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Interplay between nonlinear hyperbolic P.D.E.’s and geometry.
Fluids and metrics with limited regularity.

Three different topics :

I Well-posedness theory for hyperbolic conservation laws on a
Lorentzian background (M. Ben-Artzi)

I Injectivity radius estimates for Lorentzian manifolds with
bounded curvature (B.-L. Chen)

I Existence of Gowdy-type matter spacetimes with bounded
variation (J.M. Stewart)



CONSERVATION LAWS ON A LORENTZIAN MANIFOLD
Joint work with M. Ben-Artzi, Jerusalem.

(M, g) : time-oriented, (n + 1)-dimensional Lorentzian manifold with
signature (−,+, . . . ,+).

Definition.

I A flux on M : a vector field x 7→ fx(ū) ∈ TxM.

I Time-like flux : gαβ ∂uf
α
x (ū) ∂uf

β
x (ū) < 0, x ∈ M, ū ∈ R.

I Conservation law : ∇α

(
f α(u)

)
= 0, u : M → R being a scalar

field.

I Geometry compatible : ∇αf α
x (ū) = 0 for all ū ∈ R, x ∈ M.

Remark.

I Nonlinear hyperbolic equation.

I A model for the dynamics of compressible fluids.

I Allow for shock waves and their interplay with the (fixed
background) geometry.



Globally hyperbolic.

I Foliation by space-like, compact, oriented hypersurfaces

M =
⋃
t∈R

Ht .

nt : future-oriented, unit normal vector field to Ht

gt : induced metric. X nt : normal component of X .

I Future of the Cauchy hypersurface H0

J +(H0) =
⋃
t≥0

Ht .

I An initial data u0 : H0 → R being prescribed, we search for a weak
solution u = u(x) ∈ L∞(J +(H0)) satisfying in a weak sense

u|H0
= u0.



Discontinuous solutions in the sense of distributions. Non-uniqueness.
Need an entropy criterion.

Definition.

I Convex entropy flux :
F = Fx(ū) if there exists U : R → R convex

Fx(ū) =

∫ ū

0

∂uU(u′) ∂ufx(u
′) du′, x ∈ M, ū ∈ R.

Additional conservation laws for smooth solutions ∇α

(
Fα(u)

)
= 0.

I Entropy solution of the geometry-compatible conservation law :

u = u(x) ∈ L∞(J +(H0)) such that for all convex entropy flux
F = Fx(ū) and smooth functions θ ≥ 0∫

J +(H0)

Fα(u)∇αθ dVg −
∫
H0

F n0(u0) θH0 dVg0 ≥ 0.



Theorem. (Well-posedness theory for hyperbolic conservation laws on
a Lorentzian manifold.)
There exists a unique entropy solution u ∈ L∞(J +(H0)):

I the trace u|Ht
∈ L1(Ht , gt) exists for each t,

I for any convex entropy flux F the functions ‖F nt (u|Ht
)‖L1(Ht ,gt) are

non-increasing in time,

I for any two entropy solutions u, v,

‖f nt (u|Ht
)− f nt (v|Ht

)‖L1(Ht ,gt) ≈ ‖u|Ht
− v|Ht

‖L1(Ht ,gt)

is non-increasing in time.

Remarks.

I solutions are discontinuous (shock waves).

I the theory extends to the outer communication region of the
Schwarzschild spacetime.

Work in progress.

I convergence of finite volume approximations (Riemann solvers,
Godunov-type schemes).



INJECTIVITY RADIUS ESTIMATES FOR LORENTZIAN MANIFOLDS
Joint work with B.-L. Chen, Guang-Zhou.

Purpose.

I Investigate the geometry and regularity of (n + 1)-dimensional
Lorentzian manifolds (M, g).

I Exponential map expp at some point p ∈ M.
– conjugate radius : largest ball on which expp is a local
diffeomorphism
– Injectivity radius : largest ball on which expp is a global
diffeomorphism.

I Obtain lower bounds in terms of curvature and volume.



Results for Riemannian manifolds.
Cheeger, Gromov, Petersen, etc.

(M, g) : an n-dimensional Riemannian manifold
B(p, r) : geodesic ball centered at p ∈ M.

