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ABSTRACT

Context. The Event Horizon Telescope (EHT) collaboration recently obtained the first images of the surroundings of the supermassive
compact object M87* at the center of the galaxy M87. This provides a fascinating probe of the properties of matter and radiation in
strong gravitational fields. It is important to determine from the analysis of these results what can and cannot be inferred about the
nature of spacetime around M87*

Aims. We want to develop a simple analytic disk model for the accretion flow of M87*. Compared to general-relativistic magnetohy-
drodynamic models, this new approach has the advantage that it is independent of the turbulent character of the flow and is controlled
by only a few easy-to-interpret, physically meaningful parameters. We want to use this model to predict the image of M87*, assuming
that it is either a Kerr black hole or an alternative compact object.

Methods. We computed the synchrotron emission from the disk model and propagate the resulting light rays to the far-away observer
by means of relativistic ray tracing. Such computations were performed assuming different spacetimes, such as Kerr, Minkowski,
nonrotating ultracompact star, rotating boson star, or Lamy spinning wormhole. We performed numerical fits of these models to the
EHT data.

Results. We discuss the highly lensed features of Kerr images and show that they are intrinsically linked to the accretion-flow prop-
erties and not only to gravitation. This fact is illustrated by the notion of the secondary ring, which we introduce. Our model of a
spinning Kerr black hole predicts mass and orientation consistent with the EHT interpretation. The non-Kerr images result in a similar
quality of numerical fits and may appear very similar to Kerr images, once blurred to the EHT resolution. This implies that a strong
test of the Kerr spacetime may be out of reach with the current data. We note that future developments of the EHT could alter this
situation.

Conclusions. Our results show the importance of studying alternatives to the Kerr spacetime to be able to test the Kerr paradigm
unambiguously. More sophisticated treatments of non-Kerr spacetimes and more advanced observations are needed to proceed further

in this direction.

Key words. black hole physics — accretion, accretion disks — relativistic processes — galaxies: individual: M87

1. Introduction

The galaxy Messier 87 (M87) is a giant elliptical galaxy located
in the Virgo cluster, first observed by the French astronomer
Charles Messier in 1781. In the past century it has been known to
give rise to a kiloparsec-scale radio jet (Curtis 1918). The central
engine of this jet is likely a supermassive black hole, M87%*. It
is, like our Galactic center, a low-luminosity galactic nucleus,
displaying a hot, optically thin and most likely geometrically
thick accretion and ejection flow (Yuan & Narayan 2014). The
distance to M87 is on the order of the mean distance to the Virgo
cluster, that is, 16.5 Mpc (Mei et al. 2007). The mass of M87*
has been assessed to be 3.5 x 10° M, by means of gas-dynamics
fitting (Walsh et al. 2013) and to 6.6 x 10° M, by means of
stellar-dynamics study (Gebhardt et al. 2011).

The Event Horizon Telescope (EHT) collaboration has
recently published the first reconstructed millimeter images of
the close vicinity of M87* (EHT L1). The images show a circular
crescent feature with a diameter of ~40 pas, with a non-isotropic
flux distribution, surrounding a central fainter region. These fea-
tures are in good agreement with what is known from theo-
retical imaging of black holes (Bardeen 1973; Luminet 1979;
Marck 1996; Chan et al. 2015; Cunha & Herdeiro 2018). The
crescent morphology of the source was constrained by “free-
form” imaging (EHT L4), simple geometric models, and direct
fitting to general-relativistic magnetohydrodynamic (GRMHD)
simulations (EHT L6). The large collection of GRMHD simula-
tions created a framework for the physical interpretation of the
EHT results (EHT LS5, Porth et al. 2019). This analysis allowed
us to interpret the 40 pas circular feature as a lensed accretion
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and ejection flow within a few M from the black hole. The non-
isotropy can be linked to a relativistic beaming effect. The cen-
tral fainter region is consistent with being the shadow of the
black hole (Falcke et al. 2000). Within this framework, the mass
of M87* was estimated to be 6.5 + 0.7 x 10° M, assuming
a distance of 16.8 = 0.8 Mpc (EHT L1), which is in agree-
ment with the independent stellar dynamics measurement. For
the images shown in this article, we use the consistent values
of 6.2 x 10° M, for the mass and 16.9 Mpc for the distance,
following the choice made in EHT LS5.

The assumptions of the GRMHD-based analysis and interpre-
tation have given rise to theoretical investigations regarding the
nature of the features seen in the EHT images (Gralla et al. 2019;
Johnson et al. 2020; Narayanetal. 2019; Gralla & Lupsasca
2020). The main question is to what extent these features can be
directly linked to gravitation and how much are they influenced
by the highly model-dependent astrophysics of the emission.
There are at least several effects to consider in this context, cor-
responding to particular choices and simplifications made in the
GRMHD simulations library of the EHT (Porth et al. 2019, and
references therein). Those include, but are not limited to utiliz-
ing a prescription for electron temperature, ignoring the dynam-
ical feedback of radiation, viscosity, resistivity, and the presence
of nonthermal electrons (EHT LS5). Apart from that, the turbu-
lent character of the flow adds time dependence to the model, and
the possibly strongly resolution—dependent relationship between
the simulations and the real variability of the source is poorly
understood (see, e.g., White et al. 2019). Given all those uncer-
tainties, it is both interesting and important to interpret the EHT
measurements in the framework of simple physically motivated
geometric models. So far, such models have not been extensively
discussed in the context of the M87* image interpretation. Only
Nalewajko et al. (2020) have recently adopted a geometric model,
but with a simple power-law prescription for the emission, and no
absorption.

Models for M87* environment have been published using
both analytical or GRMHD descriptions of the flow. Ana-
lytical models used disk-dominated radiatively inefficient
accretion flows (RIAF) or RIAF+jet models (Yuan 2000;
Di Matteo et al. 2003; Broderick & Loeb 2009). The GRMHD
models describe the disk+jet environment of M87* (Dexter et al.
2012; Moscibrodzka et al. 2016; Davelaar et al. 2019).

The aim of this paper is to contribute to the physical inter-
pretation of the EHT images using a simple analytical geomet-
ric model that is able of capturing the most prominent features
of a more realistic setup, avoiding the uncertain astrophysics
embedded in the latter. For simplicity, we restrict ourselves to
a pure disk model and do not take into account any ejection fea-
ture. We stress that the origin of the photons forming the EHT
image might be the base of the M87 jet or the disk. This point
was investigated in EHT L5 with the library of state-of-the-art
GRMHD simulations. Among a variety of models, only the so-
called SANE (Standard And Normal Evolution) models, which
have a particularly high Ryen parameter (MoScibrodzka et al.
2016), were found to be dominated by the jet emission at that
scale. For most of the models, including all the so-called MAD
(Magnetically Arrested Disk) models, the emission observed
by the EHT is actually dominated by the disk component.
This setup can describe, e.g., a magnetically arrested state of
accretion, where the innermost disk emission dominates over
the jet emission contribution We consider thermal synchrotron
emission and absorption in this disk. Our geometric model of
the plasma surrounding the black hole is as simple as pos-
sible. This simplicity allows us to limit the sensitivity, as
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much as possible, to the uncertainties that affect more elaborate
models.

We believe that such a framework is well adapted for testing
the impact of the gravitation on the observables of the central
compact object. Our goals are to, first, discuss the prominent
Kerr image features obtained within this context with a particular
emphasis on the accretion-model dependence of highly lensed
regions and, second, to try to answer the question whether the
EHT images, analyzed independently of a broader astrophysical
context and external constraints, can deliver a test of the Kerr-
spacetime paradigm. For that purpose we compare the accre-
tion disk images computed for several different models of space-
time. While certain non-Kerr spacetimes were briefly discussed
in EHT L1 and EHT LS5, all quantitative considerations by the
EHT consortium were performed within the framework of the
Kerr spacetime paradigm. We aim to fill this gap with the current
paper. We highlight that throughout this article, we always con-
sider that gravitation is described by general relativity. While we
consider different spacetimes that may require exotic forms of
the stress-energy tensor, Einstein’s theory of gravitation is never
modified.

This paper is organized as follows: Sect. 2 considers that
MS87* is a Kerr black hole. After introducing our disk model in
Sect. 2.1, we present millimeterwave Kerr images in Sect. 2.2,
in which we discuss the origins of these images main fea-
tures, related to the properties of highly bent null geodesics.
Section 2.3 briefly discusses the modification in the image gen-
erated by non-axisymmetric structures. Section 3 is dedicated
to studying how the M87* image changes when the spacetime
is different from Kerr. We consider the Minkowski spacetime
(Sect. 3.1), the spacetime of a static ultracompact star with an
emitting surface (Sect. 3.2), a rotating boson—star spacetime
(Sect. 3.3), and a Lamy wormhole spacetime (Sect. 3.4). In
Sect. 4, we discuss fits to the EHT data of our Kerr and non-Kerr
models. Section 5 gives conclusions and perspectives.

2. Emission from a thick disk in a Kerr spacetime

In this section, the Kerr spacetime is labeled by means of the
Boyer-Lindquist spherical coordinates (z,7,6,¢). We work in
units where the gravitational constant and the speed of light are
equal to 1, G = ¢ = 1. Radii are thus expressed in units of the
black hole mass M.

2.1. Disk model and emission

We consider a geometrically thick, optically thin accretion disk
in a setup illustrated in Fig. 1.

