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Interplay between nonlinear hyperbolic P.D.E.’s and geometry.
Fluids and metrics with limited regularity.

Three different topics :

» Well-posedness theory for hyperbolic conservation laws on a
Lorentzian background (M. Ben-Artzi)

> Injectivity radius estimates for Lorentzian manifolds with
bounded curvature (B.-L. Chen)

» Existence of Gowdy-type matter spacetimes with bounded
variation (J.M. Stewart)



CONSERVATION LAWS ON A LORENTZIAN MANIFOLD
Joint work with M. Ben-Artzi, Jerusalem.

(M, g) : time-oriented, (n + 1)-dimensional Lorentzian manifold with
signature (—,+,...,+).

Definition.
» A flux on M : a vector field x — f(0) € T, M.
» Time-like flux : g,5 0,2 (i ) a2 () < 0, x €M, ieR.

» Conservation law : V, ( ) 0, u:M — R being a scalar

field.
» Geometry compatible : V,f*(d) =0 forall Ge€R, xe M.

Remark.

» Nonlinear hyperbolic equation.
» A model for the dynamics of compressible fluids.

> Allow for shock waves and their interplay with the (fixed
background) geometry.



Globally hyperbolic.

» Foliation by space-like, compact, oriented hypersurfaces

/\/I:UHt.

teR

n; : future-oriented, unit normal vector field to H;
g: : induced metric. X" : normal component of X.

» Future of the Cauchy hypersurface Hy

j+(HO) = U He.

>0

> An initial data ug : Ho — R being prescribed, we search for a weak
solution u = u(x) € L>=(J*(Ho)) satisfying in a weak sense

U\Hg = Up.



Discontinuous solutions in the sense of distributions

. Non-uniqueness.
Need an entropy criterion.

Definition.

» Convex entropy flux :
F = F.(a) if there exists U : R — R convex
a
Fo(d) :/ D U()Duf(u) dl,  x €M, TER.
0
Additional conservation laws for smooth solutions VQ(FO‘(U)) =0.

» Entropy solution of the geometry-compatible conservation law :

/ Fo(u) Vb dV, — / F™(uo) B4, dVg, > 0.
J+(Ho) JHo



Theorem. (Well-posedness theory for hyperbolic conservation laws on
a Lorentzian manifold.)

There exists a unique entropy solution u € L>°(J " (Ho)):
> the trace upy, € L'(H,, g:) exists for each t,

» for any convex entropy flux F the functions ||F™ (ujy,)||11(n, ) are
non-increasing in time,

» for any two entropy solutions u, v,

£ () — £ (Vi) | (g = N9, — ikl ()

is non-increasing in time.

Remarks.

» solutions are discontinuous (shock waves).

» the theory extends to the outer communication region of the
Schwarzschild spacetime.

Work in progress.

» convergence of finite volume approximations (Riemann solvers,
Godunov-type schemes).



INJECTIVITY RADIUS ESTIMATES FOR LORENTZIAN MANIFOLDS
Joint work with B.-L. Chen, Guang-Zhou.

Purpose.

> Investigate the geometry and regularity of (n + 1)-dimensional
Lorentzian manifolds (M, g).

» Exponential map exp, at some point p € M.
— conjugate radius : largest ball on which exp,, is a local
diffeomorphism
— Injectivity radius : largest ball on which exp,, is a global
diffeomorphism.

» Obtain lower bounds in terms of curvature and volume.



Results for Riemannian manifolds.
Cheeger, Gromov, Petersen, etc.

(M, g) : an n-dimensional Riemannian manifold
B(p, r) : geodesic ball centered at p € M.

[Rmg Lo (B(p,1)) < Ko,  Volg(B(p,1)) > v

» The injectivity radius is at least iy = io(Kp, vo, n) > 0.

» Given ¢ > 0 and 0 < v < 1 there exist C(¢,v) > 0 and some
coordinates defined in B(p, ro) in which

(1+e) 65 < gj < (1+¢) 0y,
r|0gllcosio,r) + r'110gllcr e, < Cle,), r € (0, ro].



