Negative Komar Mass in regular stationary spacetimes

Marcus Ansorg¹, David Petroff²

- ¹ Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Golm, Germany
- ² Theoretisch-Physikalisches-Institut, Friedrich-Schiller-Universität, Jena, Germany

Plan of the Talk

- 1 Introduction
- 2 The Komar mass
- 3 Journey into the realm of negative Komar mass
- 4 Summary

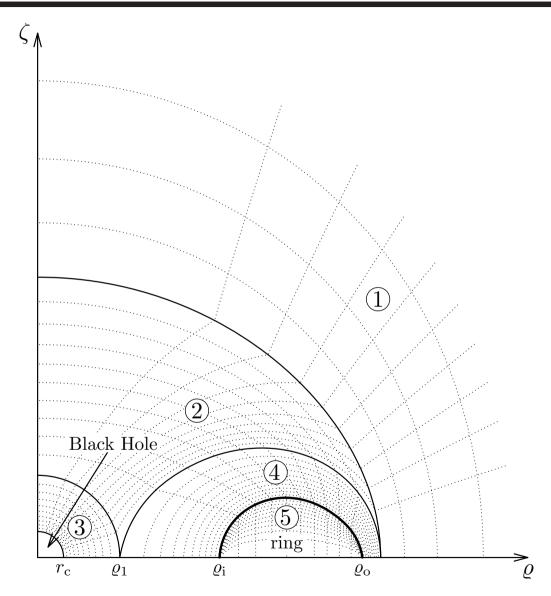
1. Introduction

- We consider a self-gravitating system consisting of a uniformly rotating, homogeneous perfect fluid ring and a central object, being either a black hole or a disk of dust.
- ullet Axisymmetry and stationarity are described by Killing vectors η^i and ξ^i
- Line element in Weyl-Lewis-Papapetrou coordinates:

$$ds^{2} = -e^{2\nu} dt^{2} + \varrho^{2} B^{2} e^{-2\nu} (d\varphi - \omega dt)^{2} + e^{2\lambda} (d\varrho^{2} + d\zeta^{2})$$

- ullet For the metric funtions u,B,ω,λ we solve the corresponding free boundary value problem with spectral methods.
- The presence of the ring can affect the properties of the central object drastically.
- We illustrate the ring's influence by tracing paths along which the 'Komar' mass of the central object becomes negative.

1. Introduction



The division of the ϱ - ζ plane into the domains used in the spectral methods ($\varrho_{\rm i}/\varrho_{\rm o}=0.56$ and $r_{\rm c}/\varrho_{\rm o}=0.08$).

2. The Komar mass (1)

Poisson equation in Newtonian gravity

$$\nabla \cdot (\nabla U) = 4\pi \mu$$

ullet A mass can be assigned to any subregion $V\subseteq \mathbb{R}^3$

$$M(V) = \int_V \mu d^3x = rac{1}{4\pi} \oint_{\partial V}
abla U dec{f}$$

Consequences:

$$1) \hspace{.1in} M(V) \hspace{.1in} = \hspace{.1in} 0 \hspace{.1in}$$
 if V is a vacuum region with $\mu = 0$

2)
$$M_{ ext{total}} = M(\mathbb{R}^3) = -\lim_{r o \infty} (rU)$$

2. The Komar mass (2)

Specific Einstein equation in axisymmetry and stationarity:

$$\nabla \cdot \left(B \nabla \nu - \frac{\omega}{2} \varrho^2 B^3 e^{-4\nu} \nabla \omega \right) = 4\pi \tilde{\mu}(\mu, p; \lambda, \nu, B, \omega)$$

ullet A 'Komar' mass can be assigned to any subregion $V\subseteq \mathbb{R}^3$

$$M(V) = \int_V ilde{\mu} d^3x = rac{1}{4\pi} \oint_{\partial V} \left(B
abla
u - rac{\omega}{2} arrho^2 B^3 e^{-4
u}
abla \omega
ight) dec{f}$$

Consequences:

- $1) \hspace{.1in} M(V) \hspace{.1in} = \hspace{.1in} 0 \hspace{.1in}$ if V is a vacuum region with $\mu = 0$
- $M_{
 m ADM} = M(\mathbb{R}^3) = -\lim_{r o\infty}(r
 u)$
- ullet Define the Komar mass of a black hole as surface integral over an arbitrary boundary ∂V where V contains only the black hole.

