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●                  Some Basic Hydrodynamics
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•

•

•   Hydrodynamic equations are derivable from

•   microscopic kinetic equations (Liouville, Boltzmann)

•   under two assumptions

•

•          (i)   microscopic behaviour of single particles                  
               can be neglected   (  << L)

•

•          (ii)  forces between particles do saturate                         
                (short range forces!) 

•                  ---> gravity must be treated as external force!
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•
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•

• hydrodynamic approximation holds   

•   --> set of conservation laws

•            simplest case:  single, ideal, non-magnetic                   
                                    fluid; no external forces 

•

mass: ∂ϱ

∂ t
∇⋅ϱv = 0

1

momentum: ∂ϱv
∂ t

∇⋅ϱvvp I = 0

energy: ∂ϱE
∂ t

∇⋅[ϱEp]v = 0

hyperbolic 
system of 
PDEs
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•

•

• hydrodynamic approximation holds                                          
 

•    general case:  additional equations and/or

•                            additional source terms 

•    describe effects due to  

•            viscosity (e.g., accretion disks)

•            reactions (e.g., nuclear burning, non-LTE ionization)

•            conduction (e.g., cooling of WD & NS; ignition of SNe Ia) 

•            radiation transport (e.g., stars: photons; CCSNe: neutrinos)  

•            magnetic fields (e.g.,  stars, jets, pulsars, accretion disks)

•            self-gravity (stars, galaxies, Universe)

•            relativity (jets, NS, BH, GRB) 



•

•

• eg., viscous, self-gravitating Newtonian flow             

•    

•

1

∂ϱ

∂ t
∇⋅ϱv = 0mass:

∂ϱv
∂ t

∇⋅ϱvvp I− = −ϱ∇
momentum:

 = 4Gϱ
Poisson eq.:

energy: ∂ϱE
∂ t

∇⋅[ϱEp vh−v ] = −ϱv ∇ 
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•

•

• Astropysical applications:

•   -   viscosity & heat conduction often negligibly small              
        (except in shock waves)

•          -->  inviscous Euler eqs instead of viscous                      
               Navier-Stokes eqs are solved

•

•

•   -   numerical methods posses numerical viscosity                  
         (depending on grid resolution)    

•          --> strange situation: 

•                One tries to solve inviscous Euler eqs, but                
               instead solves a viscous variant, different                 
               from Navier-Stokes eqs !! 
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•

•

• hydrodynamic equations are incomplete                                  
    (closure relation missing)   

•    --->   equation of state required to close system

•                   p = p( ,T) ,    = ϱ  ( ,T)ϱ

•

•

•  discontinuous solutions of Euler eqs. exist                              
   (weak solutions: shocks, contact discont.)    

•    --->   conservation laws in integral form 

•             jump conditions (Rankine-Hugoniot)
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•

•

• flows characterizable by dimensionless numbers   

•    

•  Reynolds number:  Re = uL/      (   kinematic viscosity)                
•      measures relative strength of inertia & dissipation; often                     

     very large in astrophysics (>1010)

•      For all flows there exists a critical Reynolds number,                          
     above which the flow becomes turbulent!

•

•

•  Prandtl number:     Pr = /             ( :  conductivity) 

•      measures relative strength of dissipation & conduction
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●

●

●

●

●         Hyperbolic Systems of Conservation Laws



1

●

●

● HD eqs are special case of a system of conservation laws
●  
●

● with      x   =  (x
1
, ... , x

d
) ∈ Rd  

●              U   =  (U
1
, ... , U

p 
)T         vector of functions of x and t

●
            F

j
(U)  =  (F

1j 
, ... , F

pj 
)T             vector of fluxes                                      

● Let D be an arbitrary domain of Rd and let n = (n
1
, ... , n

d 
) be the 

outward unit normal of the boundary D of D. Then                                 
 

●

●                   temporal change of state vector in domain equal to gains                           
                    and losses through boundary of domain

