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Some Basic Hydrodynamics



Hydrodynamic equations are derivable from

microscopic kinetic equations (Liouville, Boltzmann)

under two assumptions

(i) microscopic behaviour of single particles
can be neglected (A <<L)

(ii) forces between particles do saturate
(short range forces!)

---> gravity must be treated as external force!



Liouville equation
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hydrodynamic equations
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(adopted from F. Cap )



hydrodynamic approximation holds

--> set of conservation laws

simplest case: single, ideal, non-magnetic

fluid; no external forces
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hydrodynamic approximation holds

general case: additional equations and/or

additional source terms

describe effects due to

viscosity (e.g., accretion disks)

reactions (e.g., nuclear burning, non-LTE ionization)
conduction (e.g., cooling of WD & NS; ignition of SNe la)
radiation transport (e.g., stars: photons; CCSNe: neutrinos)
magnetic fields (e.g., stars, jets, pulsars, accretion disks)
self-gravity (stars, galaxies, Universe)

relativity (jets, NS, BH, GRB)



eg., viscous, self-gravitating Newtonian flow
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Astropysical applications:

- viscosity & heat conduction often negligibly small
(except in shock waves)

--> inviscous Euler eqgs instead of viscous
Navier-Stokes eqgs are solved

- nhumerical methods posses numerical viscosity
(depending on grid resolution)

--> strange situation:

One tries to solve inviscous Euler egs, but
instead solves a viscous variant, different
from Navier-Stokes egs !



hydrodynamic equations are incomplete

(closure relation missing)

---> equation of state required to close system

p=plo,T), &==&(p,T)

discontinuous solutions of Euler egs. exist
(weak solutions: shocks, contact discont.)

---> conservation laws in integral form

jump conditions (Rankine-Hugoniot)



flows characterizable by dimensionless numbers

Reynolds number: Re = ulL/v (v kinematic viscosity)

measures relative strength of inertia & dissipation; often
very large in astrophysics (>10')

For all flows there exists a critical Reynolds numbetr,
above which the flow becomes turbulent!

Prandtl number: Pr = v/k (k: conductivity)

measures relative strength of dissipation & conduction



Hyperbolic Systems of Conservation Laws



HD eqs are special case of a system of conservation laws
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with  x = (x, ...,xd)eRd

U o, .., Up)T vector of functions of x and t

Fj(U) = (., .., ij)T vector of fluxes

1j’
Let D be an arbitrary domain of R% and let n = (n, ..., n,)bethe
outward unit normal of the boundary oD of D. Then

f de+zj1f ndS 0

temporal change of state vector in domain equal to gains
and losses through boundary of domain




Hyperbolic systems of conservation laws

Forall j=1, ..., d let aﬁj( )
0

be the Jacobian (matrix) of FJ_(U)

System is called hyperbolic, if for any U and any
w=(w, ., w,)E R? the matrix

AT, w0)=Y" @, 4,(0)

J

Has p real eigenvalues (if all distinct, system is strictly hyperbolic)

- -

AU, w)<A,(U,w)<...<A (U, w)

p

and p linearly independent (right) eigenvectors

(U, w),7,(U,w), ... 7,(U, w)




Weak solutions:

U (piecewise smooth function) is weak solution of the integral form
of the conservation system, if and only if two conditions hold:

(1) Uis a classical solution in domains where
solution is continuous

(2) Across a surface of discontinuity 3 with normal vector
n=(nt, il e nxd) the Rankine-Hugoniot condition holds
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where s is the speed of propagation of the discontinuity



Weak solutions:

Non-uniqueness: different weak solutions exist for the
same initial data

characterization of the unique physically admisible weak solution

Entropy condition (for convex fluxes, i.e., dF/dU>0)

scalar case t A

d F dF
ﬁ(UL)>$>ﬁ(UR)

characteristics (slope = 1/ speed) approach
discontinuity from both sides

Lax entropy condition for systems X

discontinuties satisfying the corresponding Rankine-Hugoniot
and entropy conditions are called shocks



The Art of Computational Fluid Dynamics

or

For every complex beautiful simulation result
there exists a simple, elegant, convincing,
wrong physical explanation
(adapted from Thomas Gould)



