transformation to impose the
symmetry on the potential A; namely, A → Aþ df þ df̂
respects the symmetry. With this gauge freedom, we may,
for example, impose Coulomb gauge (vanishing spatial

divergence) D
∘

aAa ¼ 0, where a is a spatial 3D index.
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