For simplicity, we parametrize the geometry of the accre-
tion disk by only two parameters: its inner radius rj, and open-
ing angle 6,,. We do not prescribe any outer radius for the
disk. This outer radius is effectively imposed by selecting a field
of view for computing the images and by the radially decay-
ing profiles of temperature and density. The disk is assumed to
be axisymmetric with respect to the z axis that lies along the
black hole spin. The compact object and accretion-disk spins
are assumed to be aligned, as is the case for the entire EHT
GRMHD library. Throughout this article we fix the opening
angle to 6,, = 30°, so the disk is moderately geometrically thick.
This choice places our considerations between the limit cases
of geometrically thin model considered by Gralla et al. (2019)
and spherical accretion considered by Narayan et al. (2019), and
within the thickness range expected for a real accretion flow in
MS87* (Yuan & Narayan 2014).



F. H. Vincent et al.: Geometric modeling of M87* as a Kerr black hole or a non-Kerr compact object

Sobj Saisk
.-
! T
x, eop
K i
I H
ATM i
)
’ rlﬂ
re, n
//;§y e,n
12 Te,in
10
o
.
§

Fig. 1. Geometrically thick disk model (in red) surrounding a compact
object (black disk) of mass M. The disk has an inner radius ry,, where
the electron number density and temperature are n ;, and T ;,. The num-
ber density scales as =2 and the temperature as r~'. All quantities are
independent of the height z. The opening angle of the disk is called 6.
Here and throughout the article, the compact object and accretion disk
spins (black and red arrows, respectively) are assumed to be aligned.
The inclination angle i between the spin axis and the line of sight is
shown in green.

We model the emission by thermal synchrotron radiation.
This is also a simplification because shocks and turbulence in
the accretion flow are likely to generate nonthermal emission.
However, we chose to neglect this additional complexity. This is
again primarily for the sake of simplicity, but also because the
broad features of the image are unlikely to be extremely sen-
sitive to the details of the emission process, and because non-
thermal emission modeling would necessarily imply somewhat
arbitrary extra assumptions anyway. Thermal synchrotron emis-
sion is modeled following the formulas derived by Pandya et al.
(2016). Both the emission and absorption coeflicients are self-
consistently taken into account in our computation. These coef-
ficients depend on the electron number density and temperature
and on the magnetic field strength. The parameters of our model
are the density and temperature at the inner disk radius, n, and
T.in. We assume simple power laws for their scaling, ne i r2
for the density, and T, o ~! for the temperature, following the
description of Vincent et al. (2019).

We do not consider any vertical variation of the accretion
flow properties. As for the magnetic field prescription, we sim-
ply impose the magnetization oo = B?/(4n)/ (mpczne), equal to
the ratio of the magnetic to particle energy densities, where B
is the magnetic field magnitude, m,, the proton mass, and ¢ the
velocity of light (kept here for clarity). This quantity is always
set to o = 0.1 in this article. This is an arbitrary choice, which
has little impact on our results given that we do not discuss a
mixed disk+jet model, in which case the magnetization should
typically differ in the disk and in the jet. We note that our choice
of power laws for the electron density, temperature, and the mag-
netic field are that of the standard model of Blandford & Konigl
(1979). This also agrees with the inner evolution of these quan-
tities in GRMHD simulations of M87* (see, e.g., Davelaar et al.
2019). We stress that only the inner few tens of M of the flow
matters for the images that we discuss. We thus parametrize the
radial dependence of the disk quantities to capture the relevant
properties of this region.

For all the images shown in this article, we assume the
observing frequency of vops 9 = 230 GHz, corresponding to the
observing frequency of the EHT. The orientation of the model is
determined by the assumption that the jet aligns with the black

hole and disk spin axis and by the observed jet position angle
on the sky. We fix the inclination (angle between the black hole
spin and the line of sight) to i = 160° (Walker et al. 2018), mean-
ing that the black hole and disk spin vectors are directed “into
the page” for all images presented in this work (EHT L5) (see
Fig. 1). This nearly face-on inclination may be in general unfa-
vorable for considering deviations in the image geometry, when
compared to near-edge-on views (Bardeen 1973). The position
angle of the approaching jet (angle east of north of the black
hole spin projection onto the screen plane of the observer) is
fixed to PA = 290° = —-70° (Kim et al. 2018). The field of view
of the presented images is fixed to f = 160 uas and the number
of pixels to 200 x 200 (unless otherwise noted).

One extra crucial assumption has to be made: the choice
of the dynamics of the accretion flow. We always consider
Keplerian rotation outside of the innermost stable circular orbit
(ISCO), irrespective of the height z with respect to the equato-
rial plane. If the inner radius is smaller than risco, the emitting
matter four-velocity below ISCO is given as

Uem = I (uzamo + V), (D

where uzawo is the four-velocity of the zero-angular-momentum
observer (ZAMO) and V is the accretion flow velocity as mea-
sured by the ZAMO. It can be written as

ar aLp

so that (V)> + (V¥)? = V? = (I'?> — 1)/T2. This velocity is
parametrized by choosing V € [0, 1] and v¥ = V¥/V € [0, 1]. In
the following, we always fix V to its value at the ISCO. For the
two spin-parameter values considered, a = 0 and a = 0.8 M, this
gives V = 0.5 and V = 0.61, respectively. We can then chose
v¥ to simulate a limit case corresponding either to a flow with
purely circular velocity (if v¥ = 1) or a radially plunging flow
(if v¥ = 0). We note that the emitter velocity is always indepen-
dent of the height z, defined using Boyer-Lindquist coordinates
by z = r cos 6.

We ensure that the observed flux is on the order of 0.5-1Jy,
in agreement with the state of M87* at the time of the 2017
EHT campaign. The flux is primarily impacted by the choice of
the electron number density and temperature at the inner radius.
Given that these two quantities are degenerate because we are
fitting a single flux value (rather than the full spectrum), we
decided to fix the electron number density at r = 2M to neom =
5 x 10° cm™3, which is in reasonable agreement with the results
published in the literature by various authors (Broderick & Loeb
2009; Davelaar et al. 2019, EHT L5). The number density at the
chosen value of ry, is thus fixed by the assumed 2 density scal-
ing. The inner temperature 7., is then chosen to obtain a rea-
sonable value of the observed flux. We find that the choice of
Tein = 8 X 10'°K (or kT n/mec? = 13.5 in units of the electron
rest mass) leads to reasonable flux values for all setups consid-
ered in this work.

The final step of our simulation is to perform general-
relativistic ray tracing, either in the Kerr spacetime or in other
geometries, to obtain theoretical images. This is done using the
open-source ray tracing code GYOTO (see Vincent et al. 2011,
2012)! to compute null geodesics backward in time, from a dis-
tant observer located at the distance of D = 16.9 Mpc away from
the disk. We summarize the fixed properties of the model and
images in Table 1.

V=V + Ve 2)

1" See also http://gyoto.obspm. fr
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Table 1. Fixed properties of the M87* models and images assumed
throughout this paper.

Symbol Value Property
M 6.2 x 10° M, Compact object mass
D 16.9 Mpc Compact object distance
Bop 30° Disk opening angle
oM 5 x 10°cm™  Max number density of electrons
Tein 8 x 10'°K Max electron temperature
o 0.1 Magnetization
i 160° Inclination angle
PA -70° Jet position angle east of north
Vobs.0 230 GHz Observing frequency
160 pas Field of view
- 200 x 200 Image resolution

2.2. Main features of the images

Figures 2 and 3 show the Kerr-spacetime disk images obtained
for two different values of the spin parameter. In this section,
we discuss the main features of these images, focusing on
the impact of the flow geometry and dynamics, as well as on
the highly lensed flux portion of the image, generally called the
“photon ring”.

Figure 2 shows the resulting image for a spin parameter
a = 0 and three different choices for the accretion disk proper-
ties. We note that such nonrotating configurations are unlikely to
account for the powerful large-scale jet of M87 (EHT L5). These
configurations are still of interest for a comparison with the rotat-
ing ones. The top left panel shows a Keplerian flow with an inner
radius at the Schwarzschild spacetime ISCO, risco = 6 M. The
top middle panel has an inner radius going down to the event
horizon at ry = 2M, with a purely azimuthal velocity below the
ISCO (¥ = 1). The top-right panel is the same as the middle
panel, but with v¥ = 0 (pure radial inflow). The bottom pan-
els show the same images, convolved with a Gaussian kernel
with full width at half maximum of 20 uas, which is approxi-
mately the EHT angular resolution (EHT L4). In this and the
following images, we indicate the approximate position of the
crescent feature reported by the EHT, 40 pas, with a dashed cir-
cle. For the compact object mass and distance assumed in this
paper, this translates into 11.05M diameter. Figure 3 shows the
same setup for a spin of a = 0.8 M, where risco = 2.91M and
rg = 1.6M.

The unblurred images presented in Figs. 2 and 3 all show
thick annular areas with the addition of a very thin bright ring.
The thick annular area is due to the emission from the inner parts
of the disk, with a feeble lensing effect on the null geodesics. It
is generally referred to as the primary image of the disk and is
composed of geodesics that cross the equatorial plane at most
once (Luminet 1979). The polar radius of the primary image
clearly varies with the assumed rj,. The brightness distribution
with azimuthal angle in the primary image is a consequence of
the special-relativistic beaming effect: parts of the flow coming
toward the observer are boosted. This effect is clearly visible in
the left and central top panels of Fig. 2 where the flow is in cir-
cular rotation and coming toward the observer in the south direc-
tion. The top right panel of the same figure is obtained when the
inner radius is set at the event horizon and the flow velocity is
chosen to be purely radial below the ISCO. In this case, the flux
distribution is less dependent on the azimuth than for the circu-
larly rotating cases. We have however checked that, when taking
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into account special-relativistic effects only, the image becomes
boosted in the west direction where the flow approaches the
observer. The blurred image of this radial-inflow case (bottom
right panels of Fig. 2) is thus very isotropic, which is not consis-
tent with the observed EHT image. This elementary discussion
shows that the size of the primary image and its flux distribution
with azimuthal angle are directly linked to the choice of the inner
radius and to the dynamics of the gas in the inner disk regions.
This result agrees with that obtained by Nalewajko et al. (2020)
with a simpler model.