Hydrodynamic equations:

non--linear system of 1*' order PDEs

one way to solve equations:
discretization in space & time
PDEs ---> set of coupled algebraic eqgs

finite difference (FD), finite volume (FV),
method of lines (MOL)

introduces unavoidable errors

--> |t is crucial to use methods, which minimize
the errors!



analytic solution

numerical solution

-

analytical solution

»

numerical solution

numerical diffusion

numerical dispersion



HD equations can be formulated with respect to
two distinct classes of coordinate systems

‘Eulerian <===> fixed coordinates‘ (time independent)

Disadvantage: numerical diffusion due to nonlinear advection

terms (v grad)

‘ Lagrangian <===> comoving coordinates ‘ (moving with the
fluid/gas)

Advantage: no numerical diffusion of mass,momentum, etc

Disadvantage: grid tangling (in case of shear or vortex flow)

--> rezoning required which causes numerical diffusion

--> major advantage lost!




===> FEulerian coordinates are to be preferred for
multidimensional problems

but special efforts are necessay to minimize the
inevitable numerical diffusion

---> use more accurate, high-order numerical schemes

Alternative: free-Lagrange methods

i.e. grid free methods, where gradients are evaluated
without the use of any grid

---> no grid tangling, no rezoning

Most commonly used variant in astrophysics:
Smoothed Particle Hydrodynamics




Explicit and implicit methods

neglecting terms higher than 2" order the most general (one-
step) discretization of the HD egs with respect to time is

U '=U"+LU" (1—e)At+ LU e At

Where 0U'=U(t=¢") , U""'=U(t=t"+At1)
e parameter from the intervall [0,1]

[ spatial differential (difference) operator

---> special cases:

e =1/2 schemeis 2™ order accurate in time
0 new state vector U™ is explicitly defined
e¢ > 0 new state vector is implicitly given

M
Il



Explicit schemes are only stable if size of time step is restricted
by CFL condition (Courant, Friedrichs, Lewy)

A X,
At<Atq ., =Min, C__: maximum characteristic speed

ma
Cmax

i.e., information must not propagate more than one zone
per time step

Implicit schemes allow arbitrarily large time steps (accuracy,
convergence?) but need to solve nonlinear algebraic system (by
linearization & iteration)

--> prohibitively large CPU & storage requirements
for multi-d problems
CPUtime ~ (N x N x N x N )’
(dimensional splitting & block elimination helps to reduce
operation count!)



Consider initial value problem in one spatial dimension

0Xx

ey 0 with U(x,0)=U,(x)

- discretization of x-t plane into computational grid

zone width AX time step At
zone centers X = (j—-%2) Ax timelevels t"=n At
zone interfaces x .= X + Vo AX

j+1/2

- finite difference/volume operator H_
urm=H (U"))

] A
Note: U “+1jdepends on U" at several zones (stencil of method)

- for conservation laws FV methods 1
— Xiv12

give approximation of zone average Uj:A— Ul(x,t")dx
X Y Xi-in




desirable & necessary properties of finite difference / finite
volume schemes

- stable and sharp resolution of flow discontinuities
without excessive smearing

- consistency, i.e., convergence under grid refinement to the
physically correct discontinous solution (necessary!)

- high-order accuracy (a typical 3D hydrodynamic simulation
involves only ~100 zones per spatial dimension)

is essential to lower computational load, because if
spatial resolution: ~N ---> load ~ N* for 3D problems
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high resolution shock-capturing methods (HRSC)

- rely strongly on hyperbolic & conservative character of HD eqgs
(upwind method along characteristics)

- shock-capturing ability

* discontinuities are treated consistently & automatically

ala
"

scheme reduces from high-order accuracy in smooth regions
to 1*' order accuracy at discontinuities

- usually based on solution of local Riemann problems
(discontinuous initial value problem) at zone interfaces



global error & convergence

- for systems of conservation laws: define the local error
relative to zone average of true solution

E=U"-0"

and define discrete 1-norm to evaluate global error
|E"|=axY |E)

- difference scheme is conservative, if it can be written in the form

urt=ut—AL Fwn U

ro —r+12
J Ax J= J

for some function F of r+g+1 arguments (numerical flux function)

U’

Jtq

= F (U}, Ul Uy )]

- Theorem of Lax & Wendroff: schemes of conservation form
converge (if at all) to one of the weak solutions of the
original system of equations




stability

- convergence requires some form of stability

- numerical scheme is stable, if global error is bounded for all
times

- for linear problems the Lax equivalence theorem holds:
Stability is necessary and sufficient for convergence

- for nonlinear problems concept of Total Variation (TV) stability
is useful

v(U=2, U, U

TV stability is guaranteed, if TV(U") is bounded.