∂ U
∂ t

∑ j=1

d ∂ F j  U 

∂ x j
=0

d
d t∫D

U d x∑ j=1

d

∫∂D
F j  U n j dS=0
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●

●

● Hyperbolic systems of conservation laws
●   For all  j=1, ..., d  let

●  

●   be the Jacobian (matrix) of F
j
(U)

●   System is called hyperbolic, if for any U  and any                                  
   = (

1
, ..., 

d 
) ∈ Rd  the matrix                                                 

●                               

●   Has p real eigenvalues (if all distinct, system is strictly hyperbolic)              
                                                             

●

●   and p linearly independent (right) eigenvectors

●                 

A j  U =
∂ F j  U 

∂ U
¿

A U ,=∑ j=1

d
 j

A j  U 

1 U ,≤2 U ,≤...≤ p  U ,

r 1 U , ,r 2 U , , ... ,r d  U ,
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●

●

● Weak solutions: 
●   U (piecewise smooth function) is weak solution of the integral form          

  of the conservation system, if and only if two conditions hold:   

●          (1)  U is a classical solution in domains where                                
                solution is continuous

●          (2)  Across a surface of discontinuity  with normal vector             
                 n=(n

t 
, n

x1 
, ..., n

xd 
) the Rankine-Hugoniot condition holds        

                                                                    

●

●                                                                                                                   
 For 1D systems the Rankine Hogoniot condition reduces to                   
 

●

●   where s is the speed of propagation of the discontinuity 

 U R−U Lnt∑ j=1

d
[ F j  U R−F j  U L]nxj=0

s U R−U L[ F  U R−F  U L]=0
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●

● Weak solutions: 
●   Non-uniqueness:  different weak solutions exist for the                          

                               same initial data

●   characterization of the unique physically admisible weak solution 

●       Entropy condition   (for convex fluxes, i.e., dF/dU>0 )

●                                                                                                                   
        scalar case                                               t                                       
                                                        

●         

●            characteristics (slope = 1 / speed) approach                                                
            discontinuity from both sides

●          Lax entropy condition for systems                                          x

●   

●   discontinuties satisfying the corresponding Rankine-Hugoniot               
  and entropy conditions are called shocks

d F
d U

U Ls
d F
d U

U R
¿
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●

●

●

●

●         The Art of Computational Fluid Dynamics
●

●                                  
●                                     or
●

●              For every complex beautiful simulation result                     
                there exists a simple, elegant, convincing,                       
                          wrong physical explanation                                    
                             (adapted  from Thomas Gould)
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●

●

● Hydrodynamic equations:                                                         
    non--linear system of 1st order PDEs

●

●    one way to solve equations:    
●       discretization in space & time  
●           PDEs  --->  set of coupled algebraic eqs 
●              finite difference (FD), finite volume (FV),                            

              method of lines (MOL) 

●    
●      introduces unavoidable errors
●          --> It is crucial to use methods, which minimize              

                the errors!            
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•              

numerical diffusion

numerical dispersion
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●                                                                                                          
HD equations can be formulated with respect to                            
two distinct classes of coordinate systems

● Eulerian  <===>  fixed coordinates  (time independent)    

Disadvantage:   :numerical diffusion due to nonlinear advection     

                           terms  (v grad )

●

● Lagrangian  <===>  comoving coordinates    (moving with the        
                                                                         fluid/gas)

●  Advantage:  no numerical diffusion of mass,momentum, etc

●  Disadvantage:    grid tangling  (in case of shear or vortex flow)

●   -->  rezoning required which causes numerical diffusion 

●                                  -->  major advantage lost!                              
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●                                                                                                           
  ===>  Eulerian coordinates are to be preferred for                        
             multidimensional problems

●              but special efforts are necessay to minimize the                 
             inevitable numerical diffusion

●              --->   use more accurate, high-order numerical schemes

●

●    Alternative:   free-Lagrange methods

●                         i.e. grid free methods, where gradients are evaluated    
                               without the use of any grid

