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SEE————————————
From geometry to numerics... and on to astrophysics!

o Full black-hole binary evolutions (inspiral, merger, ringdown) are now routine
@ Recent results from the Jena group:
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Figure: 4th-order convergence and BAM / LEAN comparison. (gr-qc/0610128)

o Merger time error of 0.2% for ry = 3.257M. 0.5% for ry = 4M.
@ No phase shift applied!

@ High-resolution runs take less than 48 hours on LRZ altix cluster.
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SEE————————————
From geometry to numerics, and on to astrophysics!

o Largest parameter study to date of binary merger evolutions
@ Nonspinning unequal-mass binaries with mass ratios of 1:1 to 1:4
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Kick velocity vs reduced mass ratio n = mymy/(my + my)?. (gr-qc/0610154)

@ Maximum recoil velocity of 175.2 + 11 kms™!.
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SEE————————————
From geometry to numerics, and on to astrophysics!

o Largest parameter study to date of binary merger evolutions
@ Nonspinning unequal-mass binaries with mass ratios of 1:1 to 1:4
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Kick velocity vs reduced mass ratio n = mymy/(my + my)?. (gr-qc/0610154)

@ Maximum recoil velocity of 175.2 + 11 kms™!.

@ Now we can
o Fully explore the physics of BBH mergers
o Provide waveforms to data analysts
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SEE————————————
Back to geometry

How to deal with black-hole singularities in a numerical code

e “Excision”: Chop them out! (Pretorius, Caltech)
@ “Punctures”: avoid them. (UTB, Goddard, Penn State, Jena (x2))
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SEE————————————
Back to geometry

How to deal with black-hole singularities in a numerical code

e “Excision”: Chop them out! (Pretorius, Caltech)
@ “Punctures”: avoid them. (UTB, Goddard, Penn State, Jena (x2))

The “moving punctures” method is easy to implement and popular

But...

@ Are punctures a crude and dirty way to solve the problem?

@ Or are they a simple and elegant solution?

Attempt to explain how punctures evolve by looking at a Schwarzschild black
hole.
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|
Puncture initial data

Schwarzschild in isotropic coordinates:
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_ 2r | 442 1+ — dr? + r?dQ?) .
<1+M> + +2r (dr* +r )

2r

ds®

R = 4°r.

R extends from oo to 2M (at r = M/2), and back to oo (at r = 0).
Slice connects two asymptotically flat ends; avoids the singularity
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|
Puncture initial data

Schwarzschild in isotropic coordinates:

1 M\? m\*
r 2 2 2 2

ds®

2r
R = ?r.

R extends from oo to 2M (at r = M/2), and back to oo (at r = 0).
Slice connects two asymptotically flat ends; avoids the singularity

Initial data for a dynamical evolution:

- M
Bi =05 v=14
K=0, A;=0

a=1, g =0.
With this choice of lapse and shift, there will be nontrivial evolution.
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——
“Fixed puncture” evolutions

The conformal factor diverges at the puncture.
Assume that we keep the wormhole topology during evolution, and write it as

M
w:(1+2r>f,

and ¢ = Inf = 0 initially. Then evolve ¢ =Inf.
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——
“Fixed puncture” evolutions

The conformal factor diverges at the puncture.
Assume that we keep the wormhole topology during evolution, and write it as

M
w:(1+2r> f,

and ¢ = Inf = 0 initially. Then evolve ¢ =Inf.

Sometimes works for single black holes, head-on collisions, orbiting binaries
Always needs a lot of fine-tuning of gauge parameters.

By definition, the puncture is always under-resolved.

Gauge parameters chosen such that 3’ = O(r®) at the punctures.
= even for binaries, punctures are fixed on the grid.

The evolution does not find a stationary slice. (Reimann and Briigmann, '04)
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——
Example: “Fixed puncture” evolution of Schwarzschild

Evolve using

initial data of Schwarzschild in isotropic coordinates (from earlier slide)
a =1 and # = 0 initially

BSSN “fixed puncture” reformulation of the 3+1 evolution equations
I-driver shift evolution

1+log slicing, 0, = —2aK

= For a stationary solution, 0;a = 0 == K = 0, maximal slicing.
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——
Example: “Fixed puncture” evolution of Schwarzschild

Evolve using

initial data of Schwarzschild in isotropic coordinates (from earlier slide)
a =1 and # = 0 initially

BSSN “fixed puncture” reformulation of the 3+1 evolution equations
I-driver shift evolution

1+log slicing, 0, = —2aK

= For a stationary solution, 0;a = 0 == K = 0, maximal slicing.

Look at value of Tr(K) on the (outer) horizon R = 2M:
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SEE————————————
“Moving punctures”

Now llet (Goddard)
m
é=Ine=In (1+5),
or (UTB)
x=1v74
and evolve ¢ or x. (Don't assume anything about .)
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SEE————————————
“Moving punctures”

Now llet (Goddard)
m
é=Ine=In (1+5),
or (UTB)

x=v¢"
and evolve ¢ or x. (Don't assume anything about .)