2. The Komar mass (3)

- Question: Is the black hole's Komar mass always positive?
- Analysis by means of the 'Smarr' formula (Bardeen, Carter):

$$M_{
m h}=rac{\kappa}{4\pi}A_{
m h}+2\Omega_{
m h}J_{
m h}$$

- ullet The surface gravity κ and horizon area $A_{
 m h}$ are always positive, but the product can approach zero.
- The ring can cause a 'frame dragging' of the black hole such that its angular velocity $\Omega_{
 m h}$ and angular momentum $J_{
 m h}$ assume different signs.
- Requirement: highly relativistic rotating rings, characterized by a large ergosphere (a portion of space in which $\xi^i \xi_i > 0$).
- ullet Can the negative term $2\Omega_{
 m h}J_{
 m h}$ dominate over $\kappa A_{
 m h}/(4\pi)$?
- Answer: Yes! The Komar mass of such black holes is negative.

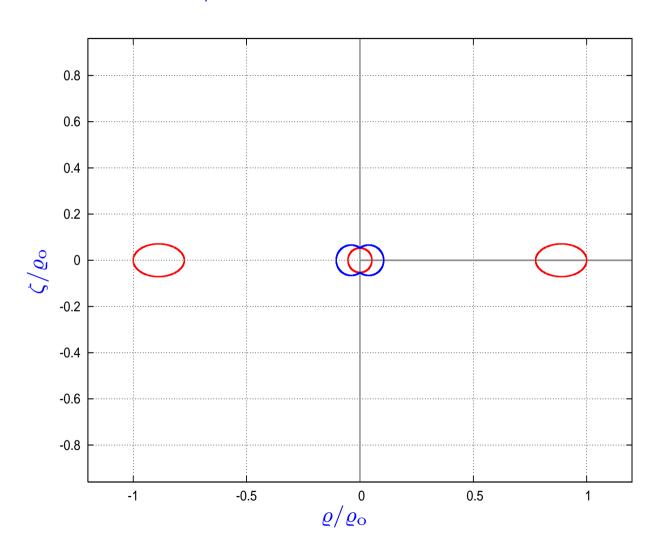
2. The Komar mass (4)

- Question: Is the central disk's Komar mass always positive?
- Analysis by means of the Disk-'Smarr' formula (Bardeen):

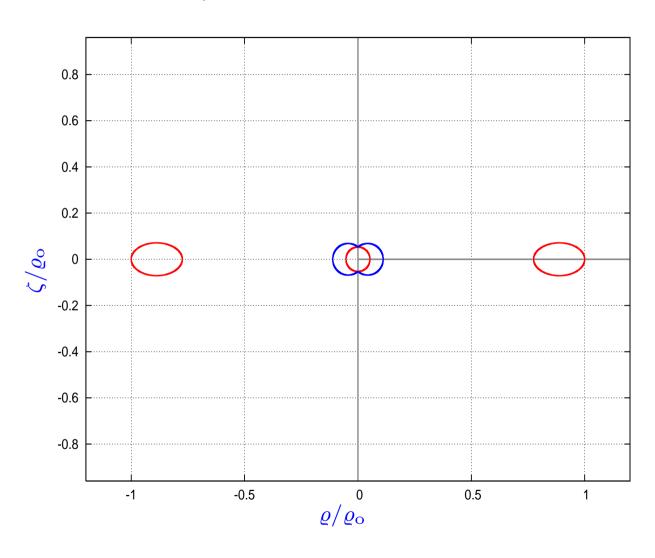
$$M_{
m d}=e^{V_0}M_0+2\Omega_{
m d}J_{
m d}$$

- ullet The redshift $Z_{
 m d}=e^{-V_0}-1$ and the *baryonic* mass M_0 are always positive, but the product $e^{V_0}M_0$ can approach zero.
- Again, a 'frame dragging' caused by the ring can lead to different signs of the disk's angular velocity $\Omega_{
 m d}$ and its angular momentum $J_{
 m d}$.
- Requirement: highly relativistic rotating rings, characterized by a large ergosphere (a portion of space in which $\xi^i \xi_i > 0$).
- ullet Can the negative term $2\Omega_{
 m d}J_{
 m d}$ dominate over $e^{V_0}M_0$?
- Answer: Yes! The Komar mass of such dust disks is negative.