●                               --->  no grid tangling, no rezoning                       
  

●       Most commonly used variant in astrophysics:                            
              Smoothed Particle Hydrodynamics
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●                                                                                                          
Explicit and implicit methods

●  neglecting terms higher than 2nd order the most general (one-       
 step) discretization of the HD eqs with respect to time is

●

●

●      Where                             ,

●                          parameter from the intervall [0,1]  

●                     L     spatial differential (difference) operator

●     

●  --->  special cases: 

●                 = 1/2    scheme is 2nd order accurate in time                  
                =  0      new state vector U n+1 is explicitly defined           
                >  0      new state vector is implicitly given 

U n1=U nL U n1− tL U n1 t

U n=U t=tn U n1=U t=tn t 
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●                                                                                              

● Explicit schemes are only stable, if size of time step is restricted    
  by CFL condition (Courant, Friedrichs, Lewy)

●

●                                                         c
max

: maximum characteristic speed

●   i.e., information must not propagate more than one zone              
         per time step

●

● Implicit schemes allow arbitrarily large time steps (accuracy, 
convergence?)  but need to solve nonlinear algebraic system (by 
linearization & iteration)   

● -->  prohibitively large CPU & storage requirements                        
       for multi-d problems                                                                   
              CPU time  ~  (N

v
 x N

x
 x N

y 
x N

z
)3                                          

       (dimensional splitting & block elimination helps to reduce                 
         operation count!) 

 t tCFL=Mini
 xi
cmax

¿
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●                                                                                                          
Consider initial value problem in one spatial dimension

●

●

●    -  discretization of x-t plane into computational grid

●        zone width         x                                time step      t                   
       zone centers        x

j
     =  ( j – ½ ) x      time levels    tn = n t         

       zone interfaces    x
j+1/2

 =  x
j
 + ½ x

●  

●   -  finite difference/volume operator H
t
                                           

         U n+1

j 
= H

t
(U n; j)                                                                            

     Note: U n+1

j 
depends on U n at several zones (stencil of method) 

●    -  for conservation laws FV methods                                                     
       give approximation of zone average      

∂U
∂ t

AU 
∂U
∂ x

=0 with U  x ,0=U 0 x 
¿

U j
n
=

1
 x∫x j−1 /2

x j1 /2

U  x , tndx
¿
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●                                                                                                           
desirable & necessary properties of finite difference / finite 
volume schemes

●  -  stable and sharp resolution of flow discontinuities                       
     without excessive smearing

●

●  -  consistency, i.e., convergence under grid refinement to the        
     physically correct discontinous solution    (necessary!) 

●

●  -  high-order accuracy  (a typical 3D hydrodynamic simulation            
     involves only ~100 zones per spatial dimension)

●        is essential to lower computational load, because if                 
       spatial resolution:  ~N   --->   load  ~ N 4   for 3D problems  
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•

•

•

diffusivity of various finite volume methods
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●                                                                                                         
high resolution shock-capturing methods (HRSC) 

●  - rely strongly on hyperbolic & conservative character of HD eqs   
    (upwind method along characteristics)

●    

●  - shock-capturing ability

●    *  discontinuities are treated consistently & automatically  

●    *  scheme reduces from high-order accuracy in smooth regions  
       to 1st order accuracy at discontinuities 

●

●  -  usually based on solution of local Riemann problems                 
    (discontinuous initial value problem) at zone interfaces  



1

●                                                                                                          
global error & convergence 

● -  for systems of conservation laws: define the local error               
   relative to zone average of true solution

●   

●    and define discrete 1-norm to evaluate global error 

●

● - difference scheme is conservative, if it can be written in the form 
                 

●

●  for some function F of r+q+1 arguments (numerical flux function) 

●                                                                                                           
- Theorem of Lax & Wendroff:  schemes of conservation form        
    converge (if at all) to one of the weak solutions of the                  
    original system of equations

E j
n=U j

n− U j
n

∣∣En∣∣= x∑ j
∣E j

n∣

U j
n1=U j

n−
 t
 x

[ F U j−r
n ,U j−r1

n , ... ,U jq
n − F U j−r−1

n ,U j−r
n , ... ,U jq−1

n ]
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●                                                                                                          
stability 

●  -  convergence requires some form of stability

●  -  numerical scheme is stable, if global error is bounded for all      
    times

●  -  for linear problems the Lax equivalence theorem holds:              
       Stability is necessary and sufficient for convergence

●  -  for nonlinear problems concept of Total Variation (TV) stability   
    is useful          

●

●           TV stability is guaranteed, if  TV(Un)  is bounded.

