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New code for equilibriums and quasiequilibrium initial data
of compact objects. IV. Rotating relativistic stars with
mixed poloidal and toroidal magnetic fields
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A new code for computing fully general relativistic solutions of strongly magnetized rapidly rotating
compact stars is developed as a part of the Compact Object CALculator (cocAL) code. The full set of
Einstein’s equations, Maxwell’s equations, and magnetohydrodynamic equations are consistently solved
assuming perfect conductivity, stationarity, and axisymmetry, and strongly magnetized solutions associated
with mixed poloidal and toroidal components of magnetic fields are successfully obtained in generic
(noncircular) spacetimes. We introduce the formulation of the problem and the numerical method in detail,
then present examples of extremely magnetized compact star solutions and their convergence tests. It is
found that, in extremely magnetized stars, the stellar matter can be expelled from the region of strongest
toroidal fields. Hence, we conjecture that a toroidal electrovacuum region may appear inside of the
extremely magnetized compact stars, which may seem like the neutron star becoming the strongest toroidal

solenoid coil in the Universe.
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I. INTRODUCTION

A magnetar, a neutron star associated with very strong
surface magnetic fields around 10'“~10"5 G, has become a
widely accepted model for soft gamma repeaters and
anomalous x-ray pulsars [1]. Although electromagnetic
fields of observed magnetars are very strong, their electro-
magnetic energy may not be expected to dominate over
internal or gravitational energies. Therefore, in most
theoretical models of magnetars, the electromagnetic fields
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are treated separately from the hydrostatic equilibrium of
the compact stars as, e.g., in [2], or they are treated as
perturbations. With the perturbative techniques, general
relativistic stars having purely poloidal magnetic fields and
both toroidal and poloidal magnetic fields were calculated
in [3,4], respectively. Effects of stable stratification on
structures of stars with mixed poloidal-toroidal magnetic
fields were included in [5].

However, the electromagnetic fields of newly born
magnetars could be strong enough to have a comparable
amount of energy or could be highly concentrated and
distributed anisotropically so that the fields may largely
alter the hydrostatic equilibrium of stars globally or locally,
respectively. From a theoretical viewpoint, it is also
interesting to compute extreme solutions such as compact
stars associated with the electromagnetic fields in their
strongest limit and to investigate their impact onto the
hydrostatic as well as the spacetime structure [6].

© 2019 American Physical Society
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Several numerical methods have been developed in the last
three decades for computing such stationary and axisym-
metric equilibriums of relativistic compact stars, which are
largely deformed due to strong electromagnetic fields and
rapid rotation. The first success was achieved by the Meudon
group for computing compact stars associated with poloidal
magnetic fields [7]. Those associated with purely toroidal
magnetic fields were solved by Kiuchi and Yoshida [8] and
later by Frieben and Rezzolla [9]. More recently, the Florence
group published a series of articles for computing magnet-
ized compact stars with purely poloidal, toroidal, as well as
mixed magnetic fields [10]. In their computations, simplified
formulations for the gravitational fields have been used,
which has enabled systematic computations of solutions in a
wide region of parameter space.

In our previous paper [11], we presented preliminary
results for stationary and axisymmetric equilibriums of
relativistic rotating stars associated with strong electromag-
netic fields, in particular, with mixed toroidal and poloidal
magnetic fields. Following [11], we detail below the for-
mulations and a numerical methods for computing such
equilibriums, including improvements on our earlier work
[11]. We then present a few examples of solutions associated
with extremely strong electromagnetic fields and results of
convergence tests. In the newly calculated solutions, it is
found that the toroidal magnetic fields concentrate near, but
well below, the equatorial surface and that the fields expel
the matter when their strength becomes of order 10'” G or
higher for typical neutron stars. From this finding, we can
conjecture that a neutron star associated with such extremely
strong toroidal magnetic fields may have a toroidal magneto-
vacuum tunnel in it; that is, such a neutron star may become a
toroidal solenoid itself.

This paper is organized as follows. The formulation for
stationary and axisymmetric equilibriums of relativistic
stars associated with electromagnetic fields is described
in Sec. I with emphasis on the 3 + 1 decomposition of
Maxwell’s equations and the derivation of a system of first
integrals and integrability conditions for ideal magneto-
hydrodynamic (MHD) flows. In Sec. III, the derived
formulation is further modified into the form implemented
in the present numerical code, the COCAL code, and then the
numerical method used in the code is briefly described. In
Sec. IV, three new numerical solutions calculated from the
latest version of the cocAL code for magnetized rotating
equilibriums are presented, and their convergence test with
respect to resolution and number of multipoles included in
the Poisson solver are presented.

II. FORMULATION

A. Summary for formulation

In the following, relativistic rotating stars associated with
electromagnetic fields are modeled in the framework of a
stationary and axisymmetric Einstein-Maxwell charged and

magnetized perfect-fluid spacetime. We assume that the
equilibriums of magnetized stars satisfy the ideal MHD
condition. Because of the nature of mixed poloidal and
toroidal components of magnetic fields as well as a possible
existence of meridional flows of matter, the spacetime is no
longer circular; it is not invariant under a simultaneous
inversion of t - —t and ¢ - —¢ [12]. To incorporate all
metric components that describe such noncircular space-
times, we apply the waveless formulation which is devel-
oped for solving initial datasets for numerical relativity
simulations [13—15]. The waveless formulation is based on
a 3+ 1 decomposition and conformal decomposition of
the spatial metric, which are commonly used in numerical
relativity. Under appropriate gauge conditions, and time and
rotational symmetries, the metric components are obtained
by solving a system of elliptic partial differential equations
(PDEs) on an asymptotically flat spacelike slice X.

An analogous formulation is also applied to recast
Maxwell’s equations into 3 4 1 form, with the electromag-
netic 1-form obtained by solving elliptic PDEs. The
formulation for the electromagnetic fields is detailed below,
which differs from the standard formulation from which the
well-known Grad-Shafranov equation is derived.

A formulation for a system of ideal MHD equations has
been discussed in our previous paper [16]. In [16],
integrability conditions to guarantee consistency of the
stationary and axisymmetric system and associated set of
first integrals have been derived. The basic idea of the
formulation used in [11] as well as in the present paper is
essentially the same as that of [16], but an alternative choice
of variables results in somewhat different set of equations to
be solved. In the formulation of [16], the electromagnetic
2-form F = dA and its Hodge dual xF are decomposed
covariantly using the 1-form basis dual to symmetry
vectors t* and ¢* and three scalar fields which are the
same in both decompositions of F and xF (see, e.g.,
Egs. (2.35) and (2.36) in [16]). An analogous decompo-
sition is applied to the vorticity 2-form d(hu); then, after
careful algebraic manipulations, the relativistic transfield
equation (a generalized form of the Grad-Shafranov equa-
tion with meridional flows) is derived.

In the following formulation, unlike in [16], we use the
contravariant tensor F* instead of «F and an orthogonal
basis of a reference flat metric defined in Sec. IIF 1 to
decompose the set of equations. This choice is probably
more common in formulations of numerical relativity and
hence results in a more familiar form of the equations,
although redundant components remain in the equations.
Another difference is that we do not reduce the number of
variables by imposing axial symmetry in our formalism.
This allows enough generality in the new part of the code
that will enable easy extension for computing, for example,
nonaxisymmetric configurations of electromagnetic fields,
electromagnetic standing waves, or a magnetic dipole field
misaligned with the rotation axis, in the future. This also
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minimizes the effort to develop and debug a new code for
such a rather complex problem, as computing tools having
already been implemented in COCAL, such as its multipole
moment elliptic PDE solver, can be utilized.

The 3 + 1 decomposition and the waveless formulation
for Einstein’s equations are briefly summarized below, the
details of which are found, e.g., in [6,17-19] and in our
previous papers [13,15,20], respectively. The derivations of
the formulations for Maxwell’s equations and the first
integrals of the ideal MHD equations are presented in full
detail in the following subsections. Related formulations
are also found in [4,16,21]. In this paper, we use abstract
index notation for tensors; the greek letters a, f,7, ... are
for abstract four-dimensional (4D) indices, the latin lower-
case letters a,b,c,... are for three-dimensional (3D)
indices, and the latin uppercase letters A, B, C, ... are for
two-dimensional indices.

In the above, we expressed the 2-forms, F, xF, dA, and
d(hu), omitting indices. Such index-free notation may also
be used with caution, in particular, when calculations
involve forms and vectors. A dot denotes an inner product,
that is, a contraction between adjacent indices. For exam-
ple, a vector v and a p-form @ have inner product

v-ow=7vw

ya...p> -V :a)amﬁyﬂ. (1)

In particular, the Cartan identity for a p-form @ in index-
free notation is written

£f,0=v-do+dv- ). (2)

Certain relations in index-free notation are summarized in
the Appendix A 2.

B. Framework and notations

1. 3+1 decomposition of spacetime

We consider globally hyperbolic spacetimes (M, g5),
M =R x X, admitting two symmetries: stationarity asso-
ciated with a timelike Killing vector * and axisymmetry
associated with a spacelike rotational Killing vector ¢*. The
spacetime is foliated by spacelike hypersurfaces X, =
x:(Zo) parametrized by a time coordinate ¢, where y, is
a diffeomorphism generated by * and X, is an initial slice.
Because of the time-translation symmetry, X, are identical
for any . The spacelike vector ¢* generates a congruence of
circles in X, parametrized by ¢ of which the length is 2.
Those parameters ¢ and ¢ are chosen as coordinates.

The future pointing unit normal 1-form n, is defined by
n, = —aV,t, and it is related to * as

ta — ana +ﬂa, (3)

where a and * are the lapse function and the shift vector,
respectively, and the shift is spacelike, f*n, = 0. The
projection tensor to a slice X, is defined,

Yap = Yap =+ ngng, (4)

and its pullback to X, is written y,;,. Then, the metric g,4 in
a chart {x*} is split into 3 + 1 form in a chart {7, x*},

ds* = gupdxdx’
= —a*di® + v (dx® + podr)(dx? + pbdt).  (5)

For the spatial metric y,;,, a conformal decomposition is
introduced as

Yab = W47abv (6)

where y is the conformal factor and %, is the spatial
conformal metric. This decomposition is specified through
acondition 7 = f, where 7 is the determinant of 7, and f is
the determinant of the reference flat metric f;,, which takes
a simple expression of the flat metric in the chart {x“}. The
differences between the spatial conformal metric and the
flat metric, h,, and h“®, are defined by

5 ~ab __ rab ab

Yab = fab + hab’ and v = f + h, (7)
where 7° and f¢ are the inverses of the corresponding

metrics. Because of the conformal decomposition, the
weight of the Levi-Civita tensor becomes

V=9 = a7 = ay®\/f. (8)

We denote spatial derivative operators D,, D,, and D,,
which are compatible with spatial metrics y ., 745, and f,
respectively, and a spacetime derivative operator compat-
ible with the metric g,; by V,,.

Since we write down all field equations, equations of
motion, and other associated relations, including coordinate

conditions, using the flat derivative operator D,, we have
freedom to choose {x%}, a coordinate system of the
reference frame associated with f,,, without changing the
spacetime geometry. In this paper, as in elementary vector
analysis, we only choose one of Cartesian, cylindrical, or
spherical coordinates associated with a set of orthogonal
bases for {x*} (see Appendix A 1). Under a choice of
orthogonal basis, a difference in the weight (8) arises from f,
which may or may not be included in y depending on
whether one chooses a coordinate or noncoordinate basis.
The extrinsic curvature of %, is defined by

1
— (O ab = Epvap). (9)

1
K, = _7yuuyﬂb‘£nyaﬁ = 2u

2
where the Lie derivatives £ are defined on either M or X,
depending on the vector to derive along and 0, is the
pullback of £, defined on M to XZ,. The trace of K, is
written K, and the trace-free part of K, is defined by
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1
Aab :Kab_g},ubK' (10)

Substitution of Eq. (9) to the trace-free part (10) results in
conformal Killing operators with respect to * and f“,

1 1
A =—7 <yaa7ﬁb£¢m7aﬂ - gyabyaﬁfanyaﬂ>

20
4
Wil o
= 2u <£ﬂ}’ab - g}’abJ’ d£ﬂ70d>
4
2N VSR S
- 2 (aﬂ/ab - gJ’ab}’ daz}’cd> > (1 1)

while the trace of Eq. (9) becomes

6 1 - -

As a result, under the condition 7 = f with an assumption
0,7 = 0,f =0, the time derivatives of 7, and y are
separately related to A,;, and K, respectively.

In actual computations, we introduce conformally rescaled
Kab and Aab defined by i(ab = l//_4Kab and Aab = l//_4Aab,
for which their indices are raised (lowered) with 7%° (7,,).

2. Stress-energy tensors for the perfect-fluid and
electromagnetic fields

A strongly magnetized (and possibly charged) compact
star is described by Einstein-Maxwell, charged and mag-
netized, perfect-fluid spacetime. The stress-energy tensor

T is the sum of the perfect-fluid stress-energy tensor T"’Mﬂ
and the electromagnetic stress-energy tensor T%ﬂ ,

T =T +TY, (13)
where Tg'f is defined by
T = eusl’ + pg (14)

and T is defined by

w1 1
TV = P (F“YFﬁy -3 ga/nyﬁFﬁ) : (15)

In the definition of Tfff, u? is the fluid 4-velocity, p is the
pressure, € is the energy density, and

g = ¢ + u*u’ (16)
is the projection tensor onto a surface orthogonal to u®.

Here, we assume that the fluids satisfy equations of state
(EOS) of the form

p=rp.s), e=¢lps), (17)

where p is the baryon-mass density1 and s is the entropy
per unit baryon mass, although later we assume a simpler
one-parameter EOS.

In the definition of T‘;ﬁ , the electromagnetic field 2-form
F 4 is related to the electromagnetic potential 1-form A, by

Faﬂ = (dA)aﬂ = VaAﬁ - VﬂAa. (18)

In this Eq. (18), (dA), is the exterior derivative of the
I-form A,. Since F,; is a closed 2-form,

(dF)aﬂJ’ = 3v[aFﬂ7] :vaFﬂ7+vﬂFVa+vaaﬂ:0' (19)

3. Stationarity and axisymmetry

For stationary and axisymmetric systems, the Lie deriv-
atives of field and matter variables, {g,5. A, u®, h, s}, along
the time and axial symmetry vectors, asymptotically time-
like vector %, and a spacelike rotation vector ¢*, vanish,

£,A, =0,
£,h =0,

£qgaﬂ = O,

£, = 0, £,5=0,  (20)

where n* = 1* or ¢* and h is the relativistic enthalpy defined
by h = (e + p)/p.

As mentioned earlier, we use the same set of field
equations for the gravity as the waveless formulation
derived and used in [13-15,20]. In this formulation, we
do not impose ¢-symmetry explicitly onto the field
equations. The waveless condition becomes a part of the
time symmetry conditions imposed on the time derivatives
of field variables in the inertial frame. Consequently, our
formalism for solving the field equations may also be
applicable for computing quasiequilibrium solutions with-
out axial symmetry.