Results for foliated Lorentzian manifolds.

» Anderson assumed

[RMg||Lo(B(p,1)) < Ko

plus other structure conditions, and investigated the existence of
“good” coordinates, and various issues of long-time evolution.
» Klainerman and Rodnianski relied instead on

sup |IRmgl|2B(p,1)ns) < Ko,
3 spacelike

and, in a series of papers, established estimates on the conjugacy
radius and injectivity radius of null cones.



Aim.
» Purely local and fully geometric estimates, without assuming a
system of coordinates or a foliation a priori.

> Injectivity radius estimates in arbitrary directions as well as in null
cones.

Techniques.
» Use a “reference” Riemannian metric g, based on a vector-field or a
vector at one point.

» Find a suitable generalization of classical arguments from
Riemannian geometry: geodesics, Jacobi fields, comparison
arguments, etc.

» Compare the behavior of g-geodesics and g -geodesics.



Reference Riemannian metric.
(M, g) : oriented (n+ 1)-dimensional Lorentzian manifold.

» T, € T,M : future-oriented time-like unit vector field.

» Moving frame (orthonormal) : e, (¢« =0,1,...,n) conS|st|ng of
ey = T supplemented with spacelike vectors e; (j = ,n).
@ . dual frame. Lorentzian metric :
g =1ape* ®e’, Nap © Minkowski.

» Riemannian metric :
g =lape*®e’, Sap : Euclidian

will be used to compute the norm |A|+ of tensors on M.

» Special choice : Choose ¢; in the orthogonal {eo}L

All metrics equivalent if T varies in a compact subset of the future cone.



Injectivity radius with respect to a reference vector.
» If M is not geodesically complete, then exp, is defined only on a
neighborhood of the origin in T,M.

> The metric g, on T,M is not positive definite and the norm of a
non-zero vector may vanish. We need to rely on g , and consider the
g-ball Br,(0,r) C T,M.

Definition.
The injectivity radius with respect to the reference vector T,

Injg(M, p, Tp)

is the largest radius r such that exp, is a global diffeomorphism from
Bt,(0,r) to a neighborhood of p.



First result : Lorentzian manifolds with a prescribed vector field.

Q C M : domain containing a point p and foliated by spacelike
hypersurfaces with normal T, Q = Ute[_l‘l] > ;, with lapse function :

L)

» (Al): |logn| < Ky in Q.

> (A2): |Lrglr <K inQ.

» (A3): |Rmg|r <K, inQ.

> (A4): Volg(Bs,(p,1)) > vo  (initial slice).
Theorem 1. Let (M, g) be a Lorentzian manifold satisfying (Al)—(A4)
at some point p and for some vector field T. Then, there exists iy > 0

depending only upon the foliation bounds Ky, K1, the curvature bound
K>, the volume bound vy, and the dimension such that

Injg(M, p, Tp) > .



Second result : Lorentzian manifolds with a prescribed vector at
one point.

No need to prescribe the whole vector field and foliation a priori.

» Given (M, g), p € M, and a unit vector T € T,M, consider the
reference metric g := (, )7 on T,M.

> Assume that exp, is defined on B7(0,r0) C T,M (ball determined
by g).

> Pull back : g = expg (still denoted by g) is defined on B7(0, o).

> g-parallel translate the vector T along the (straight) radial geodesics
from the origin. Vector field still denoted by T and defined on

BT(O, ro).
» Use T and g to define a reference Riemannian metric g on
B1(0, rp). Compute the norms |A|7 on B(0, rp).



Investigate the geometry of the local covering

exp, : Br(0, ) — B(p, ro) := exp,(B7(0,r)).

Theorem 2. (B.-L. Chen & P.G. LeFloch, 2006)

Let (M, g) be an (n+ 1)-dimensional Lorentzian manifold, and consider a
point p € M together with a reference vector T € T,M. Assume that
exp,, is defined on the ball B (0, r0) C T,M and

|ng|7‘ S r(;2 on BT(O7 I’o).