The very thin bright ring, also present in the unblurred
images, is often loosely referred to as the photon ring, and is
considered to be the image on sky of the unstable Kerr equato-
rial prograde photon orbit. However, the set of orbits that actu-
ally matters in order to form this highly lensed feature is the
set of spherical Kerr photon orbits first analyzed by Teo (2003),
along with numerous recent developments (see, e.g., Cunha et al.
2017a; Johnson et al. 2020). These are bound unstable photon
orbits evolving at constant Boyer-Lindquist radii, with period-
ical excursion in the 6 direction (the span of this excursion,
Omin < 0 < Omax, depends on the angular momentum of the pho-
ton). The orbits are not periodic in ¢ and are either prograde
or retrograde, depending on the sign of the conserved angular
momentum of the photon. These orbits exist within a radial range
Tphpro < T < Fphretro» WheTe Fph pro and 7pp rerro are the usual Kerr
equatorial prograde and retrograde photon orbit radii. In partic-
ular, for the Schwarzschild spacetime, in which only one photon
orbit exists at 7, = 3M, the set of spherical photon orbits is sim-
ply the sphere r = 3M. The thin bright ring in Kerr images is
thus due to light rays that approach a spherical Kerr photon orbit
before reaching the far-away observer.

As stated above, the spherical Kerr photon orbits are peri-
odic in 6. The complete 6 excursion from i, to Omax (or the
other way round) can be covered by a null geodesic an arbitrary
number of times n, corresponding to n crossings of the equatorial
plane, before leaving the orbit and reaching the faraway observer
(remember that these orbits are unstable). As n increases, the
Boyer-Lindquist radius of such an orbit becomes very close to
that of a spherical photon orbit and the impact point on sky
tends to the critical curve. Thus, the thin bright ring is actu-
ally the sum of an exponentially converging sequence of sub-
rings lying at smaller and smaller polar radii on sky, and labeled
by the number n of crossings of the black hole equatorial plane
(see Fig. 5). This fact was first noted by Luminet (1979) for the
Schwarzschild case. The resolution of the image truncates this
sequence at a finite number of subrings; see, for example, the
bottom right panel of Fig. 6 in which the outermost subring is
clearly seen, the subsequent subring is only barely visible, and
the following subrings are lost owing to finite resolution. We
note that for the M87* image, the complete set of subrings of
the thin bright ring lies within <1 pas on sky so that a very high
resolution would be needed to resolve some of its components.
Gralla et al. (2019) use the term lensing ring for the outermost
such subring (corresponding to the set of geodesics that cross
the equatorial plane exactly twice), while these authors keep the
terminology photon ring for the sum of all subsequent subrings
(corresponding to the set of geodesics that cross the equatorial
plane more than twice).

Johnson et al. (2020) give an analytic expression for the lim-
iting curve on sky, toward which the series of subrings converge
in the limit of n — oco. Gralla et al. (2019) named this limiting
curve the critical curve and we kept this name. Introducing & —
the polar radius on the observer’s screen in units of M, and ¢ —
the polar angle on the observer’s screen, the critical curve is
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the ISCO) and 2M for the two other panels (corresponding to the event horizon). The azimuthal velocity below ISCO is paramterized by v¥ = 1
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written as
&= ~a?(cosi—u,u_) + 2, (3)
p 4
= arccos | — ,
& sini
where
_ r 3 2 2
ui—m[—r +3M*r - 2a*°M . )

£2VM(? - 2Mr +a*)(2r* - 3Mr + @ M),

B M2 - a®) — r(r* = 2Mr + d?)
- a(r — M) :

¢

In this equation, r is the Boyer-Lindquist radius of the Kerr
spherical photon orbit followed by the photon on its way to
the observer. One counterintuitive property of this critical curve,
already discussed by Johnson et al. (2020), is the fact that one
Kerr spherical photon orbit (one value of r) is mapped to two
values of the polar angle, ¢ and 2r — ¢. This is due to the arccos
definition of ¢. As a consequence, the critical curve should be
seen as the image on the sky of the set of Kerr spherical orbits,
with each spherical orbit being mapped to two points along the
curve. We note that actually only a subset of the full set of Kerr
spherical photon orbits (7phpro < ¥ < Fphrewo) 18 imaged on the
sky, depending on the value of the inclination i. The full set only
gets imaged on the sky for i = 90° (see Fig. 2 of Johnson et al.
2020).

In this article, we are interested in the full sequence of highly
lensed subrings on the sky, which incorporates the notions of the
lensing ring, photon ring, and critical curve introduced above.
However, it is crucial to realize that a pixel on the observer’s
camera belonging to one of these subrings does not always con-
tain a detectable amount of flux. Its flux content, and hence its
ability to be considered as a highly lensed region on sky, depends
on the corresponding null geodesic interaction with the accretion
flow. As a consequence, the full set of highly lensed subrings
should be seen as a mathematical, theoretical locus on sky, the
flux content of which fully depends on the accretion flow prop-
erties. We thus introduce the observation-oriented notion of the
secondary ring (as opposed to the primary image) to refer to the
region on the observer’s sky where the received null geodesics
have approached a Kerr spherical photon orbit within ér < M in
terms of the radial Boyer-Lindquist coordinate r, and have vis-
ited the regions of the accretion flow emitting most of the radi-
ation. In this definition, ér can be of order M for lensing-ring
photons, while 6r <« M for photon-ring photons (see the bot-
tom panels of Fig. 4). The regions of the flow emitting most of
the radiation, in our framework, coincide with the inner regions
close to r = rj,, where all physical quantities are maximal. We
note that this definition implicitly depends on the orientation
of the observer with respect to the flow. Indeed, the projection
on sky of the regions of the flow emitting most of the radiation
depends on the inclination and position angle.

Our definition is based on more than just the number of
crossings of the equatorial plane by null geodesics. As discussed
in the Appendix A, a definition based only on the number of
crossings of the equatorial plane is not adequate as geodesics
can cross this plane at very large radii, and such crossings are not
relevant for the definition of the secondary ring. Moreover, and
most importantly, the secondary ring definition must be linked
to the particular accretion flow model used and its emission law.
This crucial point is illustrated in Fig. 4, which shows the link

A37, page 6 of 20

between the Kerr spherical orbits, accretion flow geometry, and
secondary ring of the image.

This figure first shows that highly lensed geodesics (with
more than two crossings of the equatorial plane close to the
black hole) approach a Kerr spherical orbit in the vicinity of
the black hole. Most importantly, this figure also shows that not
all geodesics that approach Kerr spherical orbits correspond to
bright pixels of the image. A secondary-ring geodesic is not only
highly bent, but it is also selected by the fact that it should visit
the inner parts of the accretion flow in order to transport enough
flux. The red geodesic of the bottom right panel of Fig. 4 is a
good example: its spherical-orbit radius is exactly equal to the
radius of the bright inner edge of the disk, allowing us to trans-
port a lot of flux. Consequently, both the polar radius on sky
and the azimuthal flux distribution of the secondary ring depend
on the properties of the accretion flow; they are not simply dic-
tated by gravitation. Should the inner radius of the disk of the
bottom right panel of Fig. 4 be moved down to the event hori-
zon, the red geodesic would transport a much smaller amount
of flux, and would thus not be considered as belonging to the
secondary ring.The geodesic optical path within the flow would
be longer, but this increase scales as r, while the decrease in
density scales as 72, so that the resulting flux would be smaller.
Gralla & Lupsasca (2020) have recently shown that the depen-
dence of the lensing-ring polar radius on the accretion flow
geometry can reach tens of percent (see their Fig. 5). We note
that this result, obtained for a geometrically thin disk, should be
considered as a lower limit in a geometrically thick disk context.
Figure 5 illustrates the notion of secondary ring and highlights
its dependence on the properties of the plasma surrounding the
black hole.

Four important notions have been introduced so far: lensing,
photon rings, secondary rings, and the critical curve. Some of
these concepts have nontrivial definitions. Figure 6 gives a peda-
gogical illustration of these notions. We insist that the only new
word that we introduce in this work, that is, the notion of sec-
ondary ring, is really needed. This concept conveys the crucial
idea that highly lensed features in the image plane intrinsically
depend on the astrophysical accretion model, which does not
appear clearly in the definition of other notions (lensing, pho-
ton rings).

We now discuss more quantitatively our Kerr images. We
note that in Figs. 2 and 3, the angular size of the dark cen-
tral region depends a lot on the inner radius of the accretion
flow. This is in agreement with the simple model of Gralla et al.
(2019). In particular, the secondary ring is not the outer bound-
ary of this central dark region when the flow extends to the hori-
zon. On the other hand, Narayan et al. (2019) recently showed
that a spherical optically thin flow in a Schwarzschild space-
time results in a central dark region the angular size of which
is independent of the location of the inner edge of the emitting
region. This discrepancy once again highlights the importance of
the careful modeling of the accretion flow for the interpretation
of EHT images.