C. Formulation for gravitational fields

1. Summary of the waveless formulation

As in the common formulations of numerical relativity,
we decompose Einstein’s equations, G,z = 8774, into
normal and transverse components with respect to the
hypersurface X, [17-19]. In our equilibrium (or quasiequi-
librium) initial data formalism for numerical relativity, we
choose the following combinations of components,

(Gaﬂ - SHTaﬁ)nanﬁ =0 (21)

(Gaﬂ - SJTTaﬁ)}/aal’lﬂ =0 (22)

"That is, p == mpgn, with n the number density of baryons and
mp the mean baryon mass.
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1
(Gap — 87T p) <yaﬂ + 5n%ﬁ> =0 (23)

1
(G(l/)’ - SHT(I[)’) (yaa},ﬁb - 3},ub},(lﬁ> =0, (24)

and formally recast them into a system of elliptic PDEs
for the 34 1 variables {y,p,,aw, h,,}, respectively.
In the present computations, we separate the flat

Laplacians, A :=D,D*“ operating on these variables,
represented by @, and moving other terms to the source
terms, S,’

AD = . (25)

The source terms S of Egs. (23) and (24) contain a time
derivative of the trace and trace-free parts of extrinsic
curvature 0,K and 0,A,, respectively, and, as mentioned
earlier, K and A, contain 0, and 0,7, respectively, as
Egs. (12) and (11).

In most of the formulations for numerical relativity
simulations, gauge conditions are dynamically imposed
through the so-called a-driver and I'-driver that determine
the lapse a and shift p* [17-19]. In our initial data
formulation, @ and ¢ are part of the metric potentials to
be determined, and the gauge conditions are introduced by
prescribing the values of the trace K and the divergence

D,7*®. We normally choose maximal slicing and Dirac
gauge conditions,

K=0 and D,j =0, (26)

for the four coordinate conditions. A method to impose
these conditions has been described in [15,20] and is
repeated in the next subsection.

In [13], a waveless condition is derived for the gravi-
tational fields, which results in all metric potentials,
including 4,;, having Coulomb type falloff in the asymp-
totics under the gauge (26). Such a waveless condition is to
impose an asymptotic behavior on the time derivative of
spatial conformal metric,

9,70 = 0(r3). (27)

In [15,20] as well as the present calculations, we impose a
stronger condition:

9,7 = 0. (28)

>The manner of determining K, in our formulation is analo-
gous to the one used in an initial data formulation often referred to
as the conformal thin-sandwich formalism [17-19,22,23].

As mentioned above, the time derivative terms in the
gravitational field equations are {0y, 0,74, 0,K, 0,A 4y }-
Since the value of K is fixed by the gauge condition (26),
the time derivative of the conformal factor, O, as seen
in Eq. (12), does not appear in the field equations.3
The maximal slicing condition, K = 0, is assumed to be
satisfied not only instantaneously on the initial hypersur-
face but also on the neighboring slices; hence, 9,K = 0.
The waveless condition (28) fixes the value of 0,7,,. The
remaining 0,4, and other time derivative terms appearing
in the equations of motion for the matter, may be prescribed
by stationarity as in Eq. 20).*

The waveless formulation has been successfully applied
for computing equilibriums of single rotating stars as well
as quasiequilibrium initial data of nonaxisymmetric rotat-
ing stars and binary neutron stars [15,20] by replacing the
time symmetry vector with that in the rotating frame (the
helical Killing vector k% = t* + Q¢ [24,25]) except for
0,7°* on which the waveless condition (27) is imposed.5
The concrete form of Eq. (25) for each metric potential
{w,Ba ay, hy,} is presented in [13,15,20].

2. Imposition of the gauge conditions

Recently, we developed a novel formulation for impos-
ing arbitrary gauge conditions on the waveless initial
data and successfully computed a black hole toroid system
in Kerr-Schild coordinates [29]. The maximal slice and
Dirac conditions (26) are replaced by generalized gauge
conditions

K=Kg; and D,j* =g, (29)

where Kg and G* are, respectively, a function and a vector
given arbitrarily. Our computation for the strongly mag-
netized rotating star is therefore not limited to the choice
(26), that is, Kg =0 and G* = 0. Since the asymptotic
flatness may be imposed in most of applications for
computing astrophysical compact objects, it will be con-
venient to choose gauge conditions which become the
maximal and Dirac gauges except for the vicinity of the
sources.

Taking into account the gauge invariance of the linear-
ized metric under transformations

3t may appear in a gauge condition (see Sec. I C 2 below).

“The discussion above is to elucidate that the formulation can
be applicable for quasistationary nonaxisymmetric data. One can
assume global time symmetry and discard all time derivative
terms from the beginning, which results in the same set of
equations used in the following computations.

Under helical symmetry, nonaxisymmetric initial data asso-
ciated with standing gravitational waves may be calculated by
imposing the symmetry also to the time derivative 9,7, then
rearranging the field equations to separate the Helmholtz operator
for 7,, in the left-hand side [24-28].
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5B — 6% + Dag (30)
5yab N 5yab _5a§b _Bbé:a’ (31)

we introduce a gauge potential ¢ and gauge vector
potentials & to adjust % and h as

1 o
al _ pa D “¢, 32
p ﬂ+ﬁ 4 (32)

o o 2 °
habr — pab _Dagb _Dbga +§fach§C' (33)

To impose gauge conditions (29), we solve K’ = K and

D,h®" = G for these gauge potentials & and &%, respec-
tively, where K’ is Eq. (12) in which ' is substituted in
place of . Then, the (primed) new variables are recon-
structed accordingly with Eqgs. (32) and (33), and the
original variables are replaced by the new ones, % —
p* and h®' — h  during iterations for solving the field
equations. Substituting Egs. (32) and (33) to these con-
ditions, the gauge vector potentials £ and & are solved
from elliptic equations,

Af = . (34)

Sk = VF|aKg= Dyt = (b =0 (39)

and
A = S5, (36)
84 = —G + Dyh® — %15013,,51’. (37)

A time derivative term O,y in the source (35) is
prescribed in computing initial data on X, or may be
absorbed in the gauge condition K. In the following, it is
set 9,y = 0. The above system of elliptic equations (34)—
(37) is solved simultaneously and iteratively together with
the field equations [15,20,29].

D. Maxwell’s and relativistic ideal MHD equations

Hereafter in this section, we describe the formulations for
solving electromagnetic fields and equilibriums of magnet-
ized matter in detail. Maxwell’s equations are written

(dF),, =0 (38)

apy
V,;F“ﬁ = 4xj*, (39)

where j* is the electric current density. The converse of the
Poincaré lemma implies the existence of a potential 1-form
Ag, such that F5 = (dA),;. By construction, the current
density is conserved,

V,.j*=0. (40)
From the Bianchi identity
VT = VT3 + VT =0 (41)
and the rest-mass conservation law
Va(pu®) =0, (42)

the relativistic MHD-Euler equations are derived;
4 1 i$
u (d(hg))ﬁa - Tvas = ;Faﬁ.] ’ (43)

where (d(hu)),s = V(hug) — Vg(hu,) is the canonical
vorticity 2-form. The system of equations for the matter is
closed by adding an EOS for the thermodynamic variables
and a relation for energy transport. Since we introduce a
one-parameter EOS for computing equilibriums, we do not
need to consider the latter relation.

Finally, we assume that the ideal MHD condition holds:

F i = 0. (44)

This condition implies the conservation of the flux F4 as
recalled briefly in Appendix A2c.

In our previous paper [16], we showed that, under
stationarity and axisymmetry, the above system of
Maxwell’s equations and ideal MHD equations (38)—(44)
can be recast in a system of a single elliptic PDE for a master
potential, the relativistic master transfield equation, and first
integrals, where the master potential may be related to a flux
function, for example, the ¢-component of the potential A,,.
In the absence of a meridional flow field, the PDE becomes
the well-known Grad-Shafranov equation. The formulation
in [16] is superior to the other formulations, since the single
governing equation for the master potential is derived in a
fully covariant form thanks to the use of exterior calculus
and the orthogonal decomposition of a tangent space into
subspaces spanned by the Killing vectors (7%, ¢*) and a
remaining “meridional” spacelike 2-surface. It is also shown
that the system of the transfield equation and associated first
integrals is the most general form which contains all types of
limiting cases including purely poloidal/toroidal magnetic
fields, no-magnetic fields with meridional flows, and purely
circular flows. As mentioned earlier, however, we do not
follow this style of formulation presented in [16]; in
particular, we do not solve the master transfield equation
but solve Maxwell’s equations to determine all (3 + 1
decomposed) components of A,,.

E. Formulation for the electromagnetic field

In this subsection, we derive a 3 + 1 form of Maxwell’s
equations, which are recast in a set of elliptic PDEs for the
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components of the (3 + 1 decomposed) electromagnetic
potential 1-form A,. Although these calculations are
straightforward (see, e.g., [18,30]), we present them in
detail since the resulting equations are implemented in the
COCAL code for actual computations.

1. 3+ 1 decomposition of electromagnetic fields

In this subsection, we introduce the 3 + 1 decomposed
variables for the electromagnetic potential 1-form A, and
the Faraday tensor F*’, as well as a decomposition of its
divergence V/;F“/’. To avoid confusion, for a given 4D
object, its projection to X, defined on M is denoted with a
barred symbol, and the one defined on %, itself is denoted
using the same symbol with 4D indices being replaced by
3D ones. For example, the 4D object A, is related to A, and
the 3D object A, as follows:

Aa = 7aﬂAﬂ (45)

Aa = ydaA(l = ytlaA(l' (46)

As usual, we omit the bar on a projected 4D object when
the 4D object is spatial.
We define the 3 4 1 variables of the electromagnetic
potential 1-form A, and Faraday tensor F* by
Oy = _Aana’ Aa = yaaAm (47)
Fe = },aaFaﬂnﬁ’ Fub _ yaayh/))Fa/)" (48)

Note that F%’n,ns; = 0 by antisymmetry. Then, A, and F*
are related to their spatial components by

Ay = Psn, + Aa = Dsn, + 74" Aq, (49)
Fa/i — }_;'a[)’ + n(lF/i _ l’l/}F(l. (50)

As shown in Appendix B, the projected Faraday tensor,
F, and F_;,, and its divergence defined on X become

1
F,=—£,4, —~D,(a®y). (51)
a
Fah :DaAb_DhAm (52)
n,VyF = —D,Fe, (53)

1
7' VyF? = —Dy(aF®) —£,F' + KF*. (54
a

2. 3+1 decomposition of Maxwell’s equations

Using Eq. (53), the projection of Maxwell’s equations
along the hypersurface normal n* is written

(V4FP — 4gjo\n, = —D,F* +4rps =0,  (55)

where py is the projection of the current j* along the normal
n® defined by

e (56)

and F“ is derived from Eq. (51) by raising the index,
1
Fe = —£,A% + 2K* Ab — — D% (a®y). (57)
a

Note that the charge py is related to the time component of
the 4-current as

ps = —j%n, = —j*(—aV,t) = aj'. (58)

Using Eq. (54), the projection of Maxwell’s equations
onto the hypersurface X, is written

1
(VF ~4nj)y" o= Dy(aF*")~£,F* + KF*~4mj$ =0,

(59)
where j$ is defined by
Js =1 (60)

Note that the projected current j§ is related to the
components of the 4-current j* as®

Jg = (9" +nna)j* = j + JP°. (61)
For later use, the dual of Eq. (59) is derived,
(VpF = A7) aa
= éDb(aFab) —£,F,—2K,’F, + KF, — 4xj>

—0, (62)

where the relation y,,£,F” = £,F, + 2K, F" is used.

3. Imposition of stationarity

We assume that the Faraday tensor F 4 respects the time
and rotational symmetry. Then, it follows from a discussion
in [16] (as being repeated in Appendix G) that the
electromagnetic potential 1-form A, also respects the time
and rotational symmetry as mentioned in Sec. II B 3. In our
formulation, we impose the stationary condition explicitly
on the equations, £,4, = 0. Since t* = an® + %, we have

®For later convenience, we use j¢ as a spatial part of 4D current
J% hence, j¢ # y“,j*
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1 1

£,A, =—(0,A, —£3A,) = ——£3A,, 63

nfla a( t“ra 7 a) a pra ( )
1 1

£nFa = *(a[Fa _£ﬂFa) == _7‘£ﬂFa7 (64)
a a

and similarly for the duals A* and F“. With this
symmetry, Maxwell’s equations (55) and the relation (51)
are rewritten,

(VyF% — 4zj*)n, = =D F + 4zpy =0,  (65)

1

1
F,=—£3A,——D_(a®s), 66
a a pra a a(a Z) ( )

and Eq. (62) becomes

(vﬂFa/j - 4ﬂja)yaa
1 1 1
= ;Db(aFa”) + a,f,,,Fa —2A,PF, + gKFa —4nj>

=0, (67)

where A, is the trace-free part of the extrinsic curvature
K,;, as defined in Eq. (10).

4. Conformal decomposition and equations
for electromagnetic potentials

To write down the final form of Maxwell’s equations
implemented in our actual numerical code, we introduce
a conformal decomposition of the spatial metric Eq. (6)
with the condition 7 = f as explained in Sec. [IB 1. We
introduce conformally rescaled quantities of the spatial
electromagnetic potential 1-form and vector,

A,=A, and A?=7"PA, =y*A?, (68)

and for the spatial Faraday tensor

Fug=F, ad F,=F,, (69)
where tilded objects are rescaled quantities of which the
indices are raised or lowered by 7% or 7,,,, respectively.