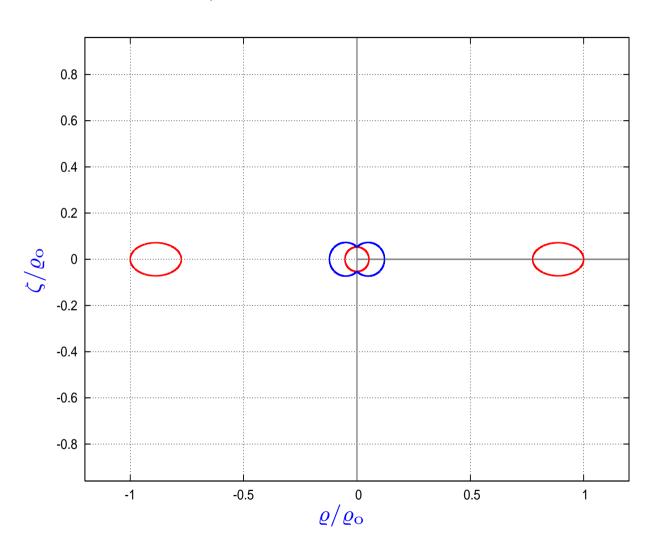
$$M_{\rm h}/M_{\rm r} = 0.89 \,, \, Z_{\rm r} = 0.65$$



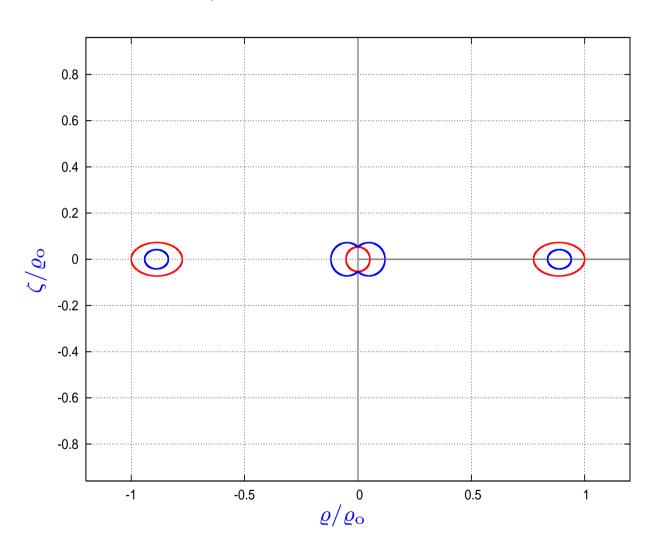
$$M_{\rm h}/M_{\rm r} = 0.78$$
, $Z_{\rm r} = 0.75$



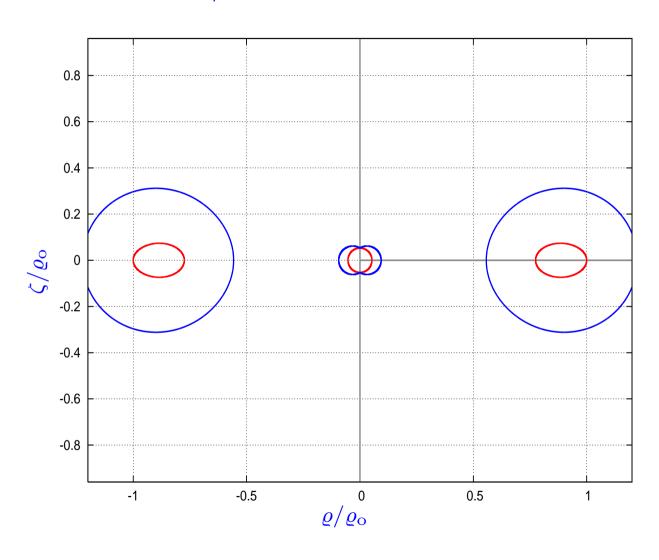
$$M_{\rm h}/M_{\rm r} = 0.53, Z_{\rm r} = 1.1$$