It is also interesting to determine the brightness ratio of the
secondary ring to the primary image. We checked that in the non-
rotating case, the secondary ring weightis of 5% when ri, = risco,
20% when rj, = rg with azimuthal flow velocity, and 15% when
rin = rg with radial flow velocity. For the a = 0.8M case, the
secondary ring weight is of 30% when ry, = risco, 25% when
rin = rg with azimuthal flow velocity, and 20% when r;, = ryg with
radial flow velocity. These numbers are obtained following the
methodology presented in Appendix A. As explained there, they
should be considered as slightly overestimated. For comparison,
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Fig. 4. Top panels: zoom on the central 80 uas field of the image of a thick disk surrounding a Schwarzschild black hole (leff) or a Kerr black hole
with spin parameter a = 0.8M (right). Bottom panels: three geodesics are plotted on the (p, z) plane of height vs. cylindrical radius (in units of
M). The arrows show the direction of backward-ray-tracing integration in GYOTO. The observer is located at 16.9 Mpc toward the bottom right of
the panels. These geodesics correspond to the pixels labeled by the red, green, and blue arrows of the fop panels, which are, respectively, part of
the photon ring (3 crossings of the equatorial plane), lensing ring (2 crossings), and primary image (1 crossing) in the terminology of Gralla et al.
(2019). The half disk filled in black corresponds to the event horizon. The black solid half circle of the left panel corresponds to the Schwarzschild
photon sphere at r = 3M. The black-line delineated white crescent of the right panel corresponds to the locus of spherical Kerr orbits for a = 0.8M,
with the locations of the prograde and retrograde equatorial photon orbits denoted by black dots. The dashed thick black line within the crescent
corresponds to the spherical orbit at the inner Boyer-Lindquist radius of the red geodesic. The thick disk corresponds to the pale red region. In
the Schwarzschild case (left panel), the red geodesic approaches the photon sphere. In the Kerr case (right panel), the red geodesic approaches a
spherical orbit at its minimum Boyer-Lindquist radius. Both the red and green geodesics belong to the secondary ring.
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Fig. 5. Example of a secondary ring. 7op: two null geodesics, in
Schwarzschild spacetime, that are part of the n = 2 (blue) and n = 3
(red) photon subrings (see text), n being the number of crossings of the
equatorial plane. The black disk represents the black hole event hori-
zon, and the thin black circle shows the location of the unstable spher-
ical photon orbit. Bottom: the plane of the sky of the distant observer.
The various concentric rings depict the photon subrings (see text) cor-
responding to the different values of the number n of crossings of the
equatorial plane of the black hole. The lensing ring and critical curve
(see text) are explicitly labeled. If only one blob of emitting matter (in
green in the top panel) is present close to the black hole and interesects
the red geodesic only, and not the blue geodesic, then only the n = 3
subring will be illuminated on sky, and the others will remain dark. The
secondary ring will then coincide with the n = 3 subring. This would
not be so should the blob of emitting matter be situated elsewhere. The
spacing between the subrings on the observer’s sky is of course very
exaggerated and lies within <1 pas for M87%*.

Johnson et al. (2020) characterize the secondary ring to be respon-
sible for ~10% of the total flux seen in ray-traced GRMHD simu-
lations, with specifically a weight of 20% reported for their Fig. 1.
Our results are thus in good agreement with the more sophisticated
GRMHD simulations.

2.83. Non-axisymetric emission

The flux distribution seen in Figs. 2 and 3, in which the region
in the south of the image is brighter than the part to the north,
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is primarily due to the beaming effect. This occurs because
the emission is assumed to be axisymmetric. However, non-
axisymmetric flux distribution is necessarily present in realistic
turbulent flows. It is thus a natural question to ask what should
be the condition on the non-axisymmetry of the emission such
that the flux repartition would be substantially altered. To inves-
tigate this point, we study a very simple non-axisymmetric fea-
ture in our disk model. We consider that some region of the
disk, centered at a cylindrical radius (defined in Boyer-Lindquist
coordinates by p = r sinf) of p = py and azimuth ¢ = ¢,
with typical extensions o, and o, is hotter than the rest by
some increment AT. Specifically, we consider that the temper-
ature around (pg, o) reads

T(p,¢) = Taxisym(p) +To G(p, ) 5)

where Tyisym(p) is the axisymmetric temperature defined in the
previous section, AT = Ty G(p, ¢), Ty is a chosen parameter, and
the function G(p, ¢) is the following product of Gaussians:

2 2
Glprg) = — e 5] 4= ©)
2no,0,
To enhance the difference with respect to the axisymmetric case,
we choose (pg, o) such that this region is located toward the
north on the sky, that is, opposed to the beamed region. The
parameters o, and o, are chosen such that the hotter region has
a comparable extension on the sky as compared to the beamed
region of the axisymmetric images.

Figure 7 shows the images obtained when T is varied. The
images indicate that the temperature has to increase by a fac-
tor of around 8 for the non-axisymmetric structure to over-
come the beaming effect. Seeing such an unusually hot coher-
ent component in the GRMHD simulations is rather uncom-
mon. This can be seen in Fig. 9 of EHT LS5, where a collec-
tion of GRMHD snapshots fitted to the EHT data create a distri-
bution centered around an expected brightness maximum posi-
tion angle of =200° (about 90° clockwise from position angle
of the approaching jet projection) with turbulence related scatter
of o = 60°. Nevertheless, there is a non-zero probability for a
very different fitted orientation. It is not entirely clear how accu-
rate GRMHD models are at reproducing the intrinsic turbulence-
induced structural variability of a realistic accretion flow in the
vicinity of a black hole, as EHT is the first instrument to deliver
observational data that could be used to test this.

3. Emission from a geometrically thick disk in
non-Kerr spacetimes

In this section, we present millimeter images of a geometrically
thick disk surrounding compact objects that are different from
the standard Kerr black hole. We first focus on the nonrotat-
ing Minkowski and ultracompact star spacetimes (see Sects. 3.1
and 3.2) and then on the rotating boson star and Lamy worm-
hole spacetimes (see Sects. 3.3 and 3.4). Our goal is to determine
whether or not the current EHT data can exclude non-Kerr space-
times based on arguments independent of the geometric structure
of the accretion flow. This section presents theoretical images,
while the fits to EHT data are discussed in Sect. 4.

3.1. Minkowski spacetime

We start by considering the most extreme non-Kerr case of a flat
spacetime described by Minkowski geometry. While there may
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Fig. 6. Left sketch: black hole surroundings. The black hole event horizon is represented by a black disk, and the geometrically thick accretion
disk is represented by the shaded red region (only one half of the disk is shown to save space). The sketch is rotated to have the same orientation
of the black hole spin vector (black arrow) as in the central panel. The dashed red and blue circles around the black hole are the location of two
Kerr spherical photon orbits (not to scale), the radii of which are given below. Central panel: plot of the critical curve on the observer’s sky as
defined by the polar Eq. (3), for a black hole spin of @ = 0.8 M and an inclination angle of i = 160°. The critical curve is rotated to account for
the position angle of M87* (PA = —70° as labeled on the panel, or 290° east of north). The projection of the black hole spin vector is shown by
the black arrow (opposite to the approaching jet projection depicted by the blue arrow in Fig. 2). Three pairs of points are shown in red, green,
and blue along the curve and are the images of the Kerr spherical orbits with radii » = 2.31M, 2.7M, and 3.05M, respectively. The Kerr equatorial
prograde and retrograde photon orbits for a = 0.8 M are ryppro = 1.82M and rpp rero = 3.81M. The gray bent arrow at the left of the critical curve
shows the direction of increase of the Kerr spherical orbit radius that the photon is following on its way to the observer (same evolution on the
right side of the critical curve). Two null geodesics connecting the red and blue Kerr spherical orbits to the corresponding points on the critical
curve are illustrated between the left drawing and the central panel. Right panel: ray-traced image of the model with the same field of view as
in the middle panel. This image is a zoom on the central 45 uas of the top left panel of Fig. 3. The 4 important notions introduced in the text,
lensing, photon, secondary rings, and critical curve, are labeled. The zoom on the region of the right panel surrounded by the dashed red rectangle
is shown in the bottom right insert. This allows us to better see the difference between the lensing and photon rings. The critical curve is extremely
close in angular radius to the photon ring (they are impossible to distinguish with the naked eye when comparing the central and right panels).
However, the two notions are different mathematically. In the limit of an infinite resolution, the photon ring of the right panel would decompose
into a sequence of rings converging to the critical curve.

be little physical motivation to consider such an object as a viable
alternative to a Kerr black hole, with this exercise we investi-
gate whether any spacetime curvature is absolutely necessary
to explain the EHT images. This means that we only consider
the laws of special relativity and discard all general relativistic
effects. This describes what could be thought of as a Michell-
Laplace relativistic black hole (Michell 1784; Laplace 1796). It
is a “relativistic” black hole because of the important addition
of special relativity as compared to the original object. We want
to compare this “flat-spacetime black hole” to a Schwarzschild
black hole. In both cases, an accretion disk is assumed to lie in
the equatorial plane of the object, with the same inner radius
rin = 6M. There is of course no physical motivation to terminate
the accretion disk at this radius for our Michell-Laplace relativis-
tic black hole. Our choice is dictated by the comparison to the
Schwarzschild spacetime. The angular velocity of the emitting
matter of the Michell-Laplace relativistic black hole is assumed
to follow the Newtonian law Q oc 773/2,
Figure 8 shows a comparison between these two cases.