Details on the conformal decomposition of 3 + 1 form
of Maxwell’s equations (65) and (67) are provided in
Appendix C. The projection of Eq. (65) along n* results in
an elliptic PDE for a®s,

o

Ala®s) = S, (70)

where the source S is written

§ = —h*D,D,(a®s) - D7 D (a®y)
2
a ~ o
75D ("’;) F) + D, £4A,

+ 7D £5A, — dmayps. (71)

The projection of Eq. (67) to %, results in elliptic PDEs
for A,,

AA, =S, (72)

where the source S, is written

Sa = _thDchAa + 7bcDb(CguAd) + 7bcctbichAa
+y*<c{ DAy + D,D,A" 43R, A

2 4
~ ~ a
+ F“b%D” (W) +W;£ﬂF“ W ALFy

1
+§y/4KFa — 4yt jE. (73)

To shorten the expression of the source (73), we keep D,
instead of replacing it with D, and a connection C¢, in
some terms, where C¢, :=17°/(D 74, + D7 sq — D g¥up)-

The fifth term in the rhs of the source (73), Dabbﬁb , may
be expanded as follows,

D,D,A* = D,D"A, + D,(h**D,A, — 7*°C¢ A,),  (74)

and then the Coulomb gauge condition D “A, = 0 may be
imposed explicitly, or a simpler expression of this term may
be written applying the condition 7 = f explicitly,

DanAb - lo)aBbAh. (75)

5. Imposition of Coulomb gauge

As discussed in Appendix G, we have freedom to choose
the spatial gauge for the spatial part of the electromagnetic
potentials. We impose Coulomb gauge analogously to that
for coordinate conditions discussed in Sec. I C 2:

DA, = 0. (76)

Although we have not tested gauge conditions other than
(76), we formulate the method to impose more general
gauge conditions analogously to the imposition of coor-
dinate conditions discussed in Sec. II C 2,

o

D9A, = Ag, (77)

where Ag is a given arbitrary function.
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Considering the following gauge transformation,

A, = A+ D,f. (78)

we let A/, defined by
AL = A, +D,f (79)

satisfy the gauge condition lo)"A’a = Ag, which leads to

Af = Ag— DA, (80)

The same as with the coordinate imposition Eqs. (34)—(37),
the above equation (80) is solved simultaneously and
iteratively together with the field equations. Then, sub-
stituting the solution f to Eq. (79), A, is calculated, and A,
is replaced by A, - A,.

F. First integrals of relativistic ideal MHD equations

A key to a successful formulation for computing
equilibriums of compact stars is to derive a set of first
integrals of a system of hydrostationary equations. For the
ideal MHD case, including the ideal MHD condition (44),
all equations for the magnetized matter have to be ana-
lytically and consistently integrated. In the formulation in
[16], those first integrals are thoroughly used to reduce the
number of variables in deriving a single master transfield
equation, in particular, to eliminate the current j* in
Maxwell’s equations. In the present formulation, we simply
solve the system of the first integrals simultaneously with
the field equations.

In what follows, we analyze the rest-mass conservation
law (42); each of the 7, ¢, and meridional xA components
of the relativistic MHD-Euler equations (43); the ideal
MHD condition (44); as well as Maxwell’s equations in its
original form (39), applying ¢ and ¢ symmetries.

1. Coordinates and basis

To begin with, we introduce an orthogonal basis,
{r*, ¢*, €5}, associated with the coordinates 7, ¢, and
two other spatial coordinates x4, where the ¢ and ¢
coordinates are adapted to the spacetime symmetries
generated by the two Killing vectors * and d)"‘ The
remaining two spatial meridional coordinates x*, with
indices denoted by uppercase latin letters A,B,---=1, 2,
may, for example, be (w,z) for cylindrical or (r, 0) for
spherical coordinates, for example. These bases and natural
1-form bases generated from these coordinates are nor-
malized as

1Vt =1,

¢ava¢ = 19 egvaxB = 6AB9 (81)

where 5% is the Kronecker delta and otherwise orthogonal.

In the following sections, we will use the 4D flat metric
Nqp and 3D flat metric f,;, associated with these bases,

710([)’ = —Vatv/,t +f§)va¢vl;¢ +fABVaxAV/,xB, (82)

”aﬂ T +f;2¢a¢ﬁ —l—fABegeg, (83)
fab = f%ﬁvad’quﬁ + fABvaxAvaB7 (84)
[ = f70" + fAPesed, (85)

where f, =w and f,p = diag(1,1) for the case with
cylindrical coordinates, while f, =rsin€ and f,p =

diag(1, r*) with spherical coordinates.
Objects with contravariant indices are expanded using
these bases and are denoted, for example, as

u® = u't* + ulp* + utes, (86)
for the 4-velocity u“. It is understood that the last term is
summed over A = 1, 2. Similarly, objects with covariant

indices (such as p-forms) are expanded with respect to the
basis {V,t, Vp, Vxt}.

2. Rest-mass conservation equation

The densitized rest-mass conservation equation is written
Va(pu®)\/=g = Oglp(u't” + u?$* + u'e})/=g]
= Oa(pu*\/=g) =0, (87)

where we have applied the symmetries,

Dolpu't®/=g) = £,(puV,t\/=g) =0,  (88)

and similarly to a term associated with ¢“*. This suggests
introducing a stream function ,/—¢g¥ for the meridional

flow fields u?,

-~ J_eAB(?B(\/_‘P) (89)

where €48
el =1,

is an antisymmetric matrix with a signature

AB = <(1) _(1)>. (90)

The scalar function W is introduced to make explicit that the
stream function ,/—¢¥ is a densitized scalar.
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3. Components of electromagnetic 2-form
and vorticity 2-form

We write the components of FF=dA and impose
symmetries (for economical reasons, we omit spacetime
indices a, f3, - - - in the following of this section and in the
next section):

(t, ¢p)-component:

Ft¢:_F¢t:(['F)'¢:(t'dA>'¢
—[EA—d(t-A)]-¢=—£,(-A) =0, (91)

(¢, x*)-components:

Fp=—Fp=—(t-F)-ey=—(t-dA) - e,
= €4y d(t A) = 5‘AA,, (92)

(¢p, x*)-components:

FA¢ = —F¢A = —(¢'F)‘6A = —(¢'dA>'€A

(x4, xB) components:
Fap = —Fpa = (dA)sp = 04Ap — 0pAy,  (94)
or explicitly,

Fap=—Fps=(es-F)-ep=(es-dA)-ep
[t A=d(es-A)]-e5=4Ap =y (95)

We introduce expressions for the spatial components of
the 2-form F and its dual as follows,

FA¢ = 8AA¢ = _GABBB, (96)
Fap = (dA)AB = €ABB¢v (97)
FAP = (dA)*B = *BB, (98)

where €45 and €,4? are also antisymmetric matrices with
signatures €, = —1 and €,> = —1.

Analogously, the components of the vorticity 2-form
d(hu) are written as follows:

(, ¢)-component:

d(hu),, = —d(hu),y =0, (99)
(¢, x*)-components:

d(hu)y, = —d(hu),y = 0, (hu,), (100)

(¢p, x*)-components:

d(hu),y, = —d(hu) s = 0x(huy), (101)
(x4, xB)-components:
d(hu)sp = —d(hu)gy = Oa(hup) — Op(hus).  (102)

We introduce expressions for the spatial components of
the 2-form d(hu) as follows’:

d(hu),y = 0a(huy) = esPwp, (103)

4. Ideal MHD condition

Substituting the 4-velocity in terms of a basis (86) to the
ideal MHD condition F-u =0 and applying the sym-
metries to the 2-form F = dA as discussed in the previous
section, each component is written as follows:

t-component:

t-(F-u)=t(F-ey)u* = u'F,,

=—ut0,4A, =0, (105)
¢-component:
¢ (F-u) :¢‘(F‘6’A)”A:”AF¢A
= —uAaAA¢ =0, (106)

xA-components:

ex(Fu)y=ey (F-t)u'+es- (F-p)u®+ey- (F-ep)ul

= FAtMt + FA¢M¢ + FABMB

Substituting the stream function ,/—g¥ defined by
Eq. (89) to each of the r and ¢ components (105) and
(106) and then multiplying p,/—¢g, we have

AP0,A,05(y/=g¥) = 0,

CABaAA¢aB(\/—_g‘P) =0.

(108)
(109)

These relations imply that the constant surfaces of the
scalars A, and A and the scalar density /—g¥ coincide.®

"The magnetic flux density B and the vorticity  are related to
the Hodge dual of F and d(hu), respectively, as B = u - xF and
@ = *d(hu) - u.

¥This means that the stream function v/=g¥ depends on the
choice of coordinate conditions.
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Therefore, introducing the master potential Y as an
independent variable, they are written

A = A7), Ay = A¢(T),
and /=g = [/=g¥](Y).

These are part of the integrability conditions.

To obtain the first integral of the x*-components (107),
we again substitute the definition of the stream function
(89) and (dA),p = €4pB to rewrite

(110)

putw—gaAAt—l—pu‘bw—gaAA(p—quaA[w—gH =0. (111)
Because of the conditions (110), it is rewritten as
(Alpu'\/=g+Aypu? /=g —[/=g¥]'B;)0,T=0, (112)

where the primes A}, A:ﬁ, and [,/—g¥|’ stand for a derivative
with respect to the master potential Y,

A e dA,(T) , . dA,(Y)
Toary ¢ gy
dl/=g¥|(T)

and [\/—g¥] = — 7 (113)

Therefore, we have one of the first integrals, a consistency
relation for components to be satisfied,

Alpu'/—g —|—A;,pu¢\/—g - [\/=9¥]'B; = 0.

In the absence of meridional flows, [,/=¢¥]'(T) =0,
Eq. (114) implies a relativistic version of Ferraro’s iso-
rotation law [31],

(114)

u? Al

7= =5 (115)

5. Maxwell’s equations
For any coordinate basis of the I-form V,x
(x = t,¢, x), the projections (components) of the diver-
gence of the Faraday tensor V,F' “} become
VaxVﬁF”ﬁ = Vﬁ(F“/’Vax) - F”ﬁVﬁVax = VﬁFxﬁ.
= Vy(FtP + PP 4 FAeh)
1
— £eAFXA + FXA—_g;EeA\/—g
1
= \/7_—g£eA (F*\/=9),

where we have used V,* = 0 and V,¢* = 0 for Killing
vectors * and ¢°.

(116)

Then, the components of Maxwell’s equations V zF e
47 j* become as follows:
t-component:

£, (F\/=5) = 4" /5. (117)
¢-component:

£, (F"\/=g) = 4rnj’\/=g. (118)
xA-component:

£,,(FAB\/=g) = 4xj*\/=g. (119)

Since F'4, F#4, and FA? are components, these equations
are also written

4nj'/=g = 0,(F" /=) (120)
4 /=G = D4(FI /=) (121)

4rji /=g = Dy(F'® /=)
— Ay (B/=g), (122)

where we substitute Eq. (98) to FA% in Eq. (122).

6. MHD-Euler equations

MHD-Euler equations (43) are also written in index-free
notation,

1
—d(hu) -u—Tds——dA-j=0. (123)
p
Substituting the current vector
JO =71 O+ e (124)

and using the Cartan identity and the 7, ¢ symmetries, each
component becomes as follows:
t-component:

1
t-|=d(hu)-u—Tds——dA-j
p
1
=u-dlt- (hu)] +—~j-d(t-A)
p

1
= uAaA(hu,) + —jAaAA, = O, (125)
Y4
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¢-component:

1
—d(hu)-u—Tds ——dA-j
p

:u.d[qs-(hg)]%j-d(w)

1
= uty(huy) + ~ 20,4, = 0, (126)
P

xA-component:

1

—ey - |—d(hu) - u—Tds——dA-j
P

—(u't+ u?p + uBep) - d(hu) - ey

1
_;(jtt+j¢¢+j363) -dA- ey, +Tds - ey

1
= 'Oy (hu,) + u?d,(huy) + uPd(hu),p +/_).jt8AAt

1 1
+;j¢8AA¢ +;j3(dA)AB +TOys =0 (127)
Analogously to the ideal-MHD conditions, after a some-
what lengthy calculation, integrability conditions and a set of
first integrals of MHD-Euler equations are derived as follows:
t-component:

[V s+ - AB TG =[TAN(T), (128)
¢-component:
[V g + 5 4By = [V ),
(129)

where these are combined and written using another
function of Y, A(Y),

Ally=97¢] - Ayly/=gA]

N
(130)

Aﬁ/)huf —A;hqu :A(T) =

xA—components:

-5 [A’ (V=9¥]"hu, + [/=gA]')
— Ay([v/=9%] hu, + [\/=gA])
+ AUV=g¥]"huy, + [/=gAy]')
— Al ([V/=g¥ huy + [\/=gA4])1By,

+ % (AYhuy — Alyhu, + N) (A = Alyu?)p /=g
+ ALY [V=g¥] @y + AIAYS Tpy/=g

+(ADA =g + A4y ) /=g = 0. (131)

Derivations detailed in
Appendix D.

For the case without meridional flow fields, u* = 0, a set
of first integrals for the stationary and axisymmetric system
can be derived from the above set of equations by taking a
limit of the stream function, [,/=g¥](Y) — constant. In
this limit, the right-hand side of the first integral (130)
becomes finite as shown in [16]. In Appendix E, we present
a direct proof for the same case with pure rotational flows,

since our formulation is slightly different from that in [16].

of Egs. (128)—(131) are

III. FORMULATION FOR NUMERICAL
COMPUTATION AND NUMERICAL METHOD

In Sec. II, a set of elliptic PDEs for computing gravi-
tational fields {. j,, oy, h,,} and electromagnetic fields
{a®s,A,} of stationary and axisymmetric systems are
derived from Einstein’s and Maxwell’s equations. The
number of variables for gravitational fields is 11, as it is
augmented with the conformal factor y and a condition
7 = f is added to determine it. The number of electro-
magnetic potentials is 4, and four PDEs are derived from
Maxwell’s equations (39). The apparent number of vari-
ables and equations matches, though there are four addi-
tional coordinate conditions (26) to be imposed on the
metric and a gauge condition (76) on the electromagnetic
potentials. For a set of matter and electric currents,
{h,T,s,p,u% j*}, 12 variables in total appear in a system
of ten equations in Sec. IID which are MHD-Euler
equations (43), the ideal MHD condition (44) (three
components), the continuity equations for the rest-mass
conservation and the current conservation, and normaliza-
tion of the 4-velocity u - u = —1. Instead of solving the
equation for local thermal energy conservation and the two-
parameter EOS (17) [that is, & = h(p, s)] simultaneously
with the above system, we assume one-parameter (baro-
tropic) EOS.’ The apparent numbers of the variables and
equations for the matter and current also match. This is also
the case for the derived system of algebraic equations for
the first integrals and integrability conditions.

As shown in previous sections, for stationary and axisym-
metric ideal MHD, the system of equations for matter and
currents is integrable analytically when the ¢ and ¢ compo-
nents of the electromagnetic potential 1-form and the
densitized stream function are homologous. We rewrite these
equations to be solved iteratively in our numerical code.

A. Formulation for solving Maxwell’s
equations in ideal MHD

Our formulation is to solve the 3 4+ 1 decomposed
Maxwell’s equations in the form of elliptic equations for

The component along u* of the ideal MHD condition F-u =0
is trivial. The component along u* of the relativistic MHD-Euler
equation constrains the flow to be isentropic.
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the electromagnetic 1-form. Those are Egs. (70) and (72)
and can be integrated by prescribing the current j*. The ideal
MHD condition constrains the four components of j*. In
particular, the # and ¢) components appearing in Eq. (131) are
an inseparable combination, which is a consequence of the
integrability conditions (110) requiring the potentials A, and
A, to be functions of a single master potential 1. There are
several ways to rearrange the system of equations derived
in Sec. Il F to compute j* In the rearrangement used in
this paper, we choose that the master potential T be equal
to A,. This choice is general enough to generate interesting
solutions for rotating compact stars associated with mixed
toroidal and poloidal magnetic fields.