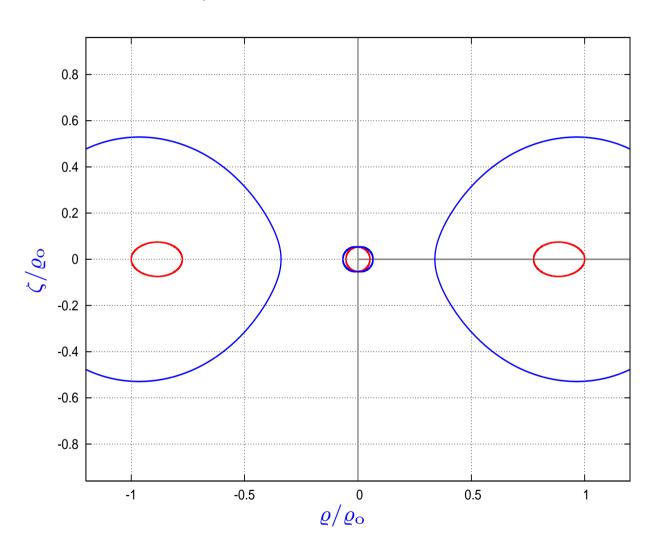
$$M_{\rm h}/M_{\rm r} = 0.33$$
, $Z_{\rm r} = 1.6$



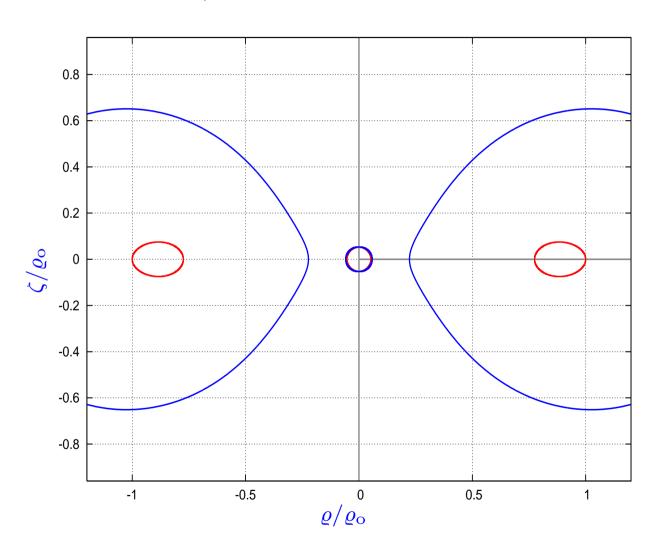
$$M_{\rm h}/M_{\rm r} = 0.16$$
, $Z_{\rm r} = 2.7$



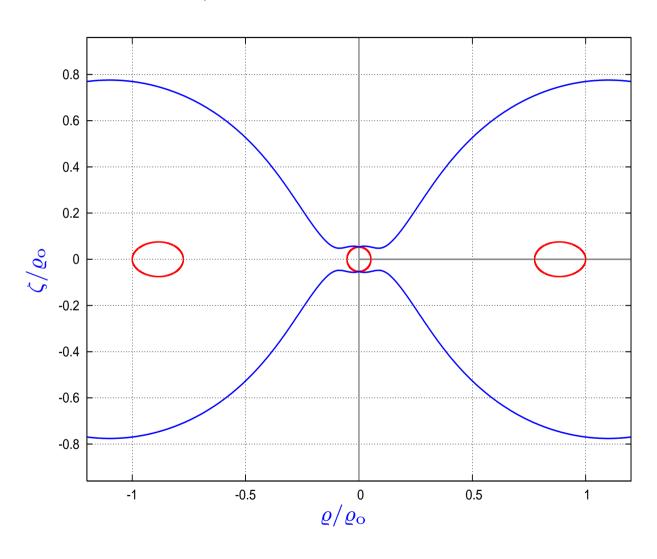
$$M_{\rm h}/M_{\rm r} = 0.094$$
, $Z_{\rm r} = 3.6$



