

An Introduction to Computational Fluid Dynamics Ewald Müller

Ewald Müller Max-Planck Institut für Astrophysik

Some Basic Hydrodynamics

Hydrodynamic equations are derivable from microscopic kinetic equations (Liouville, Boltzmann) under two assumptions

(i) microscopic behaviour of single particles can be neglected ($\lambda \ll L$)

(ii) forces between particles do saturate (short range forces!)

---> gravity must be treated as external force!

hydrodynamic approximation holds

--> set of conservation laws

<u>simplest case:</u> single, ideal, non-magnetic fluid; no external forces

$$\frac{\partial \varrho}{\partial t} + \nabla \cdot (\varrho \vec{\mathbf{v}}) = 0$$

momentum:
$$\frac{\partial \varrho \vec{\mathbf{v}}}{\partial t} + \nabla \cdot (\varrho \vec{\mathbf{v}} \vec{\mathbf{v}} + p \underline{\mathbf{I}}) = 0$$

energy:
$$\frac{\partial \varrho E}{\partial t} + \nabla \cdot ([\varrho E + p]\vec{v}) = 0$$

hyperbolic system of PDEs

hydrodynamic approximation holds

general case: <u>additional equations</u> and/or

```
additional source terms
describe effects due to
     viscosity (e.g., accretion disks)
     reactions (e.g., nuclear burning, non-LTE ionization)
     conduction (e.g., cooling of WD & NS; ignition of SNe Ia)
     radiation transport (e.g., stars: photons; CCSNe: neutrinos)
     magnetic fields (e.g., stars, jets, pulsars, accretion disks)
     self-gravity (stars, galaxies, Universe)
     relativity (jets, NS, BH, GRB)
```

eg., viscous, self-gravitating Newtonian flow

mass:
$$\frac{\partial \varrho}{\partial t} + \nabla \cdot (\varrho \vec{\mathbf{v}}) = 0$$

$$\frac{\partial \varrho \vec{\mathbf{v}}}{\partial t} + \nabla \cdot (\varrho \vec{\mathbf{v}} \vec{\mathbf{v}} + p \underline{\mathbf{I}} - \underline{\underline{\boldsymbol{\pi}}}) = -\varrho \nabla \Phi$$

energy:
$$\frac{\partial \varrho E}{\partial t} + \nabla \cdot [(\varrho E + p)\vec{v} + \vec{h} - \underline{\underline{\pi}}\vec{v}] = -\varrho \vec{v} \nabla \Phi$$

Poisson eq.:
$$\Delta \Phi = 4\pi G \varrho$$

Astropysical applications:

- viscosity & heat conduction often negligibly small (except in shock waves)
 - --> inviscous Euler eqs instead of viscous Navier-Stokes eqs are solved

- numerical methods posses numerical viscosity (depending on grid resolution)
 - --> <u>strange situation:</u>

One tries to solve inviscous Euler eqs, but instead solves a viscous variant, different from Navier-Stokes eqs!!

hydrodynamic equations are incomplete

(closure relation missing)

---> equation of state required to close system

$$p = p(\varrho,T)$$
, $\varepsilon = \varepsilon(\varrho,T)$

<u>discontinuous solutions of Euler eqs. exist</u>

(weak solutions: shocks, contact discont.)

---> conservation laws in integral form

jump conditions (Rankine-Hugoniot)

flows characterizable by dimensionless numbers

Reynolds number: Re = uL/v (v kinematic viscosity)

measures relative strength of inertia & dissipation; often very large in astrophysics ($>10^{10}$)

For all flows there exists a <u>critical Reynolds number</u>, above which the flow becomes turbulent!