1. Form of the currents

As shown in Eq. (122), Maxwell’s equations relate
FAB = ¢AB B (98) with the x* components of the current j4,

PV = y(gB). (132)

Multiplying Eq. (132) by A;A;j and using the first integral
of the ¢ and ¢ components of MHD-Euler equations (128)
and (129), we have

N,/ = =3 A, + [T
_A;;([\/@P}’hu, + [V=9A/])
+ A1 ([V=g¥]"huy + [V=97])
— Al ([V=9%¥]'huy + [V=9Ay))]e* P05
n %A’)[\/—_g‘l-’]/eABaB(h”r)

AN )

: (133)

The combination of the 7- and ¢-components of the
current j* has a similar form as above; from the first integral
of the MHD-Euler equations (131), we have

(A1 AL =g + Al(Ay)* ) /=g = % {AL(V=g¥]"hu, + [/=gA]") = A (V=9 hu, + [V=gA])
+ AUV=9Y1"huy + [=gAy]") = AV ([V=9¥]'huy + [V=974])} By

1
~3 (Afhuy — Ajhu, + A')(Aju' — Aﬁl)u‘p)p\/—g — AlAL[V=g¥] wy — AJAYs'Tp/=g.

The above expressions for j* are symmetric in ¢ and ¢,
and they can be used for taking the limit as either A, or A,
approaches to a constant. When A is not constant, one can,
without loss of generality, choose T = A because A, is an
arbitrary function of the master potential Y. Since Aﬁ/) =1
and A://) = 0 for this case, we can derive simpler expressions

for j* with the help of Eqgs. (114) and (129);

V=9 = ([V=9%]"huy + [\/=gAy]')5'" By

— [V=9¥]'8"" w. (135)
=g+ Alj'/=g
= ([V=9®)"huy + [\/=gM4]')By — [/=9¥] @y
— (Afhugy + N)pu'\/=g = s'Tp/=g, (136)

where 52 is the Kronecker delta, and B, and @, defined in
Egs. (96) and (103) are substituted.

2. Calculation of j'

Among the four components of the current j%, there
are three independent components; the ¢ and ¢ components

(134)

|
appear to be a combination as in Eq. (136). Therefore, we
propose using the t-component of Maxwell’s equations
to determine the r-component of the current ;. From
Eq. (55), using the relations py = —j*n, =aj" and D, F* =
w oD, (wOF%), j'is written

o 1 o

) 1 -
j'= pE— D,(y°F) = D, (y*7°"F)).

4rony® (137)
Then, we move the j’ term in Eq. (136) to the right-hand
side to isolate j% and use this j¢ as source of the spatial
components of Maxwell’s equations (72) for evaluating A,,.
This method works because j' is related to A, under a
choice of T = A and hence A, is a prescribed function of
Ay A, = A, (A,) on the support of ideal MHD fluid; that is,
F, in Eq. (137) is related to A, through Eq. (65) as

1 1
F, :afﬁAa +&Da<_AI<T) +Aaﬁa)’ (138)
since A, = —a®s + A, p.

In actual computations, we also solve the n* component
of Maxwell’s equations (70) to cross-check the consistency
of this method by comparing a solution and a prescribed
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function A,(A,). It is also necessary to solve (70) in the
electro-vacuum spacetime outside of the compact stars
because the above argument is valid only on the support of
ideal MHD fluid.

B. Elliptic PDE solver

As discussed in a series of papers [20,29,32], one of the
basic concepts of the COCAL code is to develop a simple and
straightforward numerical method for computing datasets on
a 3D slice Z. Our idea is to formulate vectorial or tensorial
elliptic PDEs in terms of Cartesian components and apply
the same elliptic PDE solver as that for the elliptic PDE
of a scalar function on spherical coordinates (r, 6, ¢). Our
scalar elliptic PDE solver, for example, for Eq. (25), uses a
multipole expansion of the Green’s function,

o(x) :-%/V;(_ngd%/ﬂ(x), (139)

where x and x’ are points in V, x,x’ € V C X,

1 < L (C-m)
o E 741 €m 7 '
|X X | — > mn=0 ( +m)'

x P} (cos @)P}(cos @) cosm(p —¢'),  (140)
where r. == sup{r,r'}, r. ==inf{r, 7'}, ¢, =1 form =0,
€, =2 for m>1, and PJ(cos@) are the associated
Legendre functions. We will truncate the expansion in ¢
at a certain positive integer L so that 0 <7 < L'

The function y(x) in Eq. (139) is a homogeneous

solution, Ay(x) =0, to be used for imposing boundary
conditions on ®(x). The function y(x) may be included
in the Green’s function, if the boundary is a concentric
sphere on the spherical coordinate [32]. For this particular
problem, that is, computations of compact stars that have
flat asymptotics, among all elliptic PDEs, Eqgs. (21)—(24),
(34)—(37), (70)—(73), and (80), all of them except for one
can be integrated setting y(X) to be constant, since errors
introduced to the potential are negligible if the boundary of
the computational domain is taken far enough from the
source. An exception for the choice for y(x) is Eq. (70) to
determine a®sy.

As mentioned in the previous subsection, @y is related to
A,;, and A, is determined from the integrability condition
A, = A,(A,) on the support of the ideal MHD fluids and
from Maxwell’s equations on electro-vacuum spacetime

lOObviously, in the present aim for computing axisymmetric
configurations, it is not necessary to expand in the azimuthal
angle ¢. The Cartesian components of vector or tensor variables
have trivial dependencies on ¢, which may be easily integrated
analytically. We, however, keep ¢ dependencies in the formu-
lation and the ¢ integrals as Eq. (139) in the numerical code for
future extensions.

outside of the fluids. We also assume that A, as well as its
derivatives are continuous across the stellar surface, while
A, and hence a®y are continuous across the surface but
their derivatives are not. Therefore, in solving a®s, we
impose a boundary condition not only at the boundary of
the computational domain but also at the stellar surface.
Our idea to impose the boundary condition at the stellar
surface is essentially the same as the one described in
Sec 3.1 of [7].

We assume that the stellar surface is a single valued
function of spherical coordinates 6 and ¢ as r = R(0, ¢),
the origin » = 0 of which is placed inside of the star. The
homogenous solution y(x) outside of fluid support is
regular at r — oo, that is, y o« r~~! for r > R(0, ¢), and
x(x) is determined so that Eq. (139) (in which ® is replaced
by a®y) satisfies the boundary value

(a®@z)® = [A,(Ay) + APl —r(0.4)- (141)

To achieve this, we expand y(x) with coefficients
(afm’bfm) as

o 7 1 .
700 = 323 ey V20) o cos i+ beysinme),
(142)
where V7'(0) is defined by
i [ En2CFD)(E—=m)!
Vi) = \/ 122+ m)] P (cos 0) (143)

and the expansion in 7 is also truncated at L here. To
determine (ag,,, bz,,) from imposing boundary conditions,
we apply the method of least squares. Writing the boundary
value of the volume integral term in Eq. (139),

poan L [ S0
4z Jv |x — X/|

and y® = y(x)|,_g(s,) We define the squared residuals,

, (144)

Bx
r=R(0.4)

1= 53 (@) — (1P 4 ),

0.4«

(145)

and apply the method of least squares to minimize /; that is,
we solve a linear system,

ol ol
-0 d —
an a bfm

B 0, (146)

to determine a set of coefficients (a,,, bz,,). In Eq. (145), a
summation is taken over all grid points (6;, ¢ ), which will
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be introduced in a later section, and Z is also truncated
here, 0 <Z < L.

C. Equations for the matter variables

Finally, we introduce final forms of the first integrals
and integrability conditions which are suitable for the self-
consistent field (SCF) iteration scheme used in our numeri-
cal method.

We assume the one-parameter EOS to have a single
independent thermodynamic variable for simplicity and
assume homentropic flow, s(Y) = constant. Because of
these choices, we have five independent variables for the
matter {/, u”}. In the following, the 4-velocity u* may also
be written in 3 + 1 form,

u =u'(1* + v*) = u'(an® + p* +v%),  (147)
where »* is the spatial component of the velocity that
satisfies v*V,¢ = 0 and both expressions u* and v* (or v%)
are mixedly used. The meridional components u” are
written u? = u'vA.

Assuming a choice T = A, a possible arrangement of
equations for the SCF iteration of hydrodynamic variables
becomes as follows.

For the meridional velocity u”, the rest-mass conserva-
tion (89) is used:

1
ut = —— B[\ /—g¥](Y)
PN slv/=9Y]
B 1
pay®\/7
For the t-component of the 4-velocity, u’, the norm
u-u=—1is used:

[/=g¥]'c*Bo,A,. (148)

. 1
e R [ U

For the ¢-component of the 4-velocity, u?, the x*
component of ideal MHD condition (114) is used:

I/[¢ o [\/ _gI]/B¢_A_;ut

Apy=i A
[ —glp]/B)
— —W/ — Al (150)

For a thermodynamic variable, the enthalpy #, the
combination of #- and ¢-components of MHD-Euler
equations (130) is used:

A A

h= = .
Ayu, — Ajuy  u, — Ay

(151)

As mentioned earlier, even in the case of no meridional
flows (purely rotational flows), u* = 0 and [,/=g¥](T) =

constant, the above set of equations for matter is valid, and
Eq. (151) can be used as the same form (see Appendix D).

D. Assumptions for arbitrary functions

To specify a model of a rotating star, a concrete form
of each arbitrary function that appears in the integrability
conditions (110) and in the first integrals (128)—(130) has to
be prescribed. We partly follow a choice made in [33] for
these functions, which are used in our previous paper [11],
but we also introduce new functional forms below. As
mentioned in Sec. IIIA1, we choose T =A, as the
independent variable instead of the master potential Y.

1. Smoothed step function

We introduce a class of a two-parameter sigmoid
function &/ (x; b, ¢) that varies from 0 to 1 in a region x €
[0, 1] of which the transition width is b (0 < b < 1) and
transition center ¢ (0 < ¢ < 1),

X

= (x;b, ¢) = % {tanh (Z - c) + 1} . (152)

and its integral E(x; b, ¢),

1
E(x;b,c) ) [blncosh <%—c> —l—x] +constant.  (153)

We make use of these functions in a region where
Ay varies on the fluid support and its contour is closed as
will be explained later. Functions Z'(A,) and Z(A,) are
defined by

- 1 1 Ay —AGS
E./(A(/)) = E [tanh <EIWIZ]};2§( - C> + 1:|, (154)

and

_ 1
=4y = 5 [blAF - A3%)
1 Ay — A:/?%X >
XlnCOSh (—m—c +A(/,j| (155)
bA¢ —A¢YS

The smoothed step function Z'(A,) varies on a region
A, € [Agfg‘,Agax], where A?a" and A?f‘s" are the maximum
values of A, on the fluid support and that on the stellar
surface, respectively, Here, A?a" > A?f“s" is assumed. Note
that Eqs. (154) and (155) are not a mere substitution of

Ay —AJS

x = max max (156)
AT — AYS

to Eqgs. (152) and (153), since the prime of Eq. (154) is with
respect to Ay, not x, and a constant of integration in
Eq. (155) is chosen appropriately.
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The parameters (b, ¢) determine the width and position
of the transition of ' and are set to be (b, ¢) = (0.2,0.5) in
the following applications. Other types of smooth step
functions such as those made from Hermite interpolation
polynomials could be used in the same manner.

2. Models

For the function A(A,), we choose

where Ay, A, and £ are constants. A, and A are set by
hand, while £ is calculated from a condition to be imposed
on a solution. In case of pure rotational flows without
magnetic fields, the constant £ agrees with the injection
energy [6].
For the function A,(A,), we choose
A =-QA,+C,, (158)
where C, is a constant that relates to the net electric charge
of the star, and €. is a constant. As discussed in [33], the
choice of the first term corresponds to the rigid rotation
in the limits of [/=¢¥]' = 0 or B, — 0, because of
relation (115).

The current (135) and (136) involve terms with a
derivative of function [\/=gA,](A,) coupled with the
magnetic fields. Since we assume no electric current
outside of the star, [\/=gAy|'(A;) has to vanish outside
of the fluid support. This is why we prepare a smooth
function that varies between [0, 1] in a region Ay €
[ApS,AG™] as in Sec. IIID 1. We choose a smooth
function,

[V=9Ms] = ApE(Ay),

[V=9Ay]" = ApE'(Ay),

where the parameter Ay, is the range of the function,
[v/=9M,)' (Ay) € [0, Ayl set by hand.

In the later sections, we only present solutions without
the meridional circulation flows; hence for [\/=g¥](A,),
we set

(159)

(160)

[v/—9g¥] = constant,
¥ =0,

We have also tested a few models for [\/=¢¥](A,) and
successfully computed solutions with meridional flows,
although so far we have calculated solutions of which the
meridional flows do not affect equilibrium of the stars.

For example, we may choose the same form as Eqgs. (159)
and (160),

(161)

(162)

[V=9¥] = ayE(A),
[V/=g¥) = ayE'(Ay),

where ay is a parameter to be set by hand.

(163)

(164)

3. Differentially rotating models

When magnetic fields and meridional flows exist inside
of compact stars, Eq. (150) implies that the stellar rotation
Q:=u?/u’ becomes inevitably differential in general
because a combination By/p,/=g is not a function of
Ay or Y. When there is no meridional flow u® =0,
[\/=9¥]" = 0, on the other hand, the form of the function
A, (158) results in a uniform rotation as mentioned.

It seems that the latter case with no meridional flows
[\/=g¥]" = 0 is sometimes misinterpreted in the literature,
as stated in [7], that only the uniform rotation £ = constant
is allowed in this case. This statement seems to have been
made because a distribution of A usually becomes toroidal
and hence such a toroidal differential rotation Q(A,) was
considered to be unnatural. Such differential rotation laws
in which € depends on T (or A,) are, however, allowed
mathematically and may not necessarily be too unrealistic
to be rejected. For example, one can assume moderate, or
weak, differential rotations,

s /
%:;‘*_;:: Q. +6Q(T), (165)
by setting max |[5Q(Y)| to be a few tens of percent, or less,
of Q.. Various rotation laws can also be used for the case
with meridional flow u* # 0 (thatis, [,/=g¥]' # 0), but it is
more likely that some kind of instability such as the
magnetorotational instability may be induced.