●                                                                                                           
  -  convergence theorem (nonlinear scalar case)                            
     for numerical schemes in conservation form with consistent      
     numerical flux functions:      TV stability  ===>  convergence

TV U n
≡∑

−∞

∞

∣U j1
n

−U j
n
∣
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•

• Finite volume schemes

•    - quasi-linear hyperbolic system of (1D) conservation laws          
      for state vector U

•

•

•    - or with the Jacobian  A(u) ≡ ∂F/∂U  of the flux vector F(U)  

•

•

•    - integration over finite (1D spatial control) volume 

•

•

•

•    integral form allows proper handling of flow discontinuities!

U tx , t Fx[Ux , t ]=0

∫x1

x 2

U x , t2dx=∫x1

x2

Ux , t1dx−∫t1

t2

F[U x2 , t ]dt∫t1

t2

F[Ux1, t ]dt

[x1, x2]×[t1, t2]

U tA U⋅Ux=0



  

(xR,y,z)

(xL,y,z)

(x,y,zL)

(x,y,zR)

x

yL

z

x

yR

z

z

X y

∆V

(from G.Bodo)

3D flow: consider fluxes through all orthogonal volume surfaces



Handling discontinuities
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•                                                                                               

Godunov Schemes      U(x,t n)  is approximated by a piecewise            
                                      ( on a spatial scale Dx )  polynomial  v(x,t n)       
 

•

•

• --->  exact evolution of spatially averaged (approximate) state          
       vector given by time-averaged numerical fluxes at interfaces 

•

• -   construct numerical scheme by sampling at discrete grid            
    points:   

•          at cell centers       --->   upwind schemes                                
         at cell interfaces   --->   central schemes                                 
                        

• --->   remaining question:   How to compute numerical fluxes?

v x , tn1=v x, tn−
1

 x [∫tn

tn1

F v xx /2,d−∫tn

tn1

F v x−x /2,d]
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•                                                                                                          
e.g., piecewise constant                         

•                                                                upwind schemes                      
                                                 numerical flux at polynomial     
                                                                 breakpoints  from exact or       
                                                                 approximate solution of local   
                                                                 Riemann problems                   
                                                                        (spectral information required!)  

•                                                                                         

•                                                                      central schemes                        
                                                                       smooth numerical flux at          
                                                                 cell centers by quadrature       
                                                                 (averaging over Riemann fan)      
                                                                                                                            
  

•    proto-types:  1st order Godunov (upwind),  Lax-Friedrichs (central)  
•        non-oscillatory higher-order extensions of both classes exist!
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•  Riemann Problem  
•  -   consider hyperbolic system of conservation laws in                   

     one spatial dimension 
•

•

•  - Riemann problem for the above system is an initial value            
   problem with discontinuous data  

•

•    invariant under similarity transformation:  (x, t) ---> (ax, at) ,  a > 0

•

•  -  Theorem of Lax:   If left and right states are sufficiently close,    
    Riemann problem has a solution consisting of p+1 constant       
    states separated by rarefaction waves                                         
    and shocks 

∂ U
∂ t


∂ F  U 

∂ x
=0 with U  x ,0= U 0 x 

U 0=U L if x0 ∧ U 0=U R if x0 ¿

U RP 
x
t
; U L , U R
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•                                                                                                           

Exact Riemann solvers
• iterative solution of a non-linear algebraic equation (for the 

pressure of the intermediate state) at each zone interface
•   -  straightforward for ideal gas EOS (=const.)                                      