<u>Prandtl number:</u> $Pr = v/\kappa$ (κ : conductivity)

measures relative strength of dissipation & conduction

Hyperbolic Systems of Conservation Laws

HD eqs are special case of a system of conservation laws

$$\frac{\partial \vec{U}}{\partial t} + \sum_{j=1}^{d} \frac{\partial \vec{F}_{j}(\vec{U})}{\partial x_{j}} = 0$$

with
$$\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_d) \in \mathbb{R}^d$$

$$\boldsymbol{U} = (U_1, \dots, U_p)^T$$
 vector of functions of **x** and t

$$F_i(U) = (F_{1i}, \dots, F_{pi})^T$$
 vector of fluxes

Let D be an arbitrary domain of R^d and let $n = (n_1, ..., n_d)$ be the outward unit normal of the boundary ∂D of D. Then

$$\frac{d}{dt} \int_{D} \vec{U} d\vec{x} + \sum_{j=1}^{d} \int_{\partial D} \vec{F}_{j}(\vec{U}) n_{j} dS = 0$$

temporal change of state vector in domain equal to gains and losses through boundary of domain

Hyperbolic systems of conservation laws

For all j=1, ..., d let

$$A_{j}(\vec{U}) = \frac{\partial \vec{F}_{j}(\vec{U})}{\partial \vec{U}}$$

be the Jacobian (matrix) of $F_{i}(U)$

System is called hyperbolic, if for any *U* and any

$$\omega = (\omega_1, ..., \omega_d) \in \mathbb{R}^d$$
 the matrix

$$A(\vec{U}, \omega) = \sum_{j=1}^{d} \omega_j \vec{A}_j(\vec{U})$$

Has *p* <u>real</u> <u>eigenvalues</u> (if all distinct, system is <u>strictly</u> hyperbolic)

$$\lambda_1(\vec{U}, \omega) \leq \lambda_2(\vec{U}, \omega) \leq ... \leq \lambda_p(\vec{U}, \omega)$$

and p linearly independent (right) eigenvectors

$$\vec{r}_1(\vec{U}$$
 , ω) , $\vec{r}_2(\vec{U}$, ω) , ... , $\vec{r}_d(\vec{U}$, ω)

Weak solutions:

U (piecewise smooth function) is weak solution of the integral form of the conservation system, if and only if two conditions hold:

- (1) *U* is a classical solution in domains where solution is continuous
- (2) Across a <u>surface of discontinuity</u> Σ with normal vector $\mathbf{n} = (n_t, n_{x1}, ..., n_{xd})$ the Rankine-Hugoniot condition holds

$$(\vec{U}_R - \vec{U}_L)n_t + \sum_{j=1}^d [\vec{F}_j(\vec{U}_R) - \vec{F}_j(\vec{U}_L)]n_{xj} = 0$$

For 1D systems the Rankine Hogoniot condition reduces to

$$s(\vec{U}_R - \vec{U}_L) + [\vec{F}(\vec{U}_R) - \vec{F}(\vec{U}_L)] = 0$$

where *s* is the speed of propagation of the discontinuity

Weak solutions:

Non-uniqueness: different weak solutions exist for the <u>same</u> initial data

characterization of the unique physically admisible weak solution

Entropy condition (for convex fluxes, *i.e.*, *dF/dU>0*)

scalar case

$$\frac{dF}{dU}(U_L) > s > \frac{dF}{dU}(U_R)$$

characteristics (slope = 1 / speed) approach
discontinuity from both sides

Lax entropy condition for systems

discontinuties satisfying the corresponding Rankine-Hugoniot and entropy conditions are called shocks

The Art of Computational Fluid Dynamics

or

For every complex beautiful simulation result there exists a simple, elegant, convincing, wrong physical explanation

(adapted from Thomas Gould)

Hydrodynamic equations: non--linear system of 1st order PDEs

one way to solve equations:

discretization in space & time

PDEs ---> set of coupled algebraic eqs finite difference (FD), finite volume (FV), method of lines (MOL)

introduces unavoidable errors

--> It is crucial to use methods, which minimize the errors!

numerical diffusion

numerical dispersion

HD equations can be formulated with respect to two distinct classes of coordinate systems

```
<u>Eulerian</u> <===> <u>fixed</u> coordinates (time independent)

<u>Disadvantage</u>: :numerical diffusion due to nonlinear advection terms (v grad)
```

<u>Lagrangian</u> <===> <u>comoving</u> coordinates

(moving with the fluid/gas)

Advantage: no numerical diffusion of mass, momentum, etc

Disadvantage: grid tangling (in case of shear or vortex flow)