4. Other models

In our previous paper [11], the functional form for
A,(Ay) was chosen the same as Eq. (158), and for the
function A(A,), Ay was set to be zero in Eq. (157). Our
previous choices for [\/=gA,|(A,) and [\/=g¥](A,) in
[11] were taken from those used in [33]. For [\/=gA,], we
have chosen

a

V=98] =7 (As —ApE)Ie(4, - AR, (166)

[V=9Ay)" = a(A, — AGZ) (4, — AJY).

where values of the constant coefficient @ and index k are
set by hand and ©(x) is the Heaviside function. In [33], it
was found that the solutions have comparable strength in
poloidal and toroidal components of magnetic fields when
the index is about £k = 0.1. We replace Eqs. (166) and (167)
with Egs. (159) and (160) to bring a smoothness as well as

(167)
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better control in the behavior of the functional forms,
although either choice of the function reproduces qualita-
tively the same set of solutions. Also in [11], for
[v/=9¥](A,), we have chosen

a
[ /_glIJ] = —W(A(/) _Ag)lax)erl@(A(/) _Ai})mx)’

168
P (168)

[V=g¥]' = ay(A;, — AG™)PO(A, — AG™),  (169)
where the values of constant coefficient ay and index p are
given by hand, for which we set p = 1 following [33].

E. Alternative form of the first integral of MHD-Euler
equations under pure rotational flows

When the flow fields are pure rotational u* = 0, the
4-velocity u* becomes
u® = u'(1* + Q¢*) = u'k®. (170)
For the stationary and axisymmetric perfect-fluid spacetime
without magnetic fields, the first integral of the relativistic
Euler equations can be derived as a consequence of the
Cartan identity (2). For the simplest uniformly rotating
case, Q = constant, the helical vector k = 7 + Q¢ becomes

a Killing vector. Then, the Euler equations are written, with
the help of Eq. (2),

u-d(hu) = u'[£.hu — d(k - hu)]

= —u'd(k - hu) =0, (171)
and hence the first integral is derived as hu - k = constant.
This relation is used for determining a thermodynamic
variable, the enthalpy / in this case, of uniformly rotating
nonmagnetized stars.

In the presence of magnetic fields, the corresponding
first integral (130) [or (E19)] for determining the relativistic
enthalpy A, in place of the above relation Au - k = constant,
was not derived from the Cartan identity (2) as discussed
in previous sections. We show an alternative derivation of
the first integral of ideal MHD flow using the Cartan
identity (2), which is valid only for the case of pure
rotational flows (170).

The canonical momentum, z, = hu,, respects the sym-
metries £,7, = £,47, = 0. Although the angular velocity €2
is a certain function which also respects the symmetries
£Q =£,Q =0, Q¢* is not a Killing vector. Hence for a
certain p-form Q, a relation,

£040 = QL,0+dQ A (¢ - Q), (172)
is satisfied. Then, the first term of the MHD-Euler
equations (43) divided by the enthalpy /# becomes

7 d(hu) = ok d(hu) = N [£d(hu) — d(k - hu)]

h
! h
—u’u{/,dQ—i—u—d( )

[dQ A (¢ - hu) — d(k - hu)]

— 1
h o \u' (173)

Hence, Eq. (43) is rewritten,
h T I,
dln; + u'uydQ — Eds +p—h] -dA=0. (174)
Substituting the current (124), the #- and ¢-components

of Eq. (174) become
t-component:

jrdA-t=j-[-£A+d(t-A)] = jA0,A, =0, (175)
¢-component:
JjrdA-¢=j-[-£,A+d(¢-A)] = jAaAA¢ =0. (176)

Above, we used 7 - dQ = 0 and ¢ - dQ = 0 for a scalar Q.
For the x*-components, we combine Eq. (174) dotted with
the basis ey,

T

h 1
din— "uydQ ——ds+—j-dA | -ey =0, 177
< nut—i—uu(p N S+ph] ) €a (177)
and
JjrdA-eqa={j'[EA=d(1-A)]+j?[£,A~d(¢-A)]
+jep-dA}-ey
=—jleq-dA,—jPey-dAy—jP(dA) =0, (178)
x4-component:
h T
BA lny - ZﬁAs —+ u’u¢3AQ
1. . :
y 047 + jP04Ay + jB(dA) 4p) = 0, (179)

where e, - dQ = 9,0 for a scalar Q.

Substituting the x*-components of Maxwell’s equa-
tions (122) to the ¢ and ¢ components of MHD-Euler
equations (175) and (176),

e*BOg(\/=gB)04A, =0, (180)
eAB0p(/—gB)0aAy = 0, (181)
the integrability conditions,
A=A, Ay=AyT).
and /—gB = [,/=gB](Y), (182)
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are derived. Hence, using Eqgs. (122) and (97), the current
term of x*-components (179) becomes

. 1 !
JB(dA) 5 = —W_—ngs[\/—_gB] 0aY.

Substituting Eq. (183) and the integrability conditions
(182) for A; and Ay and (115) for Q into Eq. (179), we

have x*-component:

(183)

h T
8A IHE—ZaAS -+ |:MtM¢Q/

1
dr\/—g

1
——<A;j'+A§,,j¢—

' e )|orr-o

(184)

To derive a first integral of this Eq. (184), we have a few
choices to reduce the first two terms: we may assume any of

(i) s = constant,

(ii) T/h=[T/h](s),

(iii) ph = [ph](p) with dh — Tds = dp/p, or

(iv) s =s(T).
Then, the following argument goes analogously. Here, we
assume a homentropic fluid, s = constant, for simplicity
and rewrite Eq. (184),

h

din—:= id. (185)

or we separate the contribution of differential rotation by
defining j(Q) == u'u, and rewrite

din’ 1 (@) ~ At =0, (186)

From the converse of the Poincaré lemma, the integrability
condition becomes
A= AT). (187)

For the latter Eq. (186), the arbitrary function A(Y) is
related to the current as

1
Aljt 4+ Al ¢ = phi B,[\/—gB], 188
AL p+4ﬂ\/__g¢[\/g] (188)
and the first integral is written
h .
lny—l— /](Q)dQ(T) - /l(T)dT =¢, (189)
where &£ is a constant.
We have implemented this formulation, assuming
T =A, and Q = constant,
h -A
= Ee™, where A = A(A,). (190)

and although we do not show the result in this paper, we

have computed a few solutions which agree well with those
calculated from Eq. (151).

F. Remarks on numerical method

1. Finite difference and iteration

Given the forms of functions presented in Sec. III D, a set
of integral equations of the field equations (139) and
algebraic equations arranged from the first integrals and
integrability conditions (148)—(151) derived in Sec. III B
and IIIC are a full system of equations for computing
magnetized rotating compact stars. These equations are
discretized on spherical coordinates (r,6,¢) € [r,, 1] X
[0, z] x [0, 27] that cover a star and an asymptotic region,
where the origin r, = 0 is located at the center of the star.
Then, a self-consistent field iteration method is applied
to calculate a converged solution. The numerical code is
developed in the cocAL code extending a previously
developed rotating compact star code in which the waveless
formulation is used [13,20,32]. A numerical method used in
the present code for magnetized compact stars, including
setups for coordinate grid points and grid spacing, finite
difference schemes for derivatives and integrals, and the
self-consistent iteration scheme, are common with the
above-mentioned rotating compact star code in COCAL.
Readers who are interested in the details of the code are
advised to consult [20,32].

In Table I, we reproduce a list of relevant parameters for
the coordinate grids presented in previous papers [20,32]
and, in Table II, present the numbers of grid points and
other grid parameters used in actual computations shown
in the later sections. An important difference from the
previous calculations for nonmagnetized rotating stars is
the inclusion of higher multipoles and higher resolution
in the @ direction. As we will see below, stronger toroidal
magnetic fields tend to concentrate near the equatorial
plane; hence, it is necessary to increase the number of terms
in the multipole expansion in (140) and (142) to as high as
L = 30, and accordingly the grid points in the 6 direction
to Ny = 144.

TABLE I. Summary of grid parameters.

r,: Radial coordinate where the radial grids start.

r,: Radial coordinate where the radial grids end.

r.: Radial coordinate between r, and r, where the radial grid
spacing changes.

N,: Number of intervals Ar; in r € [ry, 1p].

NE: Number of intervals Ar; in r € [r,, 1].

N?: Number of intervals Ar; in r € :

Ny: Number of intervals A¢; in 6 € [0, z].

N,: Number of intervals Agy in ¢ € [0, 2z].

L: Order of included multipoles.

FasTe)-
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TABLE II. Grid parameters used for computing magnetized
rotating compact stars. Resolution types SD12-SD3 are used for
computing model P2, and SEI12-SE3 are for Pl and P3.
Normalized radial coordinates r,, r,, and r, are in the unit of
equatorial radius R (in coordinate length).

Type r, r, ro. NU NP N, Ny Ny L

SD12 0.0 10° 1.1 60 66 144 72 48 30
SD2 0.0 10° 1.1 80 83 192 96 48 30
SD23 0.0 10° 1.1 120 132 288 144 48 30
SD3 0.0 10° 1.1 160 176 384 192 48 30
SEI2 0.0 10° 1.1 60 66 144 96 48 40
SE2 0.0 109 1.1 80 83 192 128 48 40
SE23 0.0 10° 1.1 120 132 283 192 48 40
SE3 0.0 10° 1.1 160 176 384 256 48 20,30,40
SE3p 0.0 10° 1.1 160 176 384 256 60 50
SE3t 0.0 10° 1.1 160 176 384 384 60 50
SE3tp 0.0 10° 1.1 160 176 384 384 72 60

Typically, with the grid setup SE3 L = 40 in Table II,
it takes 6 min per one iteration using one CPU thread of
Xeon E5-2687W v3 3.1 GHz, and for a convergence about
500-1000 iterations are required.

2. Parameters

In our formulation, parameters to specify a magnetized
rotating model appear in the integrability conditions shown
in Sec. III D 2. For the case without meridional flows, those
are Ag, A, and £ in Eq. (157); Q. and C, in Eq. (158); and
Ayo in Eq. (159). A set of parameters b and ¢ contained in
smooth step functions Z(A,) in Egs. (157) and (159) may
be distinct in general but is set to have the same value in
both equations. In addition to these parameters, we aug-
ment the number of parameters by introducing an equato-
rial radius R, in coordinate length for rescaling the radial
coordinate r [34].

Another set of parameters is introduced from the EOS,
which is also one of the integrability conditions. In COCAL,
a piecewise polytropic EOS and a variant of such a
piecewise EOS to model, for example, quark matter, are
implemented [35]. In this paper, we simply use a (single
segment) polytropic EOS,

p=Kp", (191)

TABLE III.

which introduces two parameters, the polytrpoic constant K
and the (constant) index T

The values of the parameters {Ag, Ay, Ay, b,c} are
prescribed and control the strength of electromagnetic fields.
As in the computations of nonmagnetized rotating compact
stars, three parameters, {&,Q., Ry}, are determined from
three conditions, which are a given value of the maximum
rest-mass density p,, at (or near) the center of the star; the
normalization of the equatorial radius, req, as req/Ry = 1;
and the given value for the deformation r,/r,, at the north
pole, r,,. These conditions are imposed on Eq. (151), and the
resulting set of three algebraic equations is simultaneously
solved to determine {&, Q., Ry} during iteration.

Finally, the parameter C, in Eq. (158) is left to be
determined. We fix this value from the condition that the
asymptotic (net) electric charge Q vanishes,

1

0= / FodS,, (192)

where foo is the surface integral over a sphere S, with radius
r, in the limit, [ »=lim,_, [¢ . This integral is evaluated
at a large radius of our computational region, typically
r ~ 10*R,, at every 30 iterations; then, the secant method is
applied to find a solution of C, to have Q = 0. One can also
compute a charged solution with setting a finite value to Q.

IV. RESULTS

In [11], we presented preliminary results for relativistic
rotating star solutions associated with mixed poloidal and
toroidal magnetic fields. As mentioned in Sec. III D, we
modified the form of arbitrary functions from those used
in [11]. We also improved numerical codes to maintain
expected accuracy; for example, the virial relation is
satisfied in higher precision. The numerical computations
presented below are performed using smaller to larger
numbers of grid points and multipoles as shown in
Tables I and II for studying the convergence of the solutions.

In the following computations, we choose the polytropic
EOS (191) with indices I' = 2 or 3 and the constant K so
that the compactness of a spherical solution having rest
mass My =15 M, becomes M/R =0.2. Reference
quantities for the Tolman-Oppenheimer-Volkov (TOV)
solutions for these EOS are tabulated in Table IIl. For

Quantities of a TOV solution in G = ¢ = Mg = 1 units for the polytropic EOS p = Kp" with I" = 2 and 3. The values of
o} polytrop 4 P

maximum-mass models of the corresponding EOS parameters are listed, where p. and p, are the pressure and the rest-mass density at
the center, M, is the rest mass, M the gravitational mass, and M/R the compactness (a ratio of the gravitational mass to the
circumferential radius). The polytropic constant K is chosen so that the value of M, becomes M, = 1.5 at the compactness M/R = 0.2.
To convert a unit of p, to the cgs, multiply the values by My (GMy/c?)™3 ~6.176393 x 107 gem™.

r (p/p). Pe M, M M/R Models
2 0.318244 0.00448412 1.51524 1.37931 0.214440 P1, P2
3 0.827497 0.00415972 2.24295 1.84989 0.316115 P3
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TABLE IV. Listed are parameters of functions in the integra-  the model parameters to determine the strength of electro-
bility conditions (157) and (159) and of EOS (191), used in magnetic fields, we choose three sets listed in Table IV.
computing solutions presented in Fig. 1 and Tables V and VI. To our knowledge, since our first paper [11] was pub-

lished, cocAL is the only code that can calculate fully

Models Ao A Ago b ¢ T relativistic rotating compact stars associated with mixed
P1 -3.0 0.3 2.3 0.2 0.5 2 poloidal and toroidal magnetic fields without any approxi-
P2 -1.7 0.1 1.7 0.2 0.5 2 mation in the formulation other than assumptions of
P3 -0.2 0.3 1.0 0.2 0.5 3 stationarity and axisymmetry.
0.03 0.04
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FIG. 1. Meridional sections of extremely magnetized solutions of rotating compact stars. Top, middle, and bottom rows correspond,
respectively, to models P1 (I' = 2, normal mass), P2 (I' = 2, supramassive), and P3 (I' = 3, normal mass). Panels in the left column: the
solid curves (in black) are contours of p/p, the arrows (in orange) correspond to the poloidal magnetic field, and the color density maps
(in red and blue) correspond to the toroidal magnetic fields. For the models P1 and P2, the contours of p/p are drawn at p/p = 0.001,
0.002, 0.005, 0.01, 0.02, 0.05, 0.1, and for P3, the contours are drawn linearly every 0.02. Panels in the middle column: the metric
potentials are shown. Green curves correspond to equicontours of y, the red and blue color density maps correspond to ﬁy, and the red and
blue curves correspond to contours of /,.. Panels in the right column: contours of ¢ and ¢» components of electromagnetic 1-forms A, and
Ay. Dashed red, purple, and blue curves correspond to A, and solid green curves correspond to A4. A, vanishes on the purple curves and is
positive (negative) on the red (blue) curves. A black curve in each panel in the middle and right columns represents the surface of the star.
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TABLE V. Selected solutions for extremely magnetized rotating compact stars are presented. Models P1-P3 are calculated using the
corresponding parameters in Table IV. Listed quantities include the equatorial and polar radii in proper length R, and R, the ratio of the
maximum values of the pressure to the rest-mass density (p/p)., the angular velocity near the rotation axis ., the ADM mass M spy,
the rest mass M, the angular momentum J, the virial constant /,;,, and a residual of the equality of the Komar mass My and the
Arnowitt-Deser—Misner (ADM) mass M spy. The definitions of these quantities are found in Appendix F (see also [32]). To convert a
unit of length from G = ¢ = Mg = 1 to kilometers, multiply GM/c* = 1.477 km.