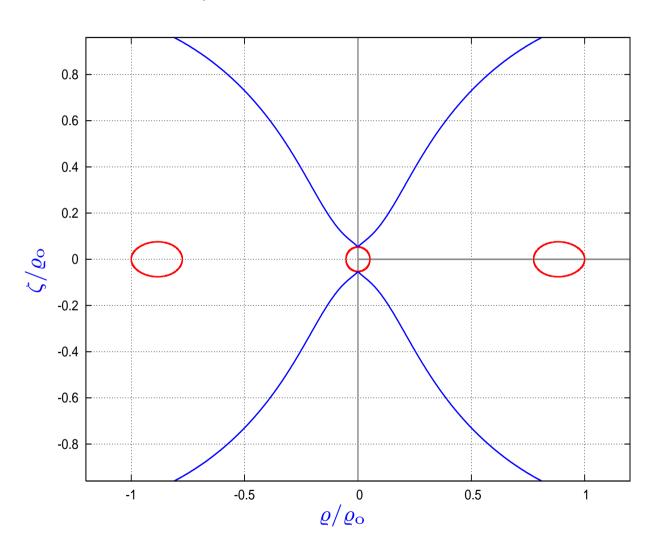
$$M_{\rm h}/M_{\rm r} = 0.069$$
, $Z_{\rm r} = 4.2$



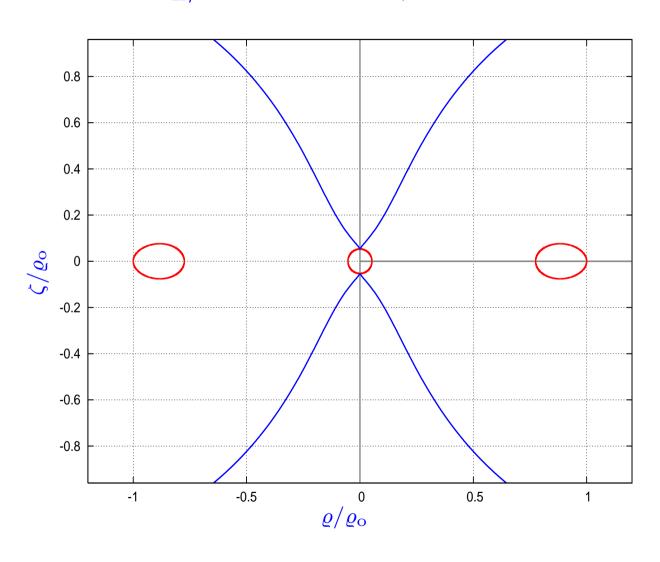
$$M_{\rm h}/M_{\rm r} = 0.048, Z_{\rm r} = 4.8$$



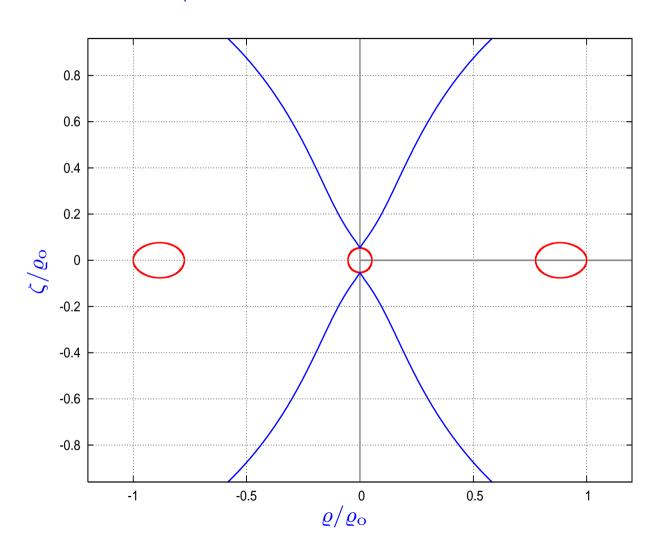
$$M_{\rm h}/M_{\rm r} = 0.013, Z_{\rm r} = 6.4$$