- --> rezoning required which causes numerical diffusion
 - --> <u>major advantage lost!</u>

===> <u>Eulerian</u> coordinates are to be preferred for <u>multidimensional</u> problems

but special efforts are necessay to minimize the inevitable numerical diffusion

---> use more accurate, high-order numerical schemes

Alternative: free-Lagrange methods

i.e. <u>grid free methods</u>, where gradients are evaluated <u>without the use of any grid</u>

---> no grid tangling, no rezoning

Most commonly used variant in astrophysics: Smoothed Particle Hydrodynamics

Explicit and implicit methods

neglecting terms higher than 2nd order the most general (onestep) discretization of the HD eqs with respect to time is

$$\vec{U}^{n+1} = \vec{U}^n + L \vec{U}^n (1 - \epsilon) \Delta t + L \vec{U}^{n+1} \epsilon \Delta t$$

Where
$$\vec{U}^n = \vec{U}(t=t^n)$$
 , $\vec{U}^{n+1} = \vec{U}(t=t^n + \Delta t)$

- ϵ parameter from the intervall [0,1]
- L spatial differential (difference) operator

---> special cases:

```
\epsilon = 1/2 scheme is 2^{nd} order accurate in time \epsilon = 0 new state vector U^{n+1} is explicitly defined \epsilon > 0 new state vector is implicitly given
```

Explicit schemes are only stable, if size of time step is restricted by CFL condition (Courant, Friedrichs, Lewy)

$$\Delta t < \Delta t_{CFL} = Min_i \frac{\Delta x_i}{c_{max}}$$
 c_{max} : maximum characteristic speed

i.e., information must not propagate more than one zone per time step

<u>Implicit schemes</u> allow arbitrarily large time steps (accuracy, convergence?) but need to solve nonlinear algebraic system (by linearization & iteration)

--> prohibitively large CPU & storage requirements for multi-d problems CPU time $\sim (N_v \times N_x \times N_v \times N_z)^3$

(dimensional splitting & block elimination helps to reduce operation count!)

Consider initial value problem in one spatial dimension

$$\frac{\partial U}{\partial t} + A(U) \frac{\partial U}{\partial x} = 0 \quad with \quad U(x, 0) = U_0(x)$$

- discretization of x-t plane into computational grid

zone width
$$\Delta x$$
 time step Δt zone centers $x_j = (j - \frac{1}{2}) \Delta x$ time levels $t^n = n \Delta t$ zone interfaces $x_{j+1/2} = x_j + \frac{1}{2} \Delta x$

- finite difference/volume operator $H_{\Delta t}$

$$U^{n+1}_{j} = H_{\Delta t}(U^{n}; j)$$

Note: U_j^{n+1} depends on U_j^n at several zones (stencil of method)

 for conservation laws FV methods give approximation of zone average

$$\bar{U}_{j}^{n} = \frac{1}{\Delta x} \int_{x_{j-1/2}}^{x_{j+1/2}} U(x, t^{n}) dx$$

desirable & necessary properties of finite difference / finite volume schemes

- stable and sharp resolution of flow discontinuities without excessive smearing

- consistency, i.e., convergence under grid refinement to the physically correct discontinous solution (necessary!)

- high-order accuracy (a typical 3D hydrodynamic simulation involves only ~100 zones per spatial dimension)

is <u>essential</u> to lower computational load, because if spatial resolution: $\sim N$ ---> load $\sim N^4$ for 3D problems

diffusivity of various finite volume methods

high resolution shock-capturing methods (HRSC)

 rely strongly on hyperbolic & conservative character of HD eqs (upwind method along characteristics)

- shock-capturing ability
 - * discontinuities are treated consistently & automatically
 - * scheme reduces from high-order accuracy in smooth regions to 1st order accuracy at discontinuities