BINARY BLACK HOLE PROBLEM SOLVED!
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SEE————————————
“Moving punctures”

Now llet (Goddard)
m
é=Ine=In (1+5),
or (UTB)

x=v¢"
and evolve ¢ or x. (Don't assume anything about .)

BINARY BLACK HOLE PROBLEM SOLVED!

The “moving punctures” package:
@ BSSN (with ¢ or x variables)
@ Singularity-avoiding slicing (maximal, 1+log, ...)
o [ -freezing shift evolution
@ “Puncture” initial data
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SEE————————————
“Moving puncture” evolution of Schwarzschild

Using “maximal” 14log slicing, 0;« = —2aK, and “I'-driver” shift evolution.
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Reaches stationary (maximal) slice in about 40M.
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SEE————————————
“Moving puncture” evolution of Schwarzschild

Using “maximal” 14log slicing, 0;« = —2aK, and “I'-driver” shift evolution.
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Coordinate r
Reaches stationary (maximal) slice in about 40M.

Evolution of Schwarzschild R(r): T = 0.
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SEE————————————
“Moving puncture” evolution of Schwarzschild

Using “maximal” 14log slicing, 0;« = —2aK, and “I'-driver” shift evolution.
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Coordinate r
Reaches stationary (maximal) slice in about 40M.

Evolution of Schwarzschild R(r): T = 1M.
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SEE————————————
“Moving puncture” evolution of Schwarzschild

Using “maximal” 14log slicing, 0;« = —2aK, and “I'-driver” shift evolution.
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Coordinate r
Reaches stationary (maximal) slice in about 40M.

Evolution of Schwarzschild R(r): T = 2M.
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SEE————————————
“Moving puncture” evolution of Schwarzschild

Using “maximal” 14log slicing, 0;« = —2aK, and “I'-driver” shift evolution.
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Coordinate r
Reaches stationary (maximal) slice in about 40M.

Evolution of Schwarzschild R(r): T = 3M.
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SEE————————————
“Moving puncture” evolution of Schwarzschild

ing “maximal” icing, Ora = —2aK, “I"-driver” shift evolution.

Using “maximal” 1+log slicing, 0; 2aK, and “T-driver” shift evolution
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Reaches stationary (maximal) slice in about 40M.
Evolution of Schwarzschild R(r = 0): slice ends at R = 3M/2.

Slice loses contact with other asymptotically flat end.
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——
This should not be a surprise...

e Estabrook et. al., PRD 7 (1973) 2814, derive an analytic maximal slicing of
Schwarzschild for all time.

e t =0 limit: Schwarzschild spatial metric with o = 1 and ' = 0.

@ This is the starting point for our numerical evolution!

oM\ 7t
Ve = <1—)
p
g =0

a = 1.
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——
This should not be a surprise...

o Estabrook et. al., PRD 7 (1973) 2814, derive an analytic maximal slicing of
Schwarzschild for all time.

@ t — oo limit: slice ends on a cylinder of radius R = 3M /2!

( 2M CZ)‘l
Yrr = 1—— 4 —

r rt
. aC
g = =)
2M  C?
a = 4J1- 4=
r r

with C = 3v/3/4.
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——
This should not be a surprise...

o Estabrook et. al., PRD 7 (1973) 2814, derive an analytic maximal slicing of
Schwarzschild for all time.

@ t — oo limit: slice ends on a cylinder of radius R = 3M /2!

( 2M CZ)‘l
Yrr = 1—— 4 —

r rt
. aC
g = =)
2M  C?
a = 4J1- 4=
r r

with C = 3v/3/4.

i M 3am
@ In evolution, ¥ ~ 57 = 9 ~ /5.

o With “new 1+log": slice ends at R = 1.3M.
(Hannam, Husa, Pollney, Briigmann, O Murchadha, gr-qc/0606099.)
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——
“Cylindrical” initial data

@ Now we have stationary data

08
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Take the t — oo limit of the Estabrook et. al. solution

(Solve the Hamiltonian constraint for ¢ with a 1D code.)

Reconstruct a, (3, Ajj, in these conformal coordinates.

Map to conformal coordinates in which ¢ ~ W% at the puncture.
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SEE————————————
Cylindrical data movie: promotional shots

Look at close-up of g, during evolution.
(It should remain at g.x = 1.)
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SEE————————————
Cylindrical data movie: promotional shots

Look at close-up of g, during evolution.
(It should remain at g.x = 1.)
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At puncture, 0.2% error after 20M for resolution M/85.
At boundary, 0.01% error per 20M of evolution.

An excellent environment to test and study the moving-puncture approach.

Mark Hannam (FSU Jena) Moving Punctures Paris, November 23 2006 12 /13



Conclusions
@ “Moving punctures” quickly cease to be punctures
@ The numerical solutions are well-resolved and accurate
@ Puncture evolutions find the stationary solution in ~ 40M.
@ Black holes move on the numerical grid, with their singularities elegantly
avoided
Next steps

@ Look for stationary 1+log/maximal puncture slicing of Kerr (the final state of
BBH evolutions!)

@ What happens when matter and radiation are present?
@ Construct “cylindrical” data for binaries.
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