Then, there exists c(n) € (0,1) depending only on the dimension of the
manifold such that

Vol (B(p, f(n) ) .

Injg(M. p, T) = () 5=
0



GOWDY MATTER SPACETIMES WITH BOUNDED VARIATION
Joint work with J.M. Stewart, Cambridge.

Spacetime. (M, g) : (3 + 1)-dimensional Lorentzian manifold satisfying
Einstein field equations : Gap = Kk Tap.

Perfect fluids. Top = (L4 P) s ug + P &ap
> energy density u >0
> equation of state for the pressure
p=c2pu, 0<c <1, ¢s 1 sound speed
> light speed normalized =1

» time-like, unit velocity vector u®

Existence theory in the bounded variation class (BV) under
symmetry assumptions.



Plane-symmetric Gowdy-type spacetimes with matter.

» Two linearly independent, commuting Killing fields X, Y and in
coordinates

g = e (—dt? + dx?) + e (e’ dy? + e 7> dz°)

for some coefficients a, b, ¢ depending on t, x. Work pioneered by
Moncrief, Isenberg, Rendall, Chrusciel, etc.

» Velocity vector has only an x-component

u® = e ?y(1,v,0,0), = (1—v3)"¥2 lv| <1

» From T°7 we define 7,5, %
TOO _ e_2a((M+P)’Y2 _ P) = e—QaT
TOl _ TlO _ ef2a (u+p),y2 v =: 67235
T11 _ ef2a ((N+P) 72 V2 + P) — ef2az



Evolution and constraint equations.

» Three evolution equations (second-order nonlinear wave equations)

KR
att—aXX:bf—bf(—cf—&-cf—§e2a(u+p)

bttfbxx:f2bf+2b§+ge2"’(ufp)

Cit — Cox = —2 btct +2 bxcx

» Two constraint equations (first-order in time)

2aib; + 2ayby + b? — 2b — 3b% — 7 — 2 = ke*r

723tbx — 23th + 2btx + 2bth + 2CtCX = I<;e2‘35

» From Bianchi identities we deduce the Euler equations

Tt + Sx = —7(ar + 2bt) — S(2ax + 2by) — X ar — 2pby,
S+ X, = —Ta — S(2a; + 2b,) — T(ax + 2by) + 2pby.



Special case : vacuum.
» Blow-up in sup norm in finite time.

> As long as the variable b remains bounded, the variables a and ¢
remain bounded.

» Only expect existence for the Euler-Einstein equations until the
geometry blows-up.

Special case : Relativistic Euler equations in the Minkowski space.

» Letting a = b = k = 0 we obtain the fluid equations

14+ c2v? 14 ¢
(T .+ (—51v), =0,

14¢2 v2 + c?
(T—amv) (T3 =0

» Nonlinear hyperbolic equations, discontinuities in (u, v). Work by
Smoller, Temple, etc.



Theorem.(Initial-value problem for the Euler-Einstein equations in a
plane-symmetric Gowdy spacetime).

Fix initial data (a;, ax, b, bx, ¢t, ¢, i1, v)(0) satisfying the constraint
equations and having locally bounded variation (BV). Then :

» There exists a solution (a, b, c, i, v) which is defined for all x € R
on a maximal time interval t € [0, Tpnax)-

> [t satisfies the constraint equations and (az, ax, by, bx, Ct, Cx, 14, V)
has bounded variation at every time.

» The fluid variables satisfy entropy inequalities.

> When Tpax < 00, the sup norm of (a, b, 1) must blow-up at
t = Thax-

Remarks.

> Arbitrary large data, shock waves, Lipschitz continuous metric,
Gravitational waves.
» Possible blow-up in the geometry a, b and matter concentration in p.

» Work in progress : T3 Gowdy spacetimes in areal coordinates, and
censorship conjecture for Euler-Einstein spacetimes.