- usually based on solution of local Riemann problems (discontinuous initial value problem) at zone interfaces

global error & convergence

 for systems of conservation laws: define the local error relative to zone average of true solution

$$E_{j}^{n}=U_{j}^{n}-\bar{U}_{j}^{n}$$

and define discrete 1-norm to evaluate global error

$$||E^n|| = \Delta x \sum_j |E_j^n|$$

- difference scheme is conservative, if it can be written in the form

$$U_{j}^{n+1} = U_{j}^{n} - \frac{\Delta t}{\Delta x} [\hat{F}(U_{j-r}^{n}, U_{j-r+1}^{n}, \dots, U_{j+q}^{n}) - \hat{F}(U_{j-r-1}^{n}, U_{j-r}^{n}, \dots, U_{j+q-1}^{n})]$$

for some function F of r+q+1 arguments (numerical flux function)

 Theorem of Lax & Wendroff: schemes of conservation form converge (if at all) to one of the weak solutions of the original system of equations

stability

- convergence <u>requires</u> some form of stability
- numerical scheme is stable, if global error is bounded for all times
- for linear problems the <u>Lax equivalence theorem</u> holds: Stability is necessary and sufficient for convergence
- for nonlinear problems concept of Total Variation (TV) stability is useful

$$TV(U^n) \equiv \sum_{-\infty}^{\infty} |U_{j+1}^n - U_j^n|$$

TV stability is guaranteed, if $TV(U^n)$ is bounded.

convergence theorem (nonlinear scalar case)
 for numerical schemes in conservation form with consistent numerical flux functions:
 TV stability ===> convergence

Finite volume schemes

 quasi-linear hyperbolic system of (1D) conservation laws for state vector U

$$U_t(x,t)+F_x[U(x,t)]=0$$

- or with the Jacobian $A(u) \equiv \partial F/\partial U$ of the flux vector F(U)

$$\mathbf{U}_{t} + \mathbf{A}(\mathbf{U}) \cdot \mathbf{U}_{x} = \mathbf{0}$$

- integration over finite (1D spatial control) volume $[x_1,x_2] \times [t_1,t_2]$

$$\int_{x_1}^{x_2} U(x,t_2) dx = \int_{x_1}^{x_2} U(x,t_1) dx - \int_{t_1}^{t_2} F[U(x_2,t)] dt + \int_{t_1}^{t_2} F[U(x_1,t)] dt$$

integral form allows proper handling of flow discontinuities!

3D flow: consider fluxes through all orthogonal volume surfaces

Handling discontinuities

Godunov Schemes

 $U(x,t^n)$ is approximated by a piecewise (on a spatial scale Dx) polynomial $v(x,t^n)$

$$\overline{v}(x,t^{n+1}) = \overline{v}(x,t^{n}) - \frac{1}{\Delta x} \left[\int_{t^{n}}^{t^{n+1}} F(v(x+\Delta x/2,\tau)) d\tau - \int_{t^{n}}^{t^{n+1}} F(v(x-\Delta x/2,\tau)) d\tau \right]$$

---> <u>exact</u> evolution of <u>spatially averaged</u> (approximate) state vector given by <u>time-averaged</u> numerical fluxes at interfaces

 construct numerical scheme by <u>sampling</u> at discrete grid points:

at cell centers ---> upwind schemes at cell interfaces ---> central schemes

---> remaining question: How to compute numerical fluxes?

e.g., piecewise constant

upwind schemes

numerical flux at polynomial breakpoints from <u>exact</u> or <u>approximate</u> solution of local Riemann problems (spectral information required!)

central schemes
smooth numerical flux at
cell centers by quadrature
(averaging over Riemann fan)

<u>proto-types:</u> 1st order Godunov (upwind), Lax-Friedrichs (central) <u>non-oscillatory higher-order extensions</u> of both classes exist!

Riemann Problem

 consider hyperbolic system of conservation laws in one spatial dimension

$$\frac{\partial \vec{U}}{\partial t} + \frac{\partial \vec{F}(\vec{U})}{\partial x} = 0 \qquad with \quad \vec{U}(x,0) = \vec{U}_0(x)$$

- Riemann problem for the above system is an initial value problem with discontinuous data

$$\vec{U}_0 = \vec{U}_L$$
 if $x < 0$ \wedge $\vec{U}_0 = \vec{U}_R$ if $x > 0$.

invariant under similarity transformation: (x, t) ---> (ax, at), a > 0

- Theorem of Lax: If left and right states are sufficiently close, Riemann problem has a solution consisting of p+1 constant states separated by rarefaction waves and shocks $\vec{U}_{RP}(\frac{x}{t}; \vec{U}_L, \vec{U}_R)$