The high-resolution images can be immediately distin-
guished by the absence of a secondary ring in the Minkowski
spacetime. We return to that aspect in Sect. 5.2, discussing future
observational perspectives. Nevertheless, the extreme similarity
between the images observed with the EHT resolution (bottom
row of Fig. 8) is a good illustration that reasoning based exclu-
sively on the image morphology can tell little about the nature of
the central object.

3.2. Nonrotating ultracompact star

We compute the image of M87* assuming that the central com-
pact object is not a black hole but rather an ultracompact non-
rotating star with a surface slightly above the radius of its event
horizon. While we refer to this hypothetical object as a star, its
only assumed property is the presence of a surface, as we do not
consider any internal physics of the object.

Birkhoff’s theorem ensures that the metric at the exte-
rior of this object is the Schwarzschild metric, provided the
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Fig. 7. Non-axisymmetric disk compared to axisymmetric case for spin a = 0.8 M. Only blurred images are shown. The second, third, and fourth
panel from the left are obtained by considering a hotter region in the disk defined by a temperature increment of T/ Tinner = 2, 4, or 8, respectively.
This comparison shows that the non-axisymmetry of the flow must be substantial (approximately an order of magnitude contrast) to overcome the
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ultracompact star is spherically symmetric. We note that should
the star rotate its exterior metric is not in general that of
Kerr, so that the generalization to a rotating spacetime is not
straightforward.

Our ultracompact-star spacetime is defined as follows. The
star surface is modeled as a spherical surface of Boyer-Lindquist
radial coordinate ry = (2 + €)M with € < 1 in a Schwarzschild
spacetime. The surface of the star is assumed to be fully optically
thick so that its interior, which is not properly modeled in our
setup, is never visited by any photon.

The surface of the star is assumed to emit blackbody radi-
ation at the temperature of the inner accretion flow, T¢;,, here
assumed to be Tejn0 = 8 X 10'9 K. This is of course a very strong
assumption. It is likely, however, that this surface should be ther-
malized given that null geodesics are highly curved when emit-
ted at the surface of the star and thus efficiently couple different
parts of the surface (Broderick et al. 2009). Moreover, the con-
siderations presented in this work are not qualitatively affected if
the surface temperature is not exactly equal to the inner accretion
flow temperature.
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Fig. 8. Images of a geometrically thick accre-
tion disk with inner radius r, 6M in a
Schwarzschild spacetime (left column) or in
Minkowski spacetime (right column). As in
all figures, the bottom row corresponds to the
top row images blurred to the EHT resolution
(20 pas), the dashed blue circle has a diameter
of 40 pas (size of the ring feature reported by the
EHT), and the blue arrow shows the projected
direction of the approaching jet.
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We now discuss more quantitatively the radiation emitted at
the surface of the star. The observing frequency vy is fixed
in the whole article to the EHT observing frequency, vobso =
230 GHz. The emitted frequency at the surface of the star is sim-
ply related to that by ven, = vobs/g, where g = (1 — 2M/ re)V/? is
the redshift factor, which decreases to 0 as ry approaches the
Schwarzschild event horizon. The Planck function B, (v, T¢jn)
peaks at a very high frequency of V. ~ 5 X 10?! Hz. The emit-
ted frequency reaches this value for (rg — 2M)/M = € =~ 1077,
In the following we thus safely assume that the Planck function
is in its Rayleigh-Jeans regime. Using the frame-invariance of
I,/v?, we can thus express the observed specific intensity as

2

R 2m\'"?
I~ =3 kTein (1 - ) @
c Fst
2
~ 2V0bs kT. . \/E
C2 e,in 2,

where k is the Boltzmann constant, ¢ is kept explicitly for clar-
ity, and we have used the assumption that € < 1. We want this
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Fig. 9. Images of a geometrically thick accretion disk with inner radius r;, = 6M in a Schwarzschild spacetime (left column); in the spacetime of
an ultracompact star with surface radius ry = 2.05M, emitting blackbody radiation at the inner temperature of the accretion flow T3, = 8 x 10!°K
(middle column); or in the same spacetime as the middle column, but with ry = 2.0005M (right column). As in all figures, the bottom row
corresponds to the top row images blurred to the EHT resolution of 20 pas; the dashed blue circle has a diameter of 40 pas (size of the ring feature
reported by the EHT) and the blue arrow shows the projected direction of the approaching jet.

observed specific intensity, corresponding to the interior of the
secondary ring in the ray-traced images of Fig. 9, to be equal to
some fraction 1/k of the maximum observed specific intensity
from the accretion disk, 7;"**. We thus write

2?2 1

C(;bs kTe,in g — ; I:/nax (8)
and

_ ey o
€= 2k2v* T2 2

obs ™ e,in

When considering a Schwarzschild black hole surrounded by a
thick disk with r;, = 6M (see Fig. 2, top left panel), the max-
imum observed specific intensity from the accretion disk is on
the order of I'y* ~ 2 X 10" Jy -srad™!. Fixing « = 10 (the stel-
lar surface emission is negligible), corresponding to the dynamic
range of the EHT images (EHT L4), we derive € = 0.0005, and
for k = 1 (the stellar surface dominates) we find € = 0.05. The
following equation gives a practical expression for €

_ 005 ( Vobs )‘4( Tein )‘2 (131’4* )2
6 = — 5 PE— _, b
K2 Vobs,0 Te,in,() I\[,fl(;lx
which can be understood as a joint constraint on € and the surface
temperature. Figure 9 shows the image of an accretion disk with
rin = 6M surrounding a Schwarzschild black hole (left panel),
and an ultracompact star with surface radius defined by € = 0.05

(middle panel) or € = 0.0005 (right panel). Provided that €
is small enough, there is no noticeable difference between the

(10)

Schwarzschild and ultracompact-star cases. We bring up future
perspectives of constraining € in Sect. 5.3.

Although we do not discuss gravastars (Mazur & Mottola
2004) in this article, we note that nonrotating gravastars would
lead to similar images as our Fig. 9, because in both cases a
near-horizon surface is present and the external spacetime is
Schwarzschild.

3.3. Rotating boson star

In this section, we consider the spacetime of a rotating boson
star, as computed by Grandclément et al. (2014). We are mod-
eling what is known as a mini boson star, in the sense that
we do not consider any self-interaction between the bosons.
Boson stars are composed of an assembly of spin-O0 bosons
constituting a macroscopic quantum body that evades collapse
to a black hole by means of Heisenberg uncertainty rela-
tion (Liebling & Palenzuela 2017). Boson stars have no hard sur-
face, no event horizon, and no central singularity. As such they
are extremely different from black holes and are a good testbed
for horizonless spacetimes (Vincent et al. 2016).

A boson star is defined by two parameters, k € N and
0 < w < 1; we note that w is in units of m,c?/h, where my, is the
mass of the boson (see Grandclément et al. 2014, for details).
The angular momentum of a boson star is quantized and pro-
portional to the integer k because of the quantum nature of the
object. The parameter w is related to the compactness of the
star, with compactness increasing when w approaches 0. In this
work, we consider a boson star defined by (k = 1,w = 0.77),
which has already been discussed in Vincent et al. (2016). For
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k = 1 boson stars may or may not have photon orbits depend-
ing on the value of w (Grandclément 2017). If photon orbits
exist, there must be at least two of them, one of which is stable,
leading to a questionable stability of the spacetime. This state-
ment is actually much more general and applies to any axisym-
metric, stationary solution of the Einstein field equations with a
matter content obeying the null energy condition (Cunha et al.
2017b). The (k = 1,w = 0.77) boson star spacetime is interest-
ing because there is no known reason to question its stability. In
particular, it has neither a stable photon orbit nor an ergoregion.
Its parameters translate to a spin of @ = 0.8M, the same as the
Kerr black hole discussed in Sect. 2.

Figure 10 shows a comparison between the image of a geo-
metrically thick accretion disk surrounding a Kerr black hole and
the rotating boson star discussed above.

For the Kerr spacetime, the inner radius of the accretion
disk is fixed at the ISCO, ripxerr = 2.91M. For the boson-star
spacetime, using the same inner radius leads to an image that is
slightly too small on sky. We thus increased it to ripgs = 3.5M in
order to match the Kerr image as closely as possible. The inner
number density is chosen accordingly, following our r~2 power
law. Choosing a different inner radius for the two spacetimes
is not an issue; our goal is only to determine whether a boson-
star spacetime can mimic a Kerr spacetime. The emitting matter
of the boson-star spacetime follows circular timelike geodesics
of the boson-star metric, the equation of which can be found
in Grandclément et al. (2014). These authors analyzed the sta-
bility of time-like circular geodesics for boson stars. They show
that all circular timelike geodesics are stable for boson stars, so
that it is sufficient to speak of the innermost circular orbit (ICO).
Our (k = 1,w = 0.77) boson star has an ICO at rico = 2.09M.
Our choice of rj,gs = 3.5M means that the inner disk radius is
at ~1.7 times the ICO radius for the boson-star spacetime. For
comparison, we also show the image corresponding to a choice
of rinBs = rico in the right column of Fig. 10.

The boson-star case with a larger inner radius of the accre-
tion flow leads to a blurred image very similar to Kerr, given that
the thin secondary ring of the Kerr image is washed out by the
limited resolution of the observations. On the other hand, setting
the inner radius at the ICO leads to a much smaller image on sky
(assuming the same mass), which results in a blurred image that
is very different from Kerr. This shows that the accretion flow
properties matter when comparing a boson star to a Kerr black
hole. Modifying the spacetime geometry alone is not sufficient to
independently produce an observationally different image on the
accretion flow geometry. This demonstrates that more sophisti-
cated simulations, connecting general relativity and the accretion
flow magnetohydrodynamics, may be necessary to convincingly
discuss the observable differences between black holes and other
compact objects.