Model Ry  RJ/Ry (p/p)e  peclg/cm?] Q. Myom Mo J/Mipy [1-Myx/Mapu|
Pl ("=2, normal mass) 11.0609 0.71996 0.12322 1.0717 x 10’5 0.026384 135908 146223 0.52809  1.96 x 10~
P2 (I'=2, supramassive) 11.0787 0.64818 0.25582 22250 x 10’5 0.043648 158645 174178 057113  4.06 x 10~
P3 (=3, normal mass) ~ 8.8439 0.71839 0.18830 12248 x 10’5 0.033124 159179 1.80318 051282  7.26 x 10~

TABLE VL

Continuing from Table V, listed for the same solutions are the maximum values of poloidal and toroidal magnetic fields,

B and B, the ratios of poloidal and toroidal magnetic field energies, M, and M, and electric field energy M, to the total

pol

electromagnetic field energy M, the ratios of the kinetic, internal, and electromagnetic field energies to the gravitational energy, 7 /|W

I/ |w

s

, and M/|W)|, respectively, and the virial constant I, and the electric charge contribution from the volume integral of the star

Qy;- Details of the definitions are found in Appendix F. The maximums of magnetic field components B"3* and Bjpe* are defined by

those of spatial Faraday tensor F,;, in Cartesian coordinates, By, := F

pol

y and By == —F .

Model B (Gl B [G]

Mpol/M

Mtor/M Mele/M

/Wl Ty wE MWL L/ WY Ou

0.93381
0.92609
0.93967

P1 6.5382 x 10'7  6.5133 x 10"7
P2 6.2207 x 107 2.2065 x 107
P3 1.7797 x 10'8  1.4487 x 10!8

0.043905 0.022284 0.063996 0.29637 0.019832 3.2202 x 10™* 0.037041
0.033001 0.040905 0.083577 0.29918 0.001624 2.4514 x 10~* 0.024655
0.040486 0.019840 0.068800 0.29176 0.043991

1.3324 x 10~ 0.068080

A. Extremely magnetized solutions

We present three solutions of magnetized rotating
compact stars in Fig. 1 and corresponding physical quan-
tities in Tables V and VI. Definitions of these quantities are
summarized in Appendix F. The model parameter of each
solution is P1, P2, and P3, respectively, in Table IV, where
the model P1 is a normal mass solution with I" = 2 EOS,
P2 is a supramassive solution with I' = 2 and is rotating
near the Kepler limit, and P3 is a normal mass solution
with I" = 3.

As shown in Table VI, these solutions are associated with
extremely strong poloidal and toroidal magnetic fields
about an order of 10'7-10!3 G, while the mass and radius
of these compact stars are close to those of common
neutron stars. For the models P1 and P3, the maximum
values of the toroidal and poloidal components, B;* and
B, respectively, are comparable, and even for P2, B¥ is
about 1/3 of Bg})al". As reported also in other works,
however, the bulk energy of the toroidal magnetic fields
M e, is much smaller than that of the poloidal fields M,;;
as shown in Table VI, the energy of the poloidal fields
accounts for more than 90% of the total electromagnetic
energy M.

In the top to bottom left panels of Fig. 1, the contours of
p/p and the poloidal and toroidal magnetic fields are
presented. Although the toroidal magnetic field component
By, is not dominating in the whole electromagnetic energy,
B, 1s concentrated near the equatorial surface so that its

maximum value is comparable to that of poloidal compo-
nent By,,;. This feature has been often observed in the other
Newtonian [36] or approximate calculations [4].

A new feature can be seen in these panels for models P1
and P2. When the toroidal field B,,, is extremely strong, the
magnetic energy density locally dominates over the mass
energy density and hence expels the matter from the region
of extremely strong toroidal magnetic fields. In the middle
left panel for the model P2, we can observe that the p/p
contours are deformed around the B2*, and in the top left
panel for the model P1, there are small closed circles of the
density contours near the equatorial surface. For the model
P1, a profile of p/p along the equatorial radius near the
surface (and hence p or €) almost drops to zero. Hence, we
expect that, with a little stronger magnetic fields, which can
be easily achieved by changing the parameters in Table IV,
the matter will be completely expelled from this region, and
hence a toroidal electro-vacuum tunnel will be formed
inside the compact star (see Sec. V for further discussion).

Roughly speaking, this happens because the pressure/
energy density of the electromagnetic fields dominates
over those of the matter in this toroidal region near the
surface. To see this, in Fig. 2, we show the plots of
spatial trace part of stress-energy tensor 7, = T“ﬁyaﬁ =

(T%j + T‘;ﬂ )Yap Separating contributions from the matter
T Zf 14y T, = Tﬁfyaﬁ) and the electromagnetic
fields TZﬁ (15) (Ta“:Tj’éﬁ Yap)- As can be seen in
the left panel for the model P1, the dominance of the
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FIG. 2. Plots for the spatial trace part of stress-energy tensor
T, = T“ﬂyaﬂ along the x axis (the radial coordinate in the
equatorial plane) near the surface. 7', stands for the contribution
from the matter TaMﬂ (14), and T stands for the contribution from

the electromagnetic fields T‘;ﬁ (15). The left and right panels
correspond to the models P1 and P2, respectively.

matter to the electromagnetic fields exchanges in this
region. In the right panel for model P2, there is a sizable
amount of contribution from T%ﬁ , but it does not dominate
over Tf{f.

In the middle panel of each row of Fig. 1, contours of
metric potentials around the compact stars are plotted.
Using the waveless formulation, we are able to compute
nonconformal flat components of the metric such as /4, as
shown in these panels.

In the right panel of each row of Fig. 1, contours of ¢
and ¢ components of the electromagnetic 1-form A, are
shown. As mentioned in Sec. III D, integrability of ideal
MHD equations requires A, to be a function of a master
potential which are seen to be correctly imposed on the
fluid support of compact stars. Since we assume electro-
vacuum spacetime outside of the star, the A, component
is continuously but not smoothly connected at the stellar
surface. Since we also assume that the net charge at
infinity Q (evaluated at a larger radius from the source
in actual computations) vanishes, the contours of A,
become positive (red dashed curves) near the poles and
negative (blue dashed curves) near the equator. These
panels show that the method of solving for A, as
described in Sec. III B is working consistently in these
computations.

B. Convergence test

In Fig. 3, the convergence of integrated quantities is
plotted for the models P1, P2, and P3. Those are the
convergence of I, /|WV| in the left panel and that of
|1 — My /M spm| in the right panel. The relativistic virial
relation [, is defined as the volume integral of the
spatial trace of Finstein’s equations as (F14) in the
Appendix, and its residuals shown in the left panel

lyir/IWI 11 = Mc/Mppwl
L Pp 1= 87 ]
1072 = P2 H b = P2 ~
F| % P3 JE| % P3 ]
L A 1 — o ]
= -3 Ll Ar
o 107 E E
= c ] ]
L L X ] ]
104E ¥ 4 i
1—57\\\\\ | ]
510 0.01  0.025x107> 001  0.02
AI’/RO AI‘/RO
FIG. 3. Left: Convergence of the virial identity is plotted for the

models P1, P2, and P3. Left panel: a convergence of I,;./|W].
Right panel: a convergence of |1 — My /M spp|-

decrease as O(Ar?) as expected. Strictly speaking, the
numerically evaluated volume integral [/, does not
approach to zero as the resolution goes much higher
because it is evaluated on a large but finite computa-
tional domain r € [0, 10°R], and also evaluated from a
solution in which a large but a finite number of multi-
poles is used for approximation. Hence, what we can
conclude here is the fact that the actual value of I,;./|W|
in our setup is smaller than the finite difference error and
hence cannot be probed with the present highest reso-
lutions such as SD3 or SE3.

The asymptotic Komar and ADM masses, Mk and
M apym, are known to agree in the framework of the
waveless formulation under the gauge choice, Eq. (26)
[13]. The residual |1 —Mg/Mapy| of each model
decreases more slowly than O(Ar?) as shown in the right
panel, which is the same behavior as that of nonmagnetized
rotating compact stars [20]. Hence, we may conclude that
the strongly magnetized solutions are calculated with
precision comparable to that of the nonmagnetized solu-
tions in the COCAL code.

In Fig. 4, we show the profile of p/p along the x axis
(the radial coordinate in the equatorial plane) near the
surface for the model P1. As mentioned above,
extremely strong toroidal magnetic fields expel the
matter from the toroidal region. To resolve such a
relatively small scale toroidal structure, it is necessary
to increase the numbers of grid points and multipoles.
We performed convergence tests to examine the profile
of p/p with systematically increasing the resolution
under a fixed number of multipoles and also increasing
the number of multipoles under a fixed resolution. In the
top panel of Fig. 4, the number of multipoles is fixed to
L =40, and the resolution is increased from SE12 to
SE3 in Table II. It can be observed that the largest
error appears at the bottom of the p/p profile around
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FIG. 4. Close-up of the profile p/p of model P1 along the x axis
(the radial coordinate in the equatorial plane) near the surface.
Top: Convergence of p/p with respect to increasing resolutions
from SE12 to SE3. Bottom: Convergence with respect to
increasing multipoles from # = 20 to 60.

x = 0.89R, and that the profile converges at the levels of
resolutions around SE23 to SE3.

The bottom panel of Fig. 4 shows a plot of a convergence
of p/p profiles near the equatorial surface of the model P1
with respect to the number of multipoles used in the elliptic
solver (139). In this test, resolution SE3 and modified
resolutions of it (SE3p, SE3t, and SE3tp in Table II) are
used. It is confirmed that those modified resolutions do not
affect the profile. For example, we compute the case with
L =50 with SE3p and SE3t with increasing Ny, the
number of grid points in @ coordinate, but those profiles
overlap as seen in the plot. The profiles are also the same
when the number of N is increased, which is not related
to an accuracy of a solution but is necessary for computing
solutions with larger L. As seen in the panel, the profiles
gradually change as L increases from 20 to 60. Because of
the limit of computational resources, we do not perform
computations higher than L = 60 with a resolution SE3tp.
The solutions still slightly changes from L = 50 with SE3t
resolution to the L = 60 with SE3tp resolution, but the
overall difference of the profile is getting smaller with
increasing L.

V. DISCUSSIONS AND CONCLUSIONS

In this paper, we have presented the full details of a
formulation and a numerical method for computing sta-
tionary and axisymmetric equilibriums of fully relativistic
rotating compact stars associated with mixed poloidal and
toroidal magnetic fields.

One of the new features of our method is to solve all
components of Maxwell’s equations to determine all
components of the electromagnetic potential 1-form A,.
This allows us to compute electromagnetic configurations
under various circumstances. For example, our method may
be applicable for computing a magnetized nonaxisymmet-
ric quasiequilibrium configuration that appears as an out-
come of simulation [37].

As shown in Sec. IV, we have successfully calculated
solutions associated with extremely strong poloidal and
toroidal magnetic fields and found solutions of which the
mass energy density is expelled by the energy density of
toroidal magnetic fields. The maximum magnetic field
strength of the presented models is as extremely high as
10"7-18 G as listed in Table VI In the latest general
relativistic MHD (GRMHD) simulations, it is reported
that the magnetic field of the remnant massive neutron star
of binary neutron star merger can be as high as 10'33-1¢ G
even if the initial magnetic field is moderate around 10'*> G
as a result of magnetorotational instability (MRI) [38]. Also
from the GRMHD simulations, the MRI may amplify the
magnetic fields up to 10'371® G in the newly born neutron
stars formed after the core collapse [39]. The magnetic
fields of these systems could be much stronger, when the
higher resolution is used in the simulations or when a
certain unknown mechanism further enhances the magnetic
fields. Otherwise, as the magnetic fields of our models are
much higher, our solutions may draw only a limited
theoretical interest.

As presented in Fig. 4, the structure of this toroidal
low density region can be calculated accurately using
a large number of multipoles in our Poisson solver
(Sec. III B). From the top left panel of Fig. 1, the size
of the toroidal region in the 6 direction is around
0.03 radians and hence requires a resolution
Ny > 7/0.03 ~ 100. The number N, = 384 of the reso-
lution SE3tp is sufficient to resolve this structure. On the
other hand, a Legendre polynomial PY;(cos #) has only 60
nodes, which may resolve roughly z/60 ~ 0.05 radians in
the @ direction, and hence this is a reason for slow
convergence in the number of multipoles L.

In Fig. 5, we show a dependence of the toroidal low
density region on the parameters to control the strength of
the magnetic fields. Varying systematically the values of
parameters A and Ay, defined in Egs. (157) and (159), the
maximum values of the toroidal and poloidal magnetic
fields, Bio;* and B, monotonically change as plotted in
the top panel of Fig. 5, and the profiles of p/p along the
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FIG. 5. Top: Plot for the maximum of the poloidal and toroidal

magnetic fields Bf* and Bgr* with respect to parameters
(Mg, Ago)- A model with (Ag, Ayy) = (=3.0,2.0) corresponds
to model P1. Bottom: Plots of the profiles p/p along the x axis
near the stellar surface for the corresponding models in the top
panel. In these calculations, resolution SE3tp in Table II is used.

x axis near the surface change accordingly as in the
bottom panel.

We have observed that, with a slight change of param-
eters to have the toroidal fields be stronger, the rest-mass
density of the toroidal region became negative. Then,
resetting the negative value to zero, we were able to
continue iterations and to obtain configurations with the
toroidal magnetovacuum region. However, these are not
mathematically legitimate solutions because a correct
boundary condition for the electromagnetic field is not
imposed on the (interior) surface of the toroidal region (a
torus); a method to impose a boundary condition on a torus
has not been developed in the CcOCAL code. From this
observation, it seems that the magnetic field strength is
not limited by an appearance of such a toroidal magneto-
vacuum region; therefore, we conjectured an existence of a
compact star solution with a toroidal magnetovacuum
tunnel in it. Computations of such solutions will be
addressed in our future work, developing a method to
impose a correct boundary condition at the interior surface.