Exact Riemann solvers

iterative solution of a non-linear algebraic equation (for the pressure of the intermediate state) at each zone interface

- straightforward for ideal gas EOS (γ =const.)
- more complicated for general EOS (linear interpolation of γ)

Approximate Riemann solvers

instead of solving Riemann problem exactly approximations are made, e.g.,

Roe solver: approximate RP solved exactly assuming locally constant

Jacobian ---> hyperbolic system becomes linear

HLLE: exact RP is solved approximately using only

maximum & minimum eigenvalues

Marquina's flux formula: exploits characteristic information to compute numerical flux function

Higher-order Godunov methods

interpolation inside cells

use slope limiters to enforce monotonicity (avoid appearance of new maxima)

higher-order interpolations used in astrophysical applications:

piecewise linear (PLM)

piecewise parabolic (PPM)

piecewise hyperbolic (PHM)

More general class of schemes

- Total Variation Diminishing schemes

$$\sum_{i} \left| \delta \rho_{i+1/2}^{n} \right| \leq \sum_{i} \left| \delta \rho_{i+1/2}^{0} \right| \quad \text{with} \quad \delta \rho_{i+1/2}^{n} \equiv \rho_{i+1}^{n} - \rho_{i}^{n}$$

- ---> convergence, no spurious oscillations
- monotone schemes at most 1st order accurate, but <u>TVD schemes</u> not restricted to 1st order --->

<u>upwind TVD schemes</u>: 2nd order: FCT, MUSCL, Harten (NO)

3rd order: PPM, ENO

central TVD schemes with min-mod-limiter (NOCD)

2nd order: Nessyahu & Tadmore ('90)

3rd order: Tadmore ('98)

Sod's shock tube test problem (N=400, CFL=0.3)

 (ρ, u, E) : $\mathbf{U}_{L} = (1, 0, 2.5)$ $\mathbf{U}_{R} = (0.125, 0, 0.25)$

from A.Serrano

1st order central difference scheme simple, but very diffusive everywhere

Sod's shock tube test problem (N=400, CFL=0.3)

2nd order central difference scheme good at shocks, very diffusive at contacts

Sod's shock tube test problem (N=400, CFL=0.3)

Riemann solver, 1st order reconstruction accurate description of all wave structures

Computer resources required:

- floating point operations

```
3 - 20 variables

10^3 - 10^8 zones (present record: 2048^3 \sim 810^9)

10^3 - 10^6 timesteps

10^2 - 10^3 Ops/zone/variable/timestep
```

---> 10^{10} - 10^{18} operations / simulation

- central memory up to several 100 Gbytes

- present day computer

```
100 Mflops (PC) [ ~ CRAY-1 in 1980!]

3 Tflops ('supercomputer', e.g., 1024 PE IBM Power 4)

~ 30 Tflops (Earth Simulator, Japan, ~5000 NEC-SX6)
```

---> 1D simulation: ~ few minutes on PC
3D simulation: ~ many weeks on supercomputer

output data: ~ Gbyte / model ---> data analysis
 Tbyte / simulation is non trivial!

Relativistic Hydrodynamics

numerical complexity arising in RHD:

- strong non-linearity (due to coupling by W and h)
- unlimited shock compression (large jumps)
- Lorentz contraction (narrow flow structures)
- recovery of primitive variables (iteration required)

---> High-Resolution Shock-Capturing methods

- exploit hyperbolic and conservative character of PDEs
- analytic solution of general relativistic Riemann problem known (Marti & Müller 1994), but used only for tests or for 1D flows (ODE has to be solved!)
- careful treatment of "dangerous" terms when $v/c \rightarrow 1$

Appropriate RHD codes are able to handle ultra-relativistic flows

ie. Lorentz factors

 $\Gamma > 100$

Shock reflection test problem

GENESIS RHD code: Aloy, Ibánez, Marti & Müller '99

General relativistic hydrodynamics:

also formulated as hyperbolic system, but with source terms and geometric factors due to spacetime curvature