  -  more complicated for general EOS (linear interpolation of )             
             

• Approximate Riemann solvers 
• instead of solving Riemann problem exactly approximations           

are made, e.g.,            
• Roe solver:   approximate RP solved exactly assuming locally constant  

                     Jacobian  --->  hyperbolic system becomes linear               
HLLE:           exact RP is solved approximately using only                       
                     maximum & minimum eigenvalues                      
Marquina's flux formula:  exploits characteristic information                  
                                           to compute numerical flux function 
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•                                                                                                           
                        

• Higher-order Godunov methods                                       
  interpolation inside cells

use slope limiters to enforce 
monotonicity (avoid appearance 
of new maxima) 

higher-order interpolations used
in astrophysical applications:

  piecewise linear   (PLM)

  piecewise parabolic  (PPM)

  piecewise hyperbolic  (PHM)
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•                                                                                                

           

• More general class of schemes
•     -   Total Variation Diminishing  schemes                                      

                         
•           
•                                                                                                                              

           --->    convergence,  no spurious oscillations                                    
                                      

•       -  monotone schemes at most 1st order accurate, but  TVD schemes 
        not restricted to 1st order   --->                                                          
                      

•           upwind TVD schemes:      2nd order:   FCT, MUSCL, Harten (NO)         
                                                        3rd order:    PPM, ENO                                 
                           

•           central TVD schemes with min-mod-limiter (NOCD)  
•                 2nd order:   Nessyahu & Tadmore ('90)                                                 

                3rd order:    Tadmore ('98)

∑i
∣ i1 /2

n ∣ ≤ ∑i
∣ i1 /2

0 ∣ with  i1 /2
n

≡ i1
n

−i
n



•

• Sod's shock tube test problem (N=400, CFL=0.3)

•  

La x -F rie d ric h s

1st order central difference scheme 
  simple, but very diffusive everywhere 

from A.Serrano

● (,u,E):                   
● UL = (1, 0, 2.5) 
● UR = (0.125, 0, 0.25) 



•

• Sod's shock tube test problem (N=400, CFL=0.3)
•  

T a d m o re  

3 cells in
the shock

   large 
  diffusion

diffusion

2nd order central difference scheme
  good at shocks, very diffusive at contacts

from A.Serrano



•

• Sod's shock tube test problem (N=400, CFL=0.3)
•  

G o d u n o v

3 cells in
the shock

very well 
resolved
contact

very good 
resolution

small 
undershoots

Riemann solver, 1st order reconstruction
  accurate description of all wave structures

from A.Serrano
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•

•   Computer resources required:
•  
•      -  floating point operations 
•               3 -  20   variables 
•            103 - 108   zones        (present record:  20483 ~ 8 109) 

•            103 - 106   timesteps
•            102 - 103   Ops/zone/variable/timestep 
•       
•            --->       1010  -  1018 operations / simulation 
•

•      -  central memory    up to several 100 Gbytes               
•
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•

• - present day computer 
•     100 Mflops (PC)      [ ~ CRAY-1 in 1980 ! ]         
•         3 Tflops   (´supercomputer´, e.g.,  1024 PE  IBM Power 4) 
•    ~ 30 Tflops   (Earth Simulator, Japan,  ~5000 NEC-SX6)
•            

•     

•       --->  1D simulation:  ~ few minutes on PC
•               3D simulation:  ~ many weeks on supercomputer
•

•  -  output data:     ~  Gbyte / model         --->   data analysis
•                              ~ Tbyte / simulation             is non trivial!
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●

●

●

●

●                    Relativistic Hydrodynamics
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•

•  numerical complexity arising in RHD:
•    -  strong non-linearity (due to coupling by W and h)

•    -  unlimited shock compression (large jumps)

•    -  Lorentz contraction (narrow flow structures)

•    -  recovery of primitive variables (iteration required)

•  

•    ---> High-Resolution Shock-Capturing methods 

•               - exploit hyperbolic and conservative character of PDEs

•               - analytic solution of general relativistic Riemann problem         
                known (Marti & Müller 1994), but used only for tests or            
                for 1D flows ( ODE has to be solved !)