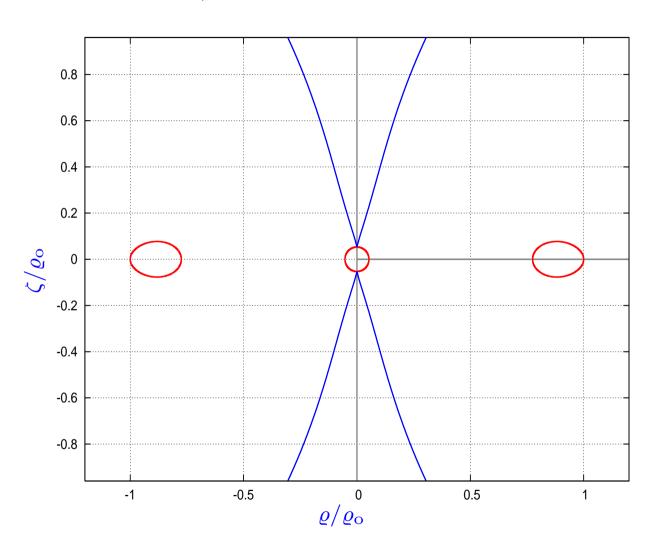
$$M_{\rm h}/M_{\rm r} = 0.00070$$
, $Z_{\rm r} = 7.3$



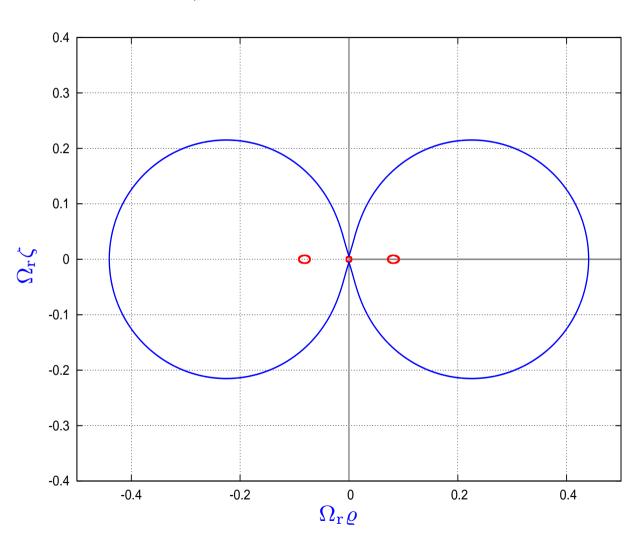
$$M_{\rm h}/M_{\rm r} = -0.0055$$
, $Z_{\rm r} = 7.8$



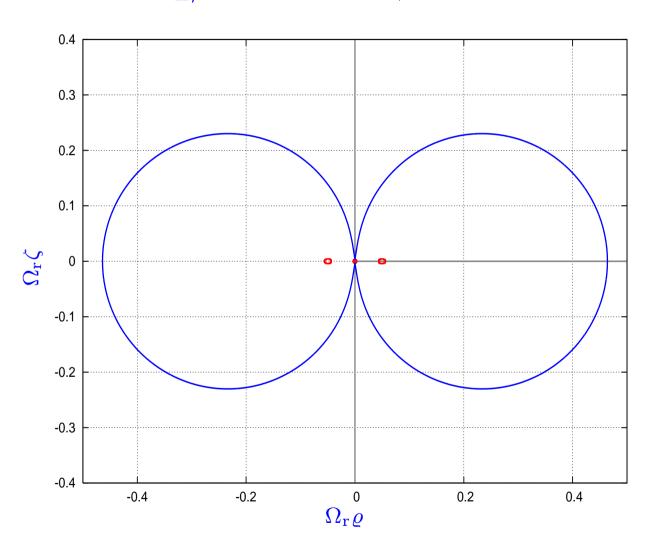
$$M_{\rm h}/M_{\rm r} = -0.04 \,,\, Z_{\rm r} = 13$$