- Cowling approximation (flow in fixed general spacetime)
- full GRHD: integration of general relativistic HD eqs. together with Einstein field eqs. (3+1 ADM)

generic problems:

- long term numerical stability
 (hyperbolic vs constraint formulation)
- choice of optimal gauge and coordinates (to avoid too small timesteps)
- excision of singularities
- gw extraction (null cone formulation, compactified grids)

Relativistic blast wave (N=400, CFL=0.3)

Roe approximate Riemann solver:

- structures quite well resolved
- correct shock speed

Tadmor central scheme:

- waves badly resolved
- unphysical shock speed (v>1)

Magneto-Hydrodynamics

Ideal (R)MHD: The physical viewpoint

Equations describe flow of an infinitely well conducting fluid in the presence of a magnetic field

neglected:

displacement currents

electrostatic forces

viscosity

resistivity

heat conduction

$$\rho_{t} + \nabla(\rho \vec{\mathbf{v}}) = 0$$

$$(\rho \vec{\mathbf{v}})_{t} + \nabla(\rho \vec{\mathbf{v}} \vec{\mathbf{v}} + \underline{\mathbf{I}} \mathbf{P}^{\text{tot}} - \vec{\mathbf{B}} \vec{\mathbf{B}}) = 0$$

$$\mathbf{E}_{t} + \nabla[(\mathbf{E} + \mathbf{P}^{\text{tot}}) \vec{\mathbf{v}} - \vec{\mathbf{B}} (\vec{\mathbf{B}} \vec{\mathbf{v}})] = 0$$

$$\vec{\mathbf{B}}_{t} + \nabla(\vec{\mathbf{v}} \vec{\mathbf{B}} - \vec{\mathbf{B}} \vec{\mathbf{v}}) = 0$$

$$\nabla \vec{\mathbf{B}} = 0$$

$$\mathbf{P}^{\text{tot}} = \mathbf{P} + \mathbf{\vec{B}}^2 / 2$$

$$E = \rho \vec{v}^2/2 + P/(\gamma - 1) + \vec{B}^2/2$$

(units where 4 and c disappear)

Ideal (R)MHD: The mathematical viewpoint

Non-linear system of conservation laws (7 waves; 10 if covariant)

- non-strictly hyperbolic (not all of the real eigenvalues may be distinct)
- --> Riemann solver complicated (many cases)

- non-convex (characteristic fields which are neither linearly degenerate nor genuinely nonlinear)
- --> complicated wave structure (compound waves)
 - + additional constraint equation ($div \underline{B} = 0$)

Ideal (R)MHD: The numerical viewpoint

- CPU requirements considerably larger than in (R)HD (more equations, more waves, degeneracies, ...)

- calculation of eigenvalues involves solving a quartic
 - * no simple analytic solution in closed form
 - * eigenvalues must be obtained numerically
 - * eigenvectors depend nonlinearly on eigenvalues
 - --> serious numerical complications

- pressure positivity more difficult to maintain than in (R)HD
- numerical problems in RMHD even worse

<u>constraint equation</u>: div B = 0

- shock-capturing MHD codes

base scheme (well established HD algorithm) to evolve mass, momentum, energy & (similarly) B-field

& modification/addition for \underline{B} evolution to maintain div \underline{B} =0

- constrained transport (Evans & Hawley 1988)

applies staggered grid: <u>B</u> components defined at cell interfaces are updated by finite differencing the electric field at cell corners

--> maintains div**B**=0 to machine round off error

Some references:

Laney, C.B., 1998, "Computational Gasdynamics", CUP, Cambridge, UK

LeVeque, R.J., 1998, in "Computational Methods for Astrophysical Fluid Flow", SaasFee Advanced Course 27, eds. O.Steiner & A.Gautschy, Springer, Berlin

Marti, J.M. & Müller, E., 2003, "Numerical Hydrodynamics in Special Relativity", Living Reviews in Relativity, http://www.livingreviews.org/Articles/lrr-2003-7

Potter, D., 1973, "Computational Physics", Wiley, New York

Toro, E.F., 1997, "Riemann Solvers and Numerical Methods for Fluid Dynamics", Springer, Berlin