Recently, Olivares et al. (2020) published the first GRMHD
simulation of an accretion flow surrounding a nonrotating boson
star. These authors computed the associated 230 GHz image, tak-
ing into account physical parameters typical of the Sgr A* envi-
ronment, concluding that it is possible to distinguish a boson
star from a black hole by comparing the nonrotating boson-star
image to a Schwarzschild and a = 0.937M Kerr images. They
reported the boson-star image to be more compact and symmet-
ric, similar to the results we present in the last column of Fig. 10,
as a consequence of a gas accumulation at small radii. However,
this picture may be different for a fast-spinning boson star; we
note that there are no slow-rotating boson stars. Answering this
question requires further GRMHD studies, which might in par-
ticular be able to discuss the jet power delivered by a boson star.
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3.4. Lamy spinning wormhole

In this section we consider the rotating wormhole solution first
described in Lamy et al. (2018), which we hereafter refer to as
Lamy wormhole. This solution was found by generalizing the
spherically symmetric regular (i.e., singularity-free) black hole
solution of Hayward (2006) to the rotating case. This metric
takes the same form as the Kerr metric expressed in Boyer-
Lindquist coordinates, but with the constant M replaced by the
function

I

M) = M——"
) =M o

(1D

where b is a charge homogeneous to a length and is expressed in
M units with our conventions. In the original Hayward metric, b
is interpreted as a scale at which quantum gravity effects would
act and regularize the classical singularity. It should therefore
typically take extremely small values. However, this parameter
has been reinterpreted by Fan & Wang (2016) as the magnetic
charge associated with a magnetic monopole in a nonlinear elec-
trodynamics theory that sources the Hayward metric. In this con-
text, b can take macroscopic values.

We consider only one pair of values for the spin parameter
and charge, a = 0.8 M and b = M. This choice fully specifies the
metric. It can be shown that this spacetime corresponds to a rotat-
ing wormhole (Lamy et al. 2018). In particular, it has no event
horizon and of course no curvature singularity. The topology of
this spacetime corresponds to two asymptotically flat regions:
one with » > 0 and one with » < 0, connected by a throat
at r = 0. The energy conditions are violated in the full region
r < 0, however the stress-energy tensor decreases quickly to
zero when |r| increases so that the exotic matter is concentrated
near the throat. This spacetime is very exotic, however, quickly
converges to Kerr away from r = 0. Typically, for r > 10M,
the metric is Kerr; the relative difference of g, for instance is
less than 0.05% in the equatorial plane for » > 10M. Thus, a
Lamy wormhole can be seen as an interesting testbed for the
wormhole-like non-Kerrness of spacetime. The final important
property of this spacetime (as well as all Lamy spacetimes) is
that it admits spherical photon orbits similar to Kerr’s. The locus
of these orbits depends of course on the values of @ and b. These
orbits are analyzed in Lamy (2018).

Figure 11 shows three images of a thick disk surrounding
our Lamy wormhole compared to a Kerr image. The bottom left
panel helps explain the highly lensed central part of the image,
as it is not confused with the primary image.

The striking feature of the highly lensed part of this panel is
the existence of two rings and of a crescent in between the rings.
These features are also noticeable in the top right panel, although
less clear as they overlap with the primary image. These features
are due to extreme light bending in the central regions of the
Lamy spacetime because of the existence of spherical photon
orbits. They are absent in the boson-star image in Fig. 10, as the
k =1, w = 0.77 boson star has no photon orbits.

To go one step further in the analysis of the impact of pho-
ton orbits on the image, we considered a more compact boson-
star spacetime, where k = 1 and w = 0.70, which has been
already studied in Vincent et al. (2016). This spacetime has pho-
ton spherical orbits. Figure 12 shows null geodesics correspond-
ing to one of the bright pixels of the inner crescent feature of the
bottom left panel of Fig. 11 computed in Lamy, Kerr, and the two
different boson-star spacetimes. This figure highlights the close
similarity of the geodesics corresponding to the two horizonless
spacetimes with photon orbits (Lamy in red and boson star with
k = 1, w = 0.70 in black). Both of these spacetimes lead to
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Fig. 10. Images of a geometrically thick accretion disk with inner radius r;, = 2.91M in a Kerr spacetime with spin parameter a = 0.8M (left
column). Same image, but with a disk inner radius at r;,, = 3.5M, in a rotating boson star spacetime defined by (k = 1, w = 0.77), which corresponds
to the same value of the spin parameter (middle column). Same boson-star spacetime with ri, = 2.09M, corresponding to the ICO of that spacetime
(right column). As in all figures, the bottom row corresponds to the top row images blurred to the EHT resolution of 20 uas; the dashed blue circle
has a diameter of 40 pas (size of the ring feature reported by the EHT) and the blue arrow shows the projected direction of the approaching jet.
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Fig. 11. Tiwo top panels and bottom left panel show three
images with a field of view of 80 uas of a thick disk sur-
rounding a Lamy wormhole with spin a = 0.8M and
charge b = M. The inner disk radius is at r;, = 1.6M
(ISCO radius of the Lamy spacetime, top left panel),
2.91M (ISCO radius of the Kerr spacetime with spin
a = 0.8M, top right panel), or 6M (bottom left panel).
The bottom right panel shows the image of a thick disk
with inner radius r, = 6M, computed with the same field
of view, surrounding a Kerr black hole with spin a =

-10 -5 0 5 10 0.8M. In these panels, the image resolution is 300 x 300
a (M) a (M) pixels.

6 (M)
6 (M)
o

a very big change of the Boyer-Lindquist 6 coordinate of the ing the compact object. Appendix B shows that the similarity
null geodesic before and after approaching the compact object. between the boson star (k = 1, w = 0.70) and Lamy spacetimes
On the contrary, the horizonless spacetime with no photon orbit is not restricted to the particular geodesic represented in Fig. 12.
(boson star with k = 1, w = 0.77, in green) leads to a very differ- The complete images are extremely similar and possess a com-
ent geodesic with a much smaller change of 6 when approach- parable inner crescent feature (see Appendix B).
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Fig. 12. Four geodesics corresponding to the same screen pixel for a
Kerr (blue; integration stopped when approaching the event horizon),
boson star (green for the k = 1, w = 0.77 boson star considered in
this paper; black for a more compact k = 1, w = 0.7 boson star), or
Lamy (red) spacetime. The selected pixel is one of that forming the
crescent-shape highly lensed feature visible on the bottom left panel of
Fig. 11. The arrows represent the direction of backward-in-time ray-
tracing integration. The observer is thus at a large negative value of z.
The disk inner radius in all cases is at r;, = 6M.

We note that such a crescent feature was also noticed for
edge-on views in these two spacetimes by Vincent et al. (2016)
and Lamy et al. (2018). It is thus plausible that such features
are characteristic of a large class of horizonless spacetimes with
photon orbits (Wielgus et al. 2020).

Figure 13 compares the EHT-like images obtained for Kerr
and Lamy spacetimes. It shows that the complex features of
the Lamy spacetime are partially lost when blurred at the EHT
resolution. Still, there is a clear excess of flux in the central
fainter region as compared to Kerr. Given that the non-Kerrness
of Lamy spacetime depends directly on the charge b, it would
be possible to derive a constraint on this parameter by perform-
ing fits of various Lamy spacetimes with different values of the
charge. Such a constraint goes beyond our current analysis.

4. Fitting models to the EHT data

Up to this point we only discussed the differences between
Kerr and non-Kerr images based on qualitative image-domain
comparison. It is important to notice that we did not consider
the sparsity-related limitations of the EHT image reconstruc-
tion capabilities (EHT L4). Effectively, our images represented
the actual view of the model at the assumed resolution without
any reconstruction-related distortions. In contrast, this section
is devoted to comparing models of different compact objects
directly to the M87* observational Fourier domain data.

The total intensity data from 2017 EHT observations of
M87* have been publicly released’. The data consist of four
independent days of observations in two independently recorded
and processed frequency bands (HI and LO, EHT L3). We per-
formed fitting of the models presented in Sects. 2 and 3 to all
eight released EHT datasets. As is the case in very long base-
line interferometry (VLBI), data correspond to the sparsely sam-
pled Fourier transform of the images on the sky (Thompson et al.
2017). Because of the sparsity limitations, sophisticated post-
processing is required to reconstruct the corresponding image