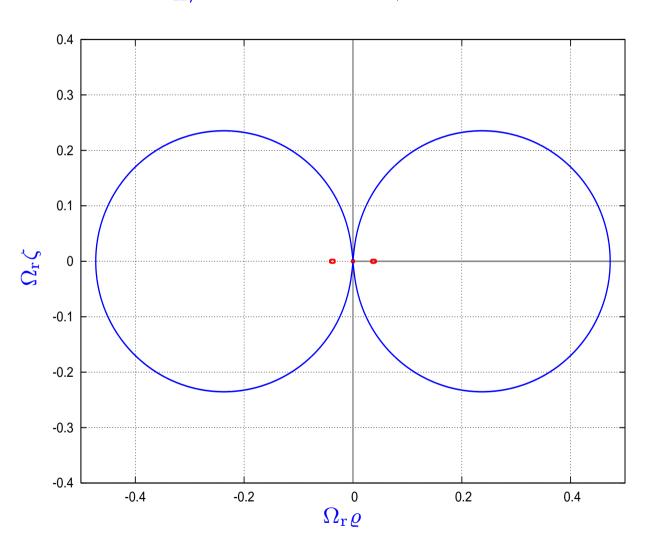
$$M_{\rm h}/M_{\rm r} = -0.04 \,,\, Z_{\rm r} = 13$$



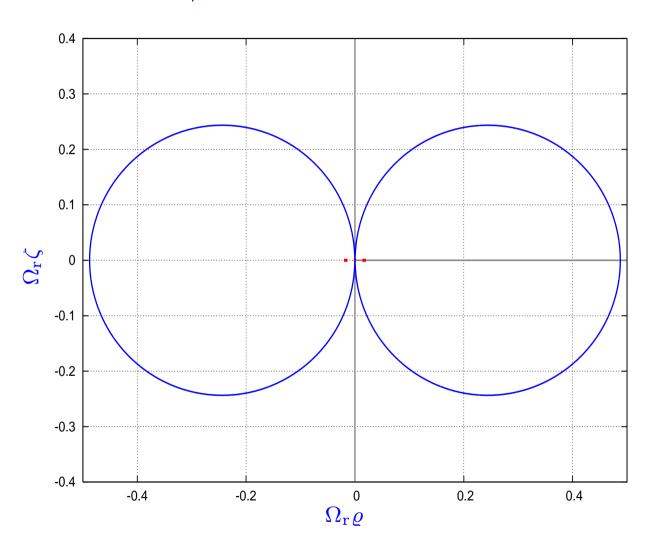
$$M_{\rm h}/M_{\rm r} = -0.060$$
, $Z_{\rm r} = 24$



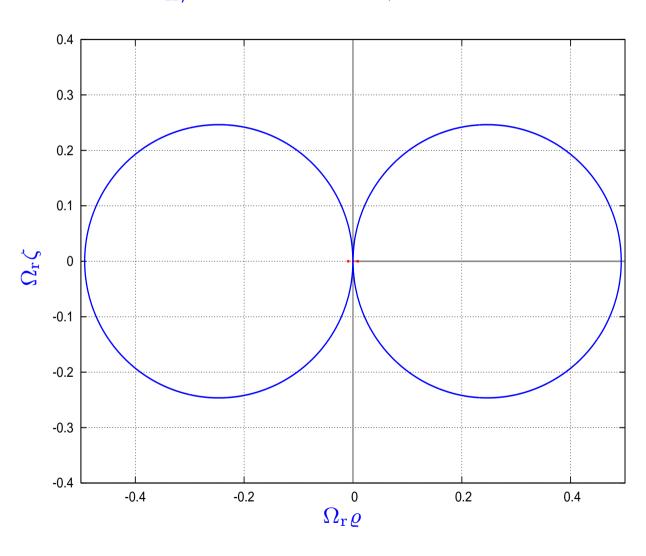
$$M_{\rm h}/M_{\rm r} = -0.067, Z_{\rm r} = 32$$