In this paper, we assumed an electro-vacuum spacetime
outside of the compact star, which resulted in a surface
charge distribution when we computed an asymptotically
charge neutral solution. This is the same assumption used
in the first relativistic computation of magnetized rotating

equilibrium by the Meudon group [7]. As more realistic
models, such magnetized compact stars would be sur-
rounded by the force-free magnetosphere (see, e.g., [40]).
Analogously, if the above-mentioned interior toroidal
region appears, it may be filled with the low density
plasma associated with the force-free magnetic field,
instead of being a vacuum. Technically, it may also be
possible to compute a black hole associated with electro-
magnetic fields, as the COCAL code is capable of producing
black hole data. Computations of such solutions amount to
imposing different boundary conditions at the surface (and
an interior torus if it exists) for the electromagnetic fields
and to treating the equilibriums of tenuous plasma con-
sistently. We think our new method developed in the COCAL
code is general enough to incorporate them without much
difficulty. Such models for compact objects associated with
force-free fields may be more favored in realistic astro-
physical situations, and computations of those models are
also a part of our future project.
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APPENDIX A: NOTATION AND RELATIONS

1. Orthogonal curvilinear coordinates and basis

When a system of coordinate functions x* is introduced
for a set of points x* in a space, the basis and dual basis
are, respectively, {e%} and {V,x}, where €4 := g%i. The

coordinates are called orthogonal when
eGVxB = £, xf =6,° (A1)

for any pair of indices A and B. Derivatives of this
expression give
Va(hVyxP) =V, £, xP = £, VaP =0, (A2)

since V8,8 = 0. Projecting these to the basis €%, we have

a C _ a C C a
egt, Vox& =£, (e§Vox®) =V xt£, e

= -V x%, e} =0, (A3)
for any dual basis V,x€. Therefore, we have
£, % = [eS, eh] = 0. (A4)

2. Index-free notation for differential forms and vectors

In some manipulations of equations in Secs. II and III,
we use index-free notations for differential forms and
vectors for convenience. We summarize correspondences
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between index and index-free notations in this subsection.
For more details, see, e.g., Refs. [16,19].

a. Differential forms
For a 1-form w, we write an exterior derivative dw which
corresponds to the index notation as
dw = (dw),5 = Vowy — Vw,. (AS)
This notation is often used for an electromagnetic potential
1-form A and for a canonical momentum 1-form Au, where
u is a dual 1-form of the 4-velocity vector u (which is u* in
the abstract index notation). Faraday 2-form F = dA is
written
Faﬁ' - VaA/; - VﬂAa. (A6)
F is a closed 2-form, dF = 0, which is written in index
notation,

dF == 3v[aFﬁ}/] == VaFﬂy —|— V/ija + vaaﬁ == O (A7)

b. Inner product and Cartan identity

The inner product of a p-form @ and a vector u is
denoted with a dot in index-free notation,

U-0=wa, g (A8)

Using this, the Cartan identity for a p-form o is written

£f,0=u-do+du-w), (A9)
in index-free notation. As a rule for the inner product
between a vector and a p-form, we assume that when the
vector is operated to p-form from left (right) the vector
is contracted with the leftmost (rightmost) index of the
p-form, e.g., u- F = —F - u for a 2-form F.

c. Ideal MHD condition

The ideal MHD condition is written F -u = 0. This
implies £,F = 0. This is shown using dF = 0 as

£uFaﬂ = Myvaaﬁ + F},ﬂval/ly + FayVﬂl/ly

= My(vaaﬁ + VaF/,y + VﬁFya> = 0 (AIO)
Or, using a potential 1-form A (F = dA),
£, F=£,dA=df A=d(u-dA+d(A-u))=0, (All)

where u-dA =u-F =0, d*> =0, and the Cartan identity
are used.

Also, for any vector proportional to u, that is, with an
arbitrary scalar function A, F-(lu) =0 holds, which

implies £, F = 0. This guarantees that a flux of F over
any surface along a given family of flow lines is con-
served [41].

d. Integrability condition

When smooth functions A and f satisfy fdA = C =
const, a relation is derived:

d(fdA) = df A dA + fdPA = df AdA=0. (Al12)

Hence, f = f(A). As f(A)dA = dF(A) = C = const,
dF(A)/dA=f.If the constant C=0, then f = dF/dA = 0.

3. 4-velocity

We decompose the 4-velocity u® with respect to * as

u® = u'(1* + v%), (A13)

where v“ is spatial vector v*V,t = 0. In the first integrals
and in the currents, 7- and ¢-components of u, appears,
which are calculated as follows,

ul = uata = ut(ana +ﬂa + U(Z)(ana +IB(X)
— W= + B+ )

= u'[-a® + y*B,(p* + b)), (A14)
Uy = ua¢a = ut(ana +ﬁa + Va)¢a
=u'(f, + V)" = uy* (B, + V). (Al5)

where t* = an® + f* is used.
The coordinate basis for vector ¢* is related to the
Cartesian basis X* and 3* as

P = P = —y3* + x§” (Al6)
and the basis for 1-form
y X
V,p =—-———-=V —V
a¢ x2+y2 ax+x +y2 ay

sin ¢ cos ¢
= - \Y V, y. Al7
rsin@ x+rsin6’ a¥ (A7)

Hence, the ¢-components of the 4-velocity are related to
those of Cartesian coordinates as

Uy = Ua® = —yu, + xu,, (A18)
W = V= -2+, (A19)
xX“+y xX“+y
and these become on the ¢ = 0 (meridional) plane,
Ugp|p—o = Xy, (A20)
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Dl o= —u. A21
”|¢70 x” ( )

The same relations between ¢-components and the
Cartesian components are used for the electric currents

Jj* (j* and jj).

APPENDIX B: 3+1 DECOMPOSITION OF
FARADAY TENSOR

In this Appendix, we derive the 3 + 1 form of Faraday
tensor and its divergence. The spatial projection of F,; =
(dA) 5 can be derived explicitly as follows. For F,, we use
the Cartan identity n - dA = £,A —d(n - A),

Fa = yaﬁF/}yny = _Ya/}[£nA[f - vﬁ(nyAy)]
= _yaﬂ'fn ((Dzn/} + Aﬂ) - D(I(DZ

- 1
= _7aﬂ£nAﬂ - aDa<a(DZ)’ <B1)

where the relation, £,n, = D,Ina, is used. For Faﬂ,
since F,p3 = (dA)aﬁ is independent of the geometry of
the manifold, its spatial projection becomes its spatial part,

Faﬂ = DaAﬂ - DﬂAa, <B2)
which can be shown more explicitly as
Fa/i = },ayy[)’(sFy(S,
= }'ayy/)’ﬁ[(vyAﬁ - vﬁAy) + ®E(vyn5 - vﬁn}/)]
= D(lAﬁ - D/iAa - q)Z(Kaﬁ - K/)’a)?
— DaA/)’ - D/}Aa, (BS)

as K, is a symmetric tensor. The divergence V,F 4 is also
decomposed with respect to X,. The projection of V4F" % to
the hypersurface normal n, becomes

naVﬂF“ﬁ = Vﬁ(Faﬁna) - F“ﬁvﬁna
==V, F*+ F¥(K,5 + ngD,Ina)
1 = =1
=——D,(aF*) + F*—D,a
a a
= —D,F*. (B4)
The projection of V4F “ to the hypersurface ¥, becomes
]/ayVﬂFyﬁ = yayVﬁ(Fyﬂ + nyFﬂ - I’lﬁFy)
= D/}Faﬁ + F"Vnﬁvﬁny - }/aﬁanﬂ + KFa
1 - - -
=—Dy(aF*) — £,F* + KF“. (B5)
a

Hence, on X,, we have

1
Fa = _£nAa _aDa(aq)Z)’ (B6)
Fu, = D,A, — D)A,, (B7)
ngVyF¥ = —D,F°, (B8)
1
r'aVyF? = - Dy(aF*") —£,F* + KF*.  (BY)

APPENDIX C: DERIVATION OF EQUATIONS
FOR ELECTROMAGNETIC POTENTIALS

In this Appendix, we derive the final form of
Maxwell’s equations implemented in the COCAL code
for computing electromagnetic potentials. Since we
introduce a conformal decomposition of the spatial metric
Eq. (6) as in Sec. II B 1, the divergence with respect to
the conformal metric 7, is simplified to that of flat
metric f,,, D,A? = D,A°.

Projecting along n“, Eq. (65) becomes

(VyF? —4nj)n, = =D F* + 4nps

1
= —ﬁDa(wzy“bF p) + 4zps

— 7D £5A, + 47:(11;/4,02} =0.
(C1)

Separating the flat Laplacian from the first term,

1

Daba(aq)ﬁ) = Tlo)a[\/}:,ba(aq)Z)]
D,

<

= D [7*" D) (a®y)]
= D,D*(a®y) + h*D,D,(a®y)
+ D7’ D) (ady),

an elliptic equation for a®y is derived,

o

A(a®@s) = S,

where the source S is written
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S = —h®D,D, (ads) — ISaT’“bISb(a‘Dz)
2
X = (W o
+ yab F a (;) (XFb + Da}/abfﬂAb
+ 70D 54, — dmayps. (C4)

The second term of the source (C4) vanishes under the

Dirac gauge condition D,7%* = 0. Also note that the fourth
and fifth terms are derived as below since ¥ = f is satisfied:

o

7" Dy£pA, = Dy (70 £5Ap)
= D7 £4A, + 7D £sA,.  (CS)
Projecting to Z,, Eq. (67) becomes
(v/)’Faﬂ - 4ﬂj(1)yaa
1 by o L b ! s
:an(aFa ) +;£ﬂFa _2Aa Fb +§KFa —4ﬂja
=0. (Co6)

The first term, from which an elliptic operator is separated
as below, is rewritten,

1 1 -
_Db(aFab) :—67acDb(aW6FCb)
a ay

1 . a -
:—sz <_2Fac> 7’bc
oy U4
1 ~bc T 1 ~bc T a
=7 DbFuc+—2y Db ) Fac' (C7)
v oy 4
Using an identity,
R,p0" = (D,D, — D D))" (C8)
ab ba a”b s
where 7¢ = 7%v,,, we have
7bcDbFac = 7bCDb(DaAc - DcAa)
== —DbDbAa + DanAh + 3RahAb. (Cg)
Hence,
1 b 1 N DDA N N Ab
an(aFa ) = F —DbD Atl +DanA

2
43R, AP 4 e ‘%Db <%> F} . (C10)

From the first term of the right-hand side of Eq. (C10),
the flat Laplacian —AA,, is isolated,

_DthAa = _AAa - th.Bbﬁc'Aa + }717610)17(Cga’ad)

+ }7bcCZchAu + 7bccgaDCAd- (Cl 1)

We keep D, instead of replacing it by 5a and a connection
C¢, in a couple of terms in Eq. (CI1), to shorten the
equation. Then, a set of elliptic equations for A, is derived,

(C12)
where the source S, is written

Sa = _hbcDchAa + 77thh(CgaAd) + 77thZCDdAa
+yb<c{ DAy + D,D,A® 43R, A

2 4
- . [
PO () o tera -2ty

1
+ ;v KF, —dayt 3,

: (C13)

APPENDIX D: DERIVATION OF FIRST
INTEGRALS OF MHD-EULER EQUATIONS

In this Appendix, we derive a set of integrability
conditions and first integrals (D5)—(D11) of the relativistic
MHD-Euler equations (43).

For the - and ¢-components of the MHD-Euler equa-
tions (125) and (126), substituting Eq. (89) to u* and
Eq. (122) to that of the current j4 in the above set of
equations, and multiplying by p,/—g, we have

50y (=)0 ) + -0y (By/=5)0aA, = 0,
o1)

By (/=)0 (huty) + ;—ﬁeABaB(B\/—_g)é‘AA(p 0.
(02)

Substituting the integrability conditions (110), these are
rewritten,

[/ 04 ) + 1 4104 573) [T = 0.
(03

€AB{—[~/—g‘P]’83(hu¢) + ;—EA%BB(B\/—_g)}(?AT =0.
(D4

These relations imply that the terms in parentheses are a
function of Y. Hence, introducing the densitized scalars
[/=9AJ(Y) and [\/=gA,](T), for each component, the
sufficient conditions for the #- and ¢-components are
written as
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t-component:

V¥ + - ABYTT = [VEIANY). (D)

¢-component:

1 pu' /=G0 (hit) + pu =GO (hity) + w04 [/ ~5¥)
—[./—g‘I‘]’hqu —|—EA;§B\/—_: [\/—_gA,/,](T). (D6)

+ J'\/=gOrA; + jO\/=gOaA s — By04 < B\/— >
These are combined and written using another function
of T, A(Y), + pT+\/—gdss =0, (D8)

A/ - A) _A/ - A
Alyhu, — Athuy = A(Y) = (V=90 = Ayly=97d

For the x*-component (127), multiplying p,/—g and
substituting Eq. (89) and Eq. (122) as well as definitions
(dA)ap = €apBy and d(hu),p = —€4p0,, We have

a ) In Eq. (D8), the first two terms and the sixth term multiplied

[V=9¥] by AjAj become as follows: substituting the integrals

(D7) of #- and ¢-components of MHD-Euler equations (D5)
and (DO6),

1 1
zpu’w/—gAﬁ[aA(Aﬁhuqﬁ + A) = hu,0,Ay] + Epu’,/—gA;A;saA(hut)
1 1
+ Epu‘ﬁ\/—gA;ﬁ[@A (Ayhu, — A) — huy0rA7) + Epu"ﬁ\ /=9gAIALOx(huy)
1 1
=5 ByOa(AylV=g¥] hus + AY[V/=gA] + Aily/=g¥] huy + All\/=gAy]) + By~ Bv/=90a(AiAy)
1
(A;pu’\/ g+ Aypu? /=g = [\/=9¥|'By)[A104(huy) + Al (hu,)]
- (aAAﬁhu,/, — OpAyhu; + OaN) (A’ — A;ﬁu’/’)p\/—g
p\0alvV—g Uy AV TIN]) — OapllvV =9 U —gi\
{A (Oalv/=g¥1'hu, + 04 [V=9/\]) = 0aAy (V=91 hu, + [/=gA])
+ A?(aA[\/@P]’hM(/I + Oalv/=90y]) — O4AU[V=9¥) huy + [/=9Ay]) } By. (D9)

The terms in the first set of parentheses of the rhs vanish because of the first integral of the x*-components of the ideal
MHD condition (114), and all other terms are proportional to 94T, as A, Ay, \/=g¥, \/=9g/\;, /=94, and A are functions
of T. Hence, with an assumption to the thermodynamic variable, that is, the entropy s to be a function of Y, s = s(Y),
Eq. (D8) multiplied by AjAj, is rewritten,

{5 G/, + [VZIN) = A=+ [V + ALV g + /0D
1
=AY ([V=9¥)' hug + [V=gM])IBy + 5 (AT huy — Afhu, + N) (A’ = Ayu?)p /=g

+ AAL =¥ 0y + ALAL S Tp /=g + (A))PAL '\ /=g + AY(A] )ﬁ\/—}aﬂ 0. (D10)

Therefore, we obtain the first integral of the xA-components of the MHD-Euler equations (D8) as

S/ i+ (VG = A=t + G + AL ey + [/ Z51)
— AL(Y=¥ by + [Ny + 5 (A = A, + N = Ayt )y/=5
A= 0y + Ay To =g+ (AT /=g + ALY/~ = O 1)
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APPENDIX E: FIRST INTEGRAL AND
INTEGRABILITY CONDITIONS FOR THE
CASE OF PURE ROTATIONAL FLOW

For the case without meridional flow fields, u? = 0, the
system of first integrals and Maxwell’s equations under
stationarity and axisymmetry can be recast into a single
equation to be solved for a single independent variable
which may be called the Grad-Shafranov equation with a
toroidal flow fields. However as we have noted, we do not
reduce the number of variables in our formulation but rather
solve the hydrostationary equation and Maxwell’s equa-
tions simultaneously. Although the derivation presented in
Sec. ITF can be applied for the case with pure rotational
flow, we repeat the derivation below for clarity.