- convergence theorem (nonlinear scalar case)
for numerical schemes in conservation form with consistent
numerical flux functions: TV stability ===> convergence



Finite volume schemes

- quasi-linear hyperbolic system of (1D) conservation laws

for state vector U

U, (x,t)+F [U(x,t)]=0

- or with the Jacobian A(u) = 0F/oU of the flux vector F(U)

U.4+A(U)-U =0

- integration over finite (1D spatial control) volume

[prz]x[tvtz]

[ U t)ax=[U(x,t)dx= [ F{U(x,,0)dt+ [ F[U(x,,t)]dt

integral form allows proper handling of flow discontinuities!




(from G.Bodo)

3D flow: consider fluxes through all orthogonal volume surfaces



Handling discontinuities

- True density profile First order method

-0.5 0.0 0.5 - -1. 0.5 0.0 0.5

Second order method | High resolution method




Godunov Schemes  U(x,t") is approximated by a piecewise
( on a spatial scale Dx) polynomial v(x,t")

v(x,t")=v(x,t")- lf F(v(x+Ax/2,T d'r—f F x—Ax/2,7))dT

---> exact evolution of spatially averaged (approximate) state
vector given by time-averaged numerical fluxes at interfaces

- construct numerical scheme by sampling at discrete grid
points:

at cell centers ---> upwind schemes
at cell interfaces ---> central schemes

---> remaining question: How to compute numerical fluxes?




e.g., piecewise constant

rarefaction shock contact discontinuity .
\ ‘ / upwind schemes
' ’ ' numerical flux at polynomial
breakpoints from exact or
approximate solution of local
Riemann problems

(spectral information required!)

-

central schemes

Y — | smooth numerical flux at
cell centers by quadrature
(averaging over Riemann fan)

proto-types: 1°order Godunov (upwind), Lax-Friedrichs (central)

non-oscillatory higher-order extensions of both classes exist!




Riemann Problem

- consider hyperbolic system of conservation laws in
one spatial dimension

oU , OF(U)

Py - =0 with U(x,0)=U,(x)

- Riemann problem for the above system is an initial value
problem with discontinuous data

- - - —

U,=U, ifx<0 A U,=U, ifx>0

invariant under similarity transformation: (x, t) ---> (ax, at), a> 0

- Theorem of Lax: [If left and right states are sufficiently close,
Riemann problem has a solution consisting of p+1 constant
states separated by rarefaction waves [ x = =
and shocks ¢’




Exact Riemann solvers

iterative solution of a non-linear algebraic equation (for the
pressure of the intermediate state) at each zone interface

- straightforward for ideal gas EOS (y=const.)
- more complicated for general EOS (linear interpolation of y)

Approximate Riemann solvers

instead of solving Riemann problem exactly approximations
are made, e.g.,

Roe solver: approximate RP solved exactly assuming locally constant
Jacobian ---> hyperbolic system becomes linear
HLLE: exact RP is solved approximately using only

maximum & minimum eigenvalues
Marquina's flux formula: exploits characteristic information
to compute numerical flux function



Higher-order Godunov methods

X112 Xi+1
———-
AX

n+142

ri—112

interpolation inside cells

use slope limiters to enforce

monotonicity (avoid appearance
of new maxima)

higher-order interpolations used
in astrophysical applications:

piecewise linear (PLM)
piecewise parabolic (PPM)

piecewise hyperbolic (PHM)



- Total Variation Diminishing schemes

Zi ‘5P?+1/2‘ < Zi ‘5P?+1/2‘ with 6 piy1n=Pivi—Pi

---> convergence, no spurious oscillations

- monotone schemes at most 1*' order accurate, but TVD schemes
not restricted to 1°* order --->

upwind TVD schemes: 2" order: FCT, MUSCL, Harten (NO)
3 order: PPM, ENO

central TVD schemes with min-mod-limiter (NOCD)

2" order: Nessyahu & Tadmore ("90)
3" order: Tadmore ('98)




Sod's shock tube test problem (N=400, CFL=0.3)

(p,u,E):
U, =(1,0,2.5)