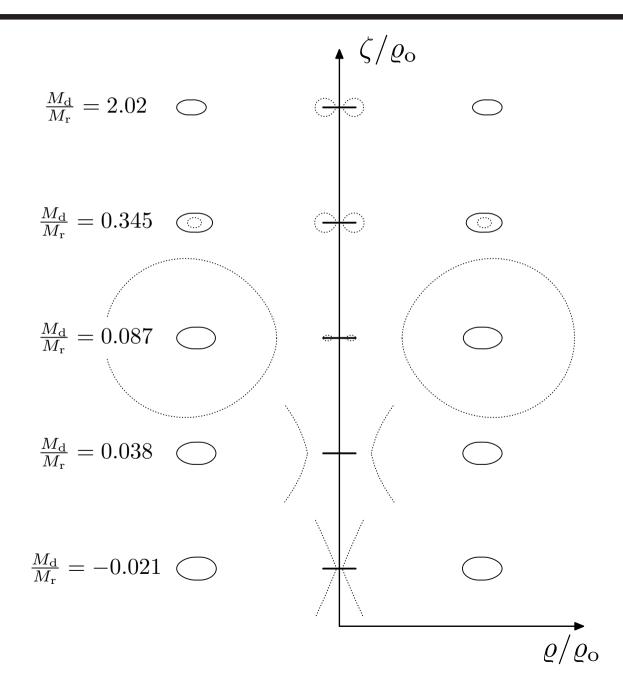


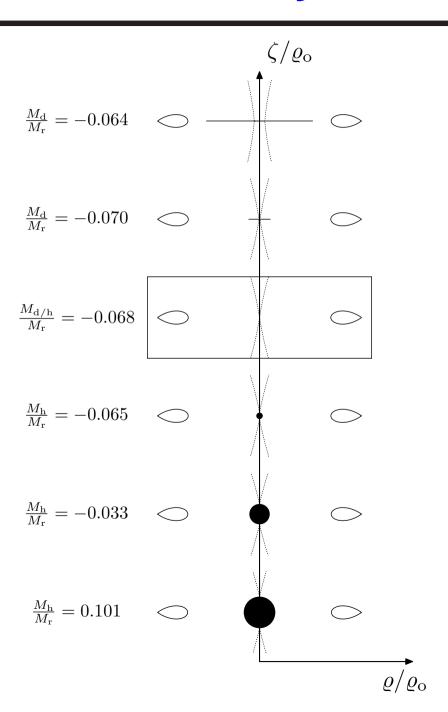
$$M_{\rm h}/M_{\rm r} = -0.077, Z_{\rm r} = 75$$

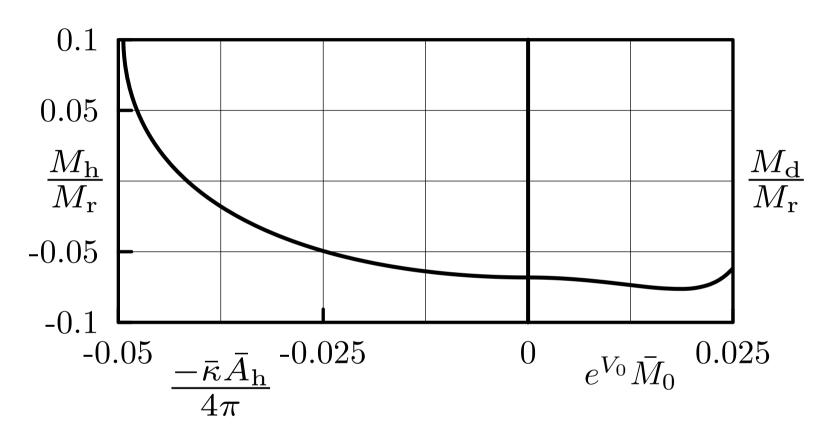


$$M_{\rm h}/M_{\rm r} = -0.080 \,,\, Z_{\rm r} = 150$$









The ratio of the Komar Mass of the central object to that of the ring versus a measure of the distance to the degenerate black hole solution

4. Summary (1)

- The Komar mass of an object in axisymmetry and stationarity can be used on either side of the parametric transition from matter to a black hole.
- It can become negative if
 - (i) The object is placed within the strong gravitational field of a source with greater positive Komar mass.
 - (ii) This source is rapidly rotating so as to produce a large ergosphere encompassing the object.
 - (iii) The object is counter-rotating at a limited rate.
 - (iv) The object exerts a finite influence on the source (it is not close to a 'test'-object).

4. Summary (2)

- The Komar mass is not an intrinsic property of an object. It is a feature of an object within a specific highly relativistic spacetime geometry.
- Question: What is the maximally attainable ratio

$$-M^{
m negative}/M^{
m positive}$$