1. Ideal MHD condition for purely rotational flow

We assume the 4-velocity u® of the flow field in the
absence of meridional flow u* = 0 as

u® = u'(1* + Qp*) = u'k”. (E1)

The ideal MHD condition F’ aﬁuﬂ = 0 in this case becomes
t-component

t-F-u(=-utd,A,) =0, (E2)
¢-component

¢-F-u(=-u*0,A,) =0, (E3)
x4-component

ea - F-u=u'0,A+u?d,Ay = 0. (E4)

For the case with meridional flow, integrability conditions
can be found in the above ideal MHD condition alone.
The absence of the meridional stream function in this case
trivializes the ¢ and ¢ components of ideal MHD con-
ditions, and hence the integrability conditions are not
derived from these equations.

2. MHD-Euler equations for pure rotational flow
Substituting #* =0 and j* = j'1* + j*¢* + jAe%, the

MHD-Euler equations become
t-component:

1
;J'A 944, =0, (ES)
¢-component:

1
—jAaAA¢ - 0, (E6)
P

A

x“-component:

1 1
u’@A(hu,) + u¢8A(hu¢) + ;jtaAAt +;]¢6AA¢

1
+ p JB(dA) 45 + TO4s = 0. (E7)

3. Integrability conditions for the case of
purely rotational flow

Substituting the x“-components of Maxwell’s equa-
tions (122) to the meridional current j4 appearing in the
t- and ¢-components of the MHD-Euler equations (ES)
and (E6), we have

# AB — _

4np Tg€ 9p(v/=9B)0sA; =0, (E8)
1

————eB,(\/=gB)0,A, = 0. E9

4np /=g B(\/=9B)0aA (E9)

These relations require integrability conditions for consis-
tency; namely, a master potential Y is introduced as
follows:

A= A(Y). Ay =AyT),
and y/=gB = [,/=gB](Y).

The x*-components of ideal MHD conditions (E4) and
the above integrability conditions for A, and A, imply

(E10)

WA, + u?dpA, = (WA} + u?Al)0,T =0, (Ell)
and hence,
u'Al 4+ u?Al, =0, (E12)
or, introducing the angular velocity €,
/
’Z—f —a-- :—:;. (E13)
Therefore, Q should be a function of Y as well,
Q=Q(T). (E14)

4. First integral of meridional components
of MHD-Euler equations

Derivation of the integrability of the x*-component of
MHD-Euler equations proceeds analogously to the case
with nonzero meridional flow. A difference is the absence
of the stream function /=g¥. In Eq. (130), the stream
function [\/=g¥]'(Y) appears in the denominator of the
definition of an arbitrary function [,/=gA](Y). In [16],
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we proved that such a combination always becomes finite,
and hence the relations derived in previous sections are
valid also for the case of pure rotational flow under simply
taking a limit [,/=¢¥]() — constant. In this section, we
prove this fact by repeating the derivation of the previous
section and derive (130) directly as a part of integrability
conditions.

We recast the x*-components of MHD-Euler equations
in the same way as the case for generic flow in the previous
section. To proceed, we use a relation,

Aﬁpu, - A;l/tqg

(Aju' = Ayu?),  (ELS5)

2uu?

derived from normalization of the 4-velocity u-u = —1

and the integrability condition (E12). Multiplying by the

factor %, the kinetic term of the x*-components of
' =ALu

MHD-Euler equations for purely rotational flow (E7) is

rewritten,

244
A’u’—A’ u?
—8,4 (A hu, A,hu¢) + (hu¢6AA —hu 8AA/ )

[ 04 (hu,) + u‘/’aA(hu,/,)]
(E16)

where a consistency Eq. (E12) is used. Also, the Lorenz
force term of Eq. (E7) becomes

1., ) .
;[JtaAAz +j?04A 4+ jB(dA) s5]

(E17)

1f. )
=, J'O4A+ j?04Ap +———=B,0(B/=9)|,

4n \/_
with Egs. (97) and (122).
Because A;, Ay, and B,/=g are functions of the master

potential Y as shown in Eq. (E10), the x*-components
of MHD-Euler equations (E7) multiplied by the factor

2404,
W are rewritten, with an assumption of s = s(Y),

244, 1. .
= (00t + POt

Al
PN ) " Ts’} }aAT 0

+

+ 477\1/__9 (E18)

The above relation suggests that, because of the converse of
the Poincaré lemma, the first term is a function of Y,

Alhu, = Ajhug = A(T). (E19)

This is compared with Eq. (130).

Since \/—gB = [,/—gB](Y), we introduce the following

functions of Y:

[V=gA](Y). (E20)

1
EA;\/ —gB =

Apv/=9B =[v/=g74|(T). (E21)

Taking derivatives of these with respect of T and combin-
ing them, we have a relation,

—A Aglv/=9B' = (Aﬁ/,[\/—_g/\z]’—Aé’[\/—_g/\M
+AV=gMy]' = Ay lV=9M]).-

Finally, substituting Eqgs. (E19) and (E22) to (E18), the
consistency of the x* components yields

(E22)

— S AUVTIAT - AYLY=IA] + ALY,

— Al[V=9M])By
X (Ajhu' = Ay hu?)p\/=g + AjAys'Tp\/=g
+ (AD)?AL /=g + Al(Ay)* /=g = 0.

This relation is compared with the result for the generic
flow (131); Eq. (E23) agrees with Eq. (131) in the
limit [,/=¢g¥](T) — constant.

1
-+ 5 (A;’hu{/, - A;;hut + A/)

(E23)

APPENDIX F: DEFINITIONS OF MASS,
ANGULAR MOMENTUM, AND VIRIAL
RELATION

For the reader’s convenience, we summarize definitions
of tabulated quantities in Tables V and VI (see also, e.g.,
Refs. [6,19]). Those include the rest mass, My; ADM mass,
M ppv; Komar mass, My; total angular momentum, J; the
virial relation, /,;;; and other related quantities including
electromagnetic energy M and its decomposition.

In Table V, R, and R, are the equatorial and polar radius
of a compact star in the proper length, respectively. The
proper equatorial radius R, is defined by

Row= [y /7d Fl
0= 0 74 Vxx@X, ( )

and for RP, the integral is taken along the z axis. The
unbarred R, and R, are the equatorial and polar radii in the
coordinate length.

The rest mass M, is written

My = / pucds, = / pu'ay®/7dx,  (F2)
z z
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where dS, = V,t,/=gd’x and d’x = r*sin0drdfd¢$ on
the spherical coordinates. This is conserved irrespective
of the choice of a slice X for the rest-mass conservation
Eq. (42). The above volume integral over the hypersurface
2 is nonzero only on the fluid support.

The ADM mass M zpy is defined and calculated by

1 o
M xpwm = E/ (facfbd - fabed)DbycddSa

1 [ . .
——— [ D 13
5 L wdS, (F3)

1 Waw 1 (< a2
— 23R S A Aab__KZ
27 2[ 8 +8"’<“” 3 >

+ 27“!’5/7H] Vidx, (F4)

where py = T(,/;n"n/’ is a component of the stress-energy
tensor 7,5 normal to the hypersurface X. To check the
consistency of the solution, both the surface integral (F3)
and the volume integral (F4) are evaluated. Relative errors
between those values are approximately 0.01% for the
solutions presented in Sec. IV. The surface integral is
calculated on a sphere with radius around r ~ 10*R,,, while
the volume integral is taken within a computational
domain within a radius around r ~ 10°R,,. For the surface

integral (F3), we replace 7**— f**, D, — D,, and dS,=
V. r\7d*x=V r\/fd*x=dS,. These are exact at spatial
infinity, and they introduce only a negligible numerical
error at the above radius where the surface integral (F3)
is evaluated.

The Komar mass M associated with the global timelike
Killing field #* is defined by

1
My == —— [ VePds F5
K 477-'/;0 af ( )
= —/z: (2Taﬂ - Tg“ﬂ)tﬂdSa

- /2 [a(pn + ) = 2j/ W\ 7dx.  (F6)

and the asymptotic Komar mass of which the * is a
symmetry of an asymptotically flat spacetime is defined by

1 1
My ==—— [ V*dS,; =— | D%dS F7
K e L ap . L aas, ( )
1 SR P R G
=— | |[ApAY +-K* —£,K+4rn(py + S)
4 b 3
x ay®\/7dx, (F8)

where the source terms j, = —T,57%,n” and S := T 5y*
are the components of the 3 4 1 decomposed stress-energy

tensor T,; In deriving (F8), a relation, (G,p—
87T op) (r” + nnP) = 0 is used. Since Toy = T + Thy
contains electromagnetic contributions, the support of the
volume integral (F6) is noncompact. All integrals (F6)—(F8)
should reproduce the same value, when the waveless con-
dition (27) and the coordinate conditions (26) are imposed at
least asymptotically [13]. We computed Eqgs. (F6)—(F8) to
check the consistency of the solutions and found that they
agree in the same order as M 5p); mentioned above.

For the total angular momentum J, the surface and
volume integrals are evaluated,

1
Ji=— / K%, ¢dS, (F9)
87 Joo

1
= — [ D (K¢")aV
87[/2 a( b¢ )d

1 i 4
= _/ <8ﬂja¢a +AabDa¢b - _K¢aDaW) W6ﬁd3x’
87 Js U4
(F10)

and the difference between the values from Eqgs. (F9) and
from Eqs. (F10) is typically O(0.1)%. Also for J, a term
including j, in the volume integral contains contributions
from fluid as well as electromagnetic fields, and hence it is
integrated over a noncompact support. The values of
M apm, J, and |1 — M /M spy| listed in Table V are those
of the volume integrals, (F4), (F6), and (FlO).11

The relativistic virial theorem for an Einstein-Maxwell
spacetime coupled with charged and magnetized perfect
fluid [43] is computed to determine the accuracy of
solutions. It is a vanishing integral of the spatial trace of
Einstein’s equations over a hypersurface X,

1
T, ——G,*|dV
A(d 877“)

=2T + 3+ M+ W+ Mupy — Mg =0.  (F14)

"In previous papers for nonmagnetized rotating stars [20,42],
the ratio of the kinetic energy and the gravitational energy, 7/|W/|,
was defined following [6],

W:zMADM_MP_T, (Fll)
1
Tl / QdJ, (F12)
2 s
where the proper mass Mp was defined by
Mp = / T%suldS, = /eu"dSa. (F13)
p) p)

In the solutions presented in Sec. IV, T%; includes the electro-
magnetic Tgﬂ, while u” is defined only on the fluid support.
Likewise, Q in (F12) is undefined outside of a star, although dJ
has a nonzero electromagnetic contribution there. Because of this
ambiguity, we do not calculate the values of Mp and T/|W|.
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The equality of the ADM mass and the Komar mass
M apm = My has been proved for stationary spacetimes
[44] and for the waveless formulation [13]. The integrals 7,
I1, M, and W are defined by

1

7:5/@+prMW (F15)
z
= / pdV, (F16)
z
1
M=— / (2F ,F* + F,,F*™)dV (F17)
16z b
1 . " _ N
Wz—/ [l//“‘(ZD“lny/Dalny/—DalnaDalna)
471' b
3 2 | . 1.~
+> (A A —ZK? ) +—Kp*D, Ina+—Ry~*|dV,
4 3 a 4
(F18)

which become the kinetic, internal, electromagnetic,
and gravitational energies, in the Newtonian limit. In the
integrand of W (F18), 3R is a scalar curvature of a
conformally related spacelike hypersurface associated with
a conformal 3-metric 7,,. We define a virial integral /,;, as

L= ]RT +3+M+W

, (F19)

the values for the selected solutions of which are presented
in Table VI. The magnetic energy term M (F17) is
decomposed into contributions from the electric fields as
well as the poloidal and toroidal magnetic fields, for which
we define, respectively,

1
Mee = — / F,FedV, (F20)
8 b
1 AB
Mpol = — FABF dV, (le)
167 b
1
Mgy = — / Fa,FA%av, (F22)
87 )

which are also listed in Table VI.
Finally, the electric charge Q defined in Eq. (192)
becomes

1

1
—— | F¥ds,,=— | Fd F2
Q=4 L, St = 4n L Sar (F23)

where dSy; = 3 (VtVyr = V,rVyt),/=gd’x and dS,=
V. rﬁdzx, which is evaluated on a large sphere S in the
asymptotics of X. Rewriting the charge Q in the form of
volume integral,

1
0= _/ v/iF{lﬂdSa = /jadSa
4 > b))

= Owu + Qs. (F24)
the volume integral over the MHD fluid support Q,, and the
surface charge Qg at the stellar surface should contribute to
the total charge Q. In our formulation, the form of Qy is not
given, and the values of Q,, are listed in Table VI

APPENDIX G: IMPOSITION OF SYMMETRY
OF THE ELECTROMAGNETIC
VECTOR POTENTIAL

When an exact 2-form F = dA respects the symmetry
£,F = 0, a gauge potential f exists such that A transformed
by A > A + df satisfies £,(A + df) = 0.

Proof—The Cartan identity t-dF =£,F —d(t-F) implies
d(t- F) = 0O when £,F = 0. Hence, because of the Poincaré
lemma, a function @ exists such that - F = d® on a
simply connected manifold. This implies

£A=1-dA+d(t-A)=t-F+d(t-A)=d(®+1-A).
(G1)

Under a gauge transformation with a potential f,
A —->A+df, (F— F), £A is transformed as

£(A+df)=£A+dff=dESf+DP+1-A). (G2)
Hence, for an f that satisfies
£,f+®+1t-A = const, (G3)

A + df satisfies the symmetry £,(A + df) = 0.

We have the freedom to choose another gauge potential
that respects the symmetry £,f = 0. This gauge potential
does not affect the above transformation to impose the
symmetry on the potential A; namely, A — A + df + df
respects the symmetry. With this gauge freedom, we may,
for example, impose Coulomb gauge (vanishing spatial

divergence) D “A, = 0, where a is a spatial 3D index.
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