•               - careful treatment of “dangerous” terms when v/c --> 1             
                



●

●  
●

●               
●                          

●       
●    

• Appropriate RHD codes

• are able to handle

• ultra-relativistic flows

•

• ie. Lorentz factors 

•      > 100
•

•

• Shock reflection test problem

•

•

•                                 GENESIS RHD code:  Aloy, Ibánez, Marti & Müller '99    
                                      

• ≈22361

• ≈224



   General relativistic hydrodynamics:      

     also formulated as hyperbolic system, but with source terms         
 and geometric factors due to spacetime curvature

        - Cowling approximation (flow in fixed general spacetime)

        - full GRHD:  integration of  general relativistic HD eqs.              
                          together with Einstein field eqs. (3+1 ADM)           
 

        generic problems:                    

            -  long term numerical stability                                                 
              (hyperbolic vs constraint formulation)

            -  choice of optimal gauge and coordinates                             
             (to avoid too small timesteps)

            -  excision of singularities               

            -  gw extraction  (null cone formulation, compactified grids)    



•

•

•

1

0 . 6 3

0 .3 1

• Relativistic blast wave (N=400, CFL=0.3)

• Roe approximate Riemann solver:  
                                                         
    - structures quite well resolved    
    - correct shock speed

• Tadmor central scheme:                
 - waves badly resolved                 
 - unphysical shock speed (v>1)
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●

●

●

●

●                    Magneto-Hydrodynamics



•

• Ideal (R)MHD: The physical viewpoint

•

•   Equations describe flow of an infinitely well conducting         
  fluid in the presence of a magnetic field 

•

•       neglected:   

•            displacement currents 

•            electrostatic forces 

•            viscosity 

•            resistivity 

•            heat conduction
•       



•

• E q u a tio n s  o f id e a l M H D

•

•

•

•

•

•

•

•     

•

•      ( units where 4  and c disappear )

Et∇ [EPtot v−B Bv ] = 0

vt∇  v vI Ptot
−B B = 0

t∇v  = 0

B t∇ v B−Bv  = 0

P tot
=PB2

/ 2

E=v
2/2P/ −1B2/2

∇ B=0



•

• Ideal (R)MHD: The mathematical viewpoint

•  

•  Non-linear system of conservation laws  (7 waves; 10 if covariant)

•        -  non-strictly hyperbolic (not all of the real eigenvalues               
                                                     may be distinct)

•         -->  Riemann solver complicated (many cases)                         

•    

•        -  non-convex  (characteristic fields which are neither                    
                                    linearly degenerate nor genuinely nonlinear)

•         -->  complicated wave structure (compound waves)             

•                + additional constraint equation (divB = 0)



•

• Ideal (R)MHD: The numerical viewpoint

•

•    -  CPU requirements considerably larger than in (R)HD               
           (more equations, more waves, degeneracies, ... )                      

•  

•   -  calculation of eigenvalues involves solving a quartic

•            *  no simple analytic solution in closed form                                 
            *  eigenvalues must be obtained numerically                                
           *  eigenvectors depend nonlinearly on eigenvalues 

•                 -->  serious numerical complications                                       

•

•    -  pressure positivity more difficult to maintain than in (R)HD 

•    -  numerical problems in RMHD even worse



•

• constraint equation:  divB = 0 
•   

•   -  shock-capturing MHD codes 

•         base scheme (well established HD algorithm) to evolve                      
         mass, momentum, energy & (similarly) B-field

•          &   modification/addition for B evolution to maintain divB=0  

•

•   -  constrained transport (Evans & Hawley 1988)

•         applies staggered grid:  B components defined at cell interfaces           
         are updated by finite differencing the electric field at cell corners

•         -->  maintains divB=0 to machine round off error 
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