U, = (0.125, 0, 0.25)

from A.Serrano

15 order central difference scheme



Sod's shock tube test problem (N=400, CFL=0.3)

3 cells in

diffusion
the shock

large
diffusion

from A.Serrano

2" order central difference scheme



Sod's shock tube test problem (N=400, CFL=0.3)

Godunov
EWAYE
verylgqo resolved
resolution contact
Srr?dae"rshoo > cels in
u the shock

from A.Serrano

Riemann solver, 1°* order reconstruction



Computer resources required:

- floating point operations

3 - 20 variables
103 - 108 zones (present record: 20483~ 8 109)
103 - 10° timesteps
10% - 10° Ops/zone/variable/timestep

- central memory




- present day computer
100 Mflops (PC) [~ CRAY-1in 1980 !]
3 Tflops (‘supercomputer’, e.g., 1024 PE IBM Power 4)
~ 30 Tflops (Earth Simulator, Japan, ~5000 NEC-SX6)

---> 1D simulation: ~ few minutes on PC

3D simulation: ~ many weeks on supercomputer

- output data: ~ Gbyte / model —->

~ Tbyte / simulation



Relativistic Hydrodynamics



humerical complexity arising in RHD:

- strong non-linearity (due to coupling by W and h)
- unlimited shock compression (large jumps)

- Lorentz contraction (narrow flow structures)

- recovery of primitive variables (iteration required)

---> High-Resolution Shock-Capturing methods

- exploit hyperbolic and conservative character of PDEs

- analytic solution of general relativistic Riemann problem
known (Marti & Miiller 1994), but used only for tests or
for 1D flows ( ODE has to be solved !)

- careful treatment of “dangerous” terms when v/c --> 1



Appropriate RHD codes

are able to handle

ultra-relativistic flows

ie. Lorentz factors
I'>100

Shock reflection test problem

Density
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GENESIS RHD code: Aloy, Ibanez, Marti & Miiller '99



General relativistic hydrodynamics:

also formulated as hyperbolic system, but with source terms
and geometric factors due to spacetime curvature

- Cowling approximation (flow in fixed general spacetime)

- full GRHD: integration of general relativistic HD eqgs.
together with Einstein field egs. (3+1 ADM)

generic problems:

long term numerical stability
(hyperbolic vs constraint formulation)

choice of optimal gauge and coordinates
(to avoid too small timesteps)

excision of singularities

gw extraction (null cone formulation, compactified grids)



Relativistic blast wave (N=400, CFL=0.3)

Tadmor central scheme:
- waves badly resolved
- unphysical shock speed (v>1)

Tadmor

Roe approximate Riemann solver:

- structures quite well resolved
- correct shock speed




Magneto-Hydrodynamics



ldeal (R)MHD: The physical viewpoint

Equations describe flow of an infinitely well conducting
fluid in the presence of a magnetic field

neglected:
displacement currents
electrostatic forces
VISCOSIty
resistivity

heat conduction



Foguagtlons ofidegl N HD

P“=P+B/2

E=pV'[2+P/(y-

1)+B%/2

( units where 4 and c disappear )




ldeal (R)YMHD: The mathematical viewpoint

Non-linear system of conservation laws (7 waves; 10 if covariant)

- non-strictly hyperbolic (not all of the real eigenvalues
may be distinct)

--> Riemann solver complicated (many cases)

- hon-convex (characteristic fields which are neither
linearly degenerate nor genuinely nonlinear)

--> complicated wave structure (compound waves)

+ additional constraint equation (divB = 0)



ldeal (R)YMHD: The numerical viewpoint

- CPU requirements considerably larger than in (R)HD
(more equations, more waves, degeneracies, ... )

- calculation of eigenvalues involves solving a quartic

* no simple analytic solution in closed form
* eigenvalues must be obtained numerically
* eigenvectors depend nonlinearly on eigenvalues

--> serious numerical complications

- pressure positivity more difficult to maintain than in (R)HD

- nhumerical problems in RMHD even worse



constraint equation: divB =0

- shock-capturing MHD codes

base scheme (well established HD algorithm) to evolve
mass, momentum, energy & (similarly) B-field

& modification/addition for B evolution to maintain divB=0

- constrained transport (Evans & Hawley 1988)

applies staggered grid: B components defined at cell interfaces
are updated by finite differencing the electric field at cell corners

--> maintains divB=0 to machine round off error
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