2 https://eventhorizontelescope.org/for-astronomers/
data
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EHT L4. While Fourier domain (referred to as visibility domain
in this context) data offer well understood error budget, recon-
structed images may suffer from difficulty to assess systematic
uncertainties. This is why all quantitative model fitting should
take place in the visibility domain. In our case we are sampling
the ideal (unblurred) model images using a synthetic model of
the EHT array, utilizing the exact coverage of the M87* obser-
vations in the 2017 EHT campaign, and the expected magni-
tude of uncertainties. That part of the work was performed in
the framework of the eht-imaging library® (Chael et al. 2016,
2019). For the crude fitting procedure that we utilize in this
paper, we consider scaling, rotation, and blurring of the model
images, minimizing the reduced y? errors calculated against
robust interferometric closure quantities (closure phases and log
closure amplitudes; Blackburn et al. 2020). In each iteration of
the error minimization procedure, the updated model is sampled
and compared with the observed closure data. The procedure of
selecting the linearly independent set of closure data products
and defining the exact form of the minimized error functions
follows that described in EHT L4 and EHT L6. From the esti-
mated scaling parameter, we recover the mass M of the model
best fitting the data. The rotation parameter allows us to calcu-
late the position angle of the bright feature found in the best-
fitting model. We note that both scale and orientation of the
image were fixed in the discussions in previous sections to the
values given in Table 1. The results of the fitting procedure are
summarized in Fig. 14. All models individually give very con-
sistent mass estimates for all days and bands, indicating that the
errors are not of random statistical character, but rather are dom-
inated by the systematic model uncertainties. Zero-spin models
consistently result in much lower estimated mass, roughly con-
sistent with the competing M87* mass measurement based on
gas dynamics (Walsh et al. 2013). This is most likely a conse-
quence of the choice of ry, = risco = 6M, resulting in a larger
image for the fixed object mass than in the case of a smaller ryy,.
The GRMHD simulations suggest that the ISCO has little impor-
tance for hot optically thin flows (Yuan & Narayan 2014), hence
such a choice of rj;, may be seen as inconsistent with the addi-
tional astrophysical or magnetohydrodynamical constraints. The
models with spin a = 0.8 yield object mass consistent with the
EHT and with the stellar dynamics measurement (Gebhardt et al.
2011). All models localize the maximum of the emission in the
south of the image (see Fig. 14, right panel). The position angle
of 200°, which approximates the expected orientation, given the
observed position of the jet on the sky (jet position angle in the
observer’s plane minus 90°; EHT LY), is indicated with a dashed
horizontal line. We also see indication of counterclockwise rota-
tion between first and last day of the observations, consistently
with results reported in EHT L4 and EHT L6. None of the fits
are of very high quality, as expected from very simple mod-
els with little number of degrees of freedom (see Fig. 15) and
there is no clear indication of any of the models outperform-
ing others. Some models, such as the ultracompact star with a
surface located at 2.05M (Fig. 9, middle column, fitting results
not shown in this section) are in dramatic disagreement with the
data, resulting in reduced y? errors larger than 100 for each of
the EHT data sets. Similarly, the model of a boson star shown
in the last column of Fig. 10, being rather symmetric in appear-
ance, fits data poorly with reduced y? > 30 for all EHT data sets.
The fitting errors reported in Fig. 15 are of similar magnitude
as the average errors resulting from fitting individual snapshots
from GRMHD simulations to the EHT data (EHT L5). This sup-
ports the notion that geometric models could effectively repre-
sent mean properties of the more complicated simulations.

3 http://github.com/achael/eht-imaging
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Fig. 13. Images of a geometrically thick accretion disk with inner radius r;, = 2.91M in a Kerr spacetime with spin a = 0.8M (left column), or in
a Lamy wormhole spacetime with spin a = 0.8 M and charge b = M. The inner disk radius is at r;, = 2.91M for the left and right panels, and at
rin = 1.6M for the central panel. As in all figures, the bottom row corresponds to the top row images blurred to the EHT resolution of 20 uas, the
dashed blue circle has a diameter of 40 uas (size of the ring feature reported by the EHT), and the blue arrow shows the projected direction of the

approaching jet.
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Fig. 14. Results of fitting the models of Sect. 3 to the EHT data sets. Gray bands denote previous measurements of mass and orientation of the
MB8T7*. Left: masses of the best-fit models. Different models with spin a = 0.8 give mass measurement consistent with that reported by the EHT.
Models with zero spin give systematically inconsistent mass estimate. Right: position angles (east of north) of the brightest region in the best-fit
models. All models constrain the brightness maximum to be located in the south of the source image, consistent with the EHT results.

5. Conclusions and perspectives

In this article we develop a simple geometric model for the inner
accretion flow of M87%*, the supermassive black hole at the cen-
ter of the galaxy M87. We use this model to obtain predictions
of the millimeter image of the close surroundings of M87* and
compare them to the EHT findings. We focused mainly on two
questions.

First, we tried to develop on the recent studies devoted to
improving our understanding of the sharp highly lensed features
of strong-field images (Gralla et al. 2019; Johnson et al. 2020).
Our findings regarding this issue are summarized in Sect. 5.1
below.

Secondly, we investigated whether objects alternative to Kerr
black holes (be they physically justified or not) could produce

observational signatures similar to those seen by the EHT. We
show that interpreting EHT data sets with geometric flow models
results in the image-domain morphology being consistent with
the EHT findings (see also Figs. C.1 and C.2), and several non-
Kerr spacetimes fitting the EHT data similarly well as their Kerr
counterparts.

We show that without an imposed assumption on the com-
pact object mass, no spacetime curvature effects are needed
to explain the current EHT results (see Michell-Laplace black
hole). Even if a mass prior from stellar dynamics is assumed,
exotic objects such as boson stars or Lamy wormholes can pro-
vide images consistent with the EHT observations of M87*
with a favorable geometric configuration of the accretion flow.
Hence, we conclude that the published EHT observations, while
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Fig. 15. Quality of the fits measured by the reduced y? errors resulting

from fitting to the interferometric closure quantities in the EHT data
sets.

consistent with the Kerr paradigm, do not provide a strong and
unambiguous test of its validity. Our results agree also with
the general point made earlier by Abramowicz et al. (2002).
Although, as stated by these authors, there cannot be any direct
electromagnetic proof of the existence of an event horizon, there
is a hope for a robust detection of a secondary ring by a more
developed future version of the EHT. This would be of great
importance, showing the existence of null spherical orbits, which
is however still very different from showing that the object is a
Kerr black hole. On the other hand, resolving sharp, strongly
lensed image features inconsistent with the ring geometry, such
as what is seen for horizonless spacetimes with photon orbits
(see Appendix B), would make a very strong argument against
the Kerr paradigm. Sections 5.2 and 5.3 below give our main
conclusions regarding these topics. Finally, Sect. 5.4 gives some
future research perspectives.

5.1. Definition of the secondary ring

Although the set of Kerr spherical orbits plays a crucial role in
defining the thin bright ring region on the sky due to highly
lensed photons (Teo 2003), the properties of this feature also
depend strongly on the proprieties of the accretion flow.

That is why we defined in Sect. 2.2 the secondary ring as the
region on the observer’s sky where the received null geodesics,
first, have approached a Kerr spherical photon orbit within 6r <
M in term of the radial Boyer-Lindquist coordinate r and, sec-
ond, have visited the regions of the accretion flow emitting most
of the radiation.

It is clear from this definition that the secondary ring is not
only dictated by gravitation. The astrophysics of the emitting gas
has a role in determining both the polar radius and azimuthal
distribution of flux in the ring. This dependence is of course at
an extremely minute scale (~uas) and does not matter as far as
the current EHT data are concerned. However, it will matter with
future, higher-resolution space VLBI data.

5.2. Detecting the secondary ring

Johnson et al. (2020) proposed that VLBI observations with
extremely long baselines could allow for measurement of the
secondary ring properties to constrain the spin of M87*. This
idea is based on the simple observation that the Fourier ampli-
tudes of sharp image features decay slower with the spatial fre-
quency than those of extended features, and therefore should
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dominate the signal on extremely long baselines. As an illus-
tration, the top panel of Fig. 16 presents visibility amplitudes
of images* of Schwarzschild black hole and Minkowski space-
time Michell-Laplace object (what is shown exactly is the hori-
zontal slice through the amplitudes of the Fourier transforms of
the two images). In this example, the contribution from a sharp
ring feature clearly dominates the signal on baselines longer than
40 G4, and at 100 GA the contribution of the sharp feature is
one order of magnitude stronger than that of the primary image.
Simply detecting an excess of power at very high spatial fre-
quencies would therefore indicate the presence of a sharp fea-
ture. However, determining the exact character of the feature,
for example, photon ring, sharp edge, or Lamy wormhole’s inner
crescent, would likely require a more sophisticated modeling
approach. This can be seen in the bottom panel of Fig. 16, where
a very similar spectral-power fall-off characterizes both the Kerr
spacetime, where a secondary ring is present, and the boson-star
spacetime, where that feature is missing. However, the two cases
clearly differ in detailed structure. Detecting the presence of a
sharp secondary ring feature would exclude solutions such as our
Michell-Laplace relativistic black hole or a boson star without
photon orbits, as that discussed in Sect. 3. Given the limitation of
the Earth’s size and atmospheric stability, space VLBI observa-
tions would be required to achieve this feat. Missions potentially
capable of performing such a measurement are already being
proposed (see, e.g., Kardashev et al. 2014; Pesce et al. 2019).

5.3. Constraining the ultracompact star surface location

The constraints put on € by the EHT images depend on the
dynamic range of the images, that is, on the ratio of the brightest
image part to the least bright part, which can be reliably distin-
guished from the noise. Since the dynamic range of EHT images
is on the order of few tens, only an upper limit for the con-
trast x between the brightest and faintest parts of the image was
given by EHT L1, « > 10. Simulations show that the expan-
sion of the EHT array planned for the 2020s should improve the
dynamic range by an order of magnitude (Blackburn et al. 2019)
, tightening the constraints on € by two orders of magnitude
(see Eq. (10)). These constraints are ultimately limited by the
jet emission from the region between the black hole and the
observer, for example, from the wall of the jet.

5.4. Future perspectives

In this paper we focused on comparisons between Kerr and non-
Kerr spacetime models of M87*. Hence, we did not present
extensive studies of the influence of the model parameters on
the image and its interpretation. As an example, we often fixed
the radius ry, at the ISCO of the spacetime. While the ISCO
plays an important role in analytic models of relativistic geomet-
rically thin accretion as the inner disk radius (Novikov & Thorne
1973), its relevance for at least some realistic accretion scenar-
ios is expected to be less prominent (Abramowicz et al. 1978,
2010). Since the ISCO radius strongly depends on spin, so does
the size of the primary image of a disk model terminated at the
ISCO; this would result in a spin-dependent diameter-mass cali-
bration of the EHT results, contrary to the GRMHD predictions
(EHT LS, EHT L6). In the future, it will be interesting to discuss
the influence of the geometric model parameters on the obtained
results, as well as to compare geometric models and GRMHD
simulations and their relevance for the interpretation of the M87*
images.

41000 x 1000 pixels images were used for this test.
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Fig. 16. Fourier transform of the data. Top: one dimensional horizontal
slice from a 2D Fourier transform of the images presented in Fig. 8. For
the Schwarzschild metric, the image was decomposed into the primary
image (smooth ring, dashed blue) and sharp secondary ring (dashed
red). For very long baselines (large spatial frequencies) the secondary
ring dominates the total emission. Bottom: similar, but for the images
shown in Fig. 10. While the boson-star image does not exhibit a sec-
ondary ring, the amplitude falloff is similar to that of the Kerr spacetime.

We also plan to discuss the impact of an ejection flow on the
observables to be able to discuss all the possible states of M87*
(disk- or jet-dominated). Our goal is to highlight the usefulness
of the geometric models to facilitate the understanding of the
constraints that can be placed on the physical parameters of the
accretion flow and the compact object.
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Appendix A: Practical computation of the flux
measured in the secondary ring

Secondary ring removed

Kerr a=0.8M rj,=ry

Fig. A.1. Left: image of the central 80 pas of a thick disk surrounding
a Kerr black hole with spin parameter a = 0.8M, shown in logarithmic
color scale. Right: same image, putting to zero all pixels corresponding
to geodesics that cross more than once the equatorial plane within the
coordinate sphere r = 10M.

The lensing and photon rings, as defined by Gralla et al. (2019),
are found by tracking the number of crossings of the equatorial
plane of null geodesics. In the realistic astrophysical context
that we are dealing with here, such a definition is not suffi-
cient. Indeed, a geodesic can cross the equatorial plane at a
large radius, long after visiting the innermost regions of space-
time (for an example see the blue geodesic of the bottom panel
of Fig. A.2, which crosses the equatorial plane at r ~ 30M).
Still, keeping track of the equatorial plane crossings of geodesics
is a very practical and easy-to-implement way of dealing with
highly lensed geodesics, while the general definition introduced
in Sect. 2.2 is not very practical to implement. To determine the
flux measured in the secondary ring of the image, we thus keep
track of the null geodesics that cross the equatorial plane more
than once within a Boyer-Lindquist coordinate sphere r < 10M.
This value is chosen rather arbitrarily, after considering many
highly bent geodesics as those illustrated in Fig. 4. This criterion
is very easy to implement in the context of our backward-ray-
tracing code.

Figure A.1 shows two images, with the secondary ring
present or removed by applying this recipe.

The cut seems by eye somewhat too large from this figure.
The high-flux pixels of the bright ring seem less extended than
our mask. This is due to the fact already highlighted above that
the flux distribution in the secondary ring depends a lot on the
properties of the accretion flow. Figure A.2 illustrates this by fol-
lowing two geodesics, one of which (in red) belongs to the high-
flux secondary ring, while the other (in blue) lies just outside.
This figure shows that the red and blue geodesics are extremely
similar and cannot be simply distinguished based on pure gravi-
tational arguments such as number of crossings of the equatorial
plane, number of 6 turning points, or sharpness of these turning
points. The red geodesic transports a lot of flux only because it
visits the innermost disk region, which is not the case for its blue
counterpart. This figure makes it clear that simple definitions of
the secondary ring flux, such as the one that we adopt, are not
enough to select the sharp high-flux region of the image. Thege-
ometry of the accretion flow should also be taken into account,
as discussed in Sect. 2.2, which makes a proper definition quite
cumbersome. We note that it is not sufficient to record the num-
ber of crossings of the thick disk, given that the blue geodesic
crosses it one more time than the red geodesic. In this case, we

A37, page 18 of 20

Kerr a=0.8M ri,=ry

z(M)

p(M)

Fig. A.2. Similar figure to Fig. 4 to which we refer for the details of
the bottom panel. The fop panel is shown in logarithmic scale. The red
and blue geodesics of the bottom panel correspond to the pixels labeled
by the red and blue arrows in the top panel. the red geodesic is within
the secondary ring while the blue geodesic lies just outside. The red
geodesic asymptotically approaches the event horizon when ray traced
back in time.

restricted ourselves to the simple definition mentioned above,
which allows us to obtain reasonably accurate estimates of the
weight of the secondary ring flux. However, this value is some-
what overestimated because of the rather large angular thickness
of the mask as compared to the thin secondary ring.

Appendix B: Comparison between horizonless
spacetimes with photon orbits

Section 3.4, and Fig. 12 in particular, highlight the similarity
between our Lamy spacetime and a boson-star spacetime with
k = 1 and w = 0.7. This comparison was made on only one
highly bent null geodesic, which is extremely similar for the two
horizonless spacetimes. Figure B.1 shows a comparison of the
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full 80 uas field image between these two spacetimes. The two
images are strikingly similar.

In contrast, the (k = 1, w = 0.77) boson-star image is very
different (see top middle panel of Fig. 10, computed with a field
of view of 160 uas). The important difference between the two
boson-star spacetimes is the fact that for (k = 1, w = 0.77), there
is no photon orbits, while for (k = 1, w = 0.7), photon orbits
exist (they appear at w = 0.75; Cunha et al. 2016). This is a good
illustration that the main features of highly lensed images are
dictated by photon orbits; that is, not only planar photon orbits,
but the general set of fundamental photon orbits that generalize
Kerr spherical photon orbits (see Cunha et al. 2017a). Even for
spacetimes that have nothing in common at a theoretical level
(like a Lamy wormhole and a boson star), images are very sim-
ilar as soon as similar photon orbits exist. Lamy photon orbits
have been studied in detail by Lamy (2018). Rotating-boson-
star photon orbits have been studied by Cunha et al. (2016) and
Grandclément (2017). These works give the radius of the unsta-
ble equatorial photon orbit, which lies at rpp, = 4.2M for the
boson-star spacetime and rp, ~ 2.2M for the Lamy spacetime.
We give an approximate value for the second quantity because

glof Boson star k=1 w=0.7, a=0.82M

a (M)

Geometric modeling of M87%* as a Kerr black hole or a non-Kerr compact object

Fig. B.1. Images on a field of view of 80 uas
of a thick disk with inner radius r;, = 6 M sur-
rounding a Lamy wormbhole (left) or a boson-
star spacetime with k = 1 and w = 0.7 (right).
The compact object spin parameter is approxi-
mately the same for both panels. The two space-
times, although extremely different at a theoret-
ical level, are both horizonless and possess pho-
ton orbits.

Lamy (2018) studies a spacetime with a = 0.9M and b = M,
thus slightly different from our case.

The small difference of scales in the two panels of Fig. B.1
are likely due to this difference of location of the equatorial
photon orbit. A more detailed comparison would be necessary
to analyze further the similarity between these images and link
them to the properties of fundamental photon orbits. It is likely
that a large class of horizonless spacetimes with photon orbits
will lead to images similar to what we present in this work for
two particular spacetimes, indicating sharp features that could be
potentially resolved by the future VLBI arrays.

Appendix C: Best-fitting images

Figures C.1 and C.2 present the results of the procedure of fit-
ting models to the visibility domain data released by the EHT.
In these examples we only show best fits to the data observed
on April 11, 2017 in HI band for several models that allowed us
to obtain fit quality similar as the Kerr spacetime examples. The
best-fitting jet position angle and object mass are given for the
each type of object.
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Fig. C.1. Images best-fitting EHT data from April 11, 2017, HI band, corresponding to a geometrically thick accretion disk with inner radius
rin = 6M in a Schwarzschild spacetime (left column), in the spacetime of an ultracompact star with surface radius ry = 2.0005M emitting
blackbody radiation at the inner temperature of the accretion flow T, = 8 X 10'°K (middle column), or in a Minkowski spacetime (right
column). As in all figures, the bottom row corresponds to the top row images blurred to the EHT resolution of 20 uas; the dashed blue circle has
a diameter of 40 pas (size of the ring feature reported by the EHT) and the blue arrow shows the projected direction of the approaching jet. The
best-fitting compact-object mass and jet position angle east of north are specified in each bottom panel.

26

Kerr a=0.8M, ri, =2.91M EZY Boson star a = 0.8M, ri, = 3.5M Lamy a=0.8M, b=M

rin=2.91M

6 (M)
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J 17
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M =7.0 x 10°M,
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Fig. C.2. Images best-fitting EHT data from April 11, 2017, HI band, corresponding to a geometrically thick accretion disk in a Kerr spacetime
with spin a = 0.8 M (left column), in a boson-star spacetime of the same spin with k = 1 and w = 0.77 (middle column), or in a Lamy spacetime
of the same spin with b = M (right column). The disk inner radius is of ry, = 2.91M for the left and right panels, and ry, = 3.5M for the central
panel. As in all figures, the bottom row corresponds to the top row images blurred to the EHT resolution of 20 pas; the dashed blue circle has a
diameter of 40 uas (the size of the ring feature reported by the EHT) and the blue arrow shows the projected direction of the approaching jet. The
best-fitting compact-object mass and jet position angle east of north are specified in each bottom panel.
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