‖Rmg‖L∞(B(p,1)) ≤ K0, Volg (B(p, 1)) ≥ v0

I The injectivity radius is at least i0 = i0(K0, v0, n) > 0.

I Given ε > 0 and 0 < γ < 1 there exist C (ε, γ) > 0 and some
coordinates defined in B(p, r0) in which

(1 + ε)−1 δij ≤ gij ≤ (1 + ε) δij ,

r ‖∂g‖C0(B(p,r)) + r1+γ‖∂g‖Cγ(B(p,r)) ≤ C (ε, γ), r ∈ (0, r0].



Results for foliated Lorentzian manifolds.

I Anderson assumed

‖Rmg‖L∞(B(p,1)) ≤ K0

plus other structure conditions, and investigated the existence of
“good” coordinates, and various issues of long-time evolution.

I Klainerman and Rodnianski relied instead on

sup
Σ spacelike

‖Rmg‖L2(B(p,1)∩Σ) ≤ K0,

and, in a series of papers, established estimates on the conjugacy
radius and injectivity radius of null cones.



Aim.

I Purely local and fully geometric estimates, without assuming a
system of coordinates or a foliation a priori.

I Injectivity radius estimates in arbitrary directions as well as in null
cones.

Techniques.

I Use a “reference” Riemannian metric ĝ , based on a vector-field or a
vector at one point.

I Find a suitable generalization of classical arguments from
Riemannian geometry: geodesics, Jacobi fields, comparison
arguments, etc.

I Compare the behavior of g -geodesics and ĝ -geodesics.



Reference Riemannian metric.
(M, g) : oriented (n + 1)-dimensional Lorentzian manifold.

I Tp ∈ TpM : future-oriented time-like unit vector field.

I Moving frame (orthonormal) : eα (α = 0, 1, . . . , n) consisting of
e0 = T supplemented with spacelike vectors ej (j = 1, . . . , n).
eα : dual frame. Lorentzian metric :
g = ηαβ eα ⊗ eβ , ηαβ : Minkowski.

I Riemannian metric :

ĝ := δαβ eα ⊗ eβ , δαβ : Euclidian

will be used to compute the norm |A|T of tensors on M.

I Special choice : Choose ej in the orthogonal
{
e0

}⊥
.

All metrics equivalent if T varies in a compact subset of the future cone.



Injectivity radius with respect to a reference vector.

I If M is not geodesically complete, then expb is defined only on a
neighborhood of the origin in TpM.

I The metric gp on TpM is not positive definite and the norm of a
non-zero vector may vanish. We need to rely on ĝ p and consider the
ĝ -ball BTp (0, r) ⊂ TpM.

Definition.
The injectivity radius with respect to the reference vector Tp

Injg (M, p,Tp)

is the largest radius r such that expp is a global diffeomorphism from
BTp (0, r) to a neighborhood of p.



First result : Lorentzian manifolds with a prescribed vector field.

Ω ⊂ M : domain containing a point p and foliated by spacelike
hypersurfaces with normal T , Ω =

⋃
t∈[−1,1] Σt , with lapse function :

n2 := −g
(

∂
∂t ,

∂
∂t

)
.

I (A1) : | log n| ≤ K0 in Ω.

I (A2) : |LTg |T ≤ K1 in Ω.

I (A3) : |Rmg |T ≤ K2 in Ω.

I (A4) : Volg0(BΣ0(p, 1)) ≥ v0 (initial slice).

Theorem 1. Let (M, g) be a Lorentzian manifold satisfying (A1)–(A4)
at some point p and for some vector field T . Then, there exists i0 > 0
depending only upon the foliation bounds K0,K1, the curvature bound
K2, the volume bound v0, and the dimension such that

Injg (M, p,Tp) ≥ i0.



Second result : Lorentzian manifolds with a prescribed vector at
one point.

No need to prescribe the whole vector field and foliation a priori.

I Given (M, g), p ∈ M, and a unit vector T ∈ TpM, consider the
reference metric ĝ := 〈 , 〉T on TpM.

I Assume that expp is defined on BT (0, r0) ⊂ TpM (ball determined
by ĝ ).

I Pull back : g = exp?
pg (still denoted by g) is defined on BT (0, r0).

I g -parallel translate the vector T along the (straight) radial geodesics
from the origin. Vector field still denoted by T and defined on
BT (0, r0).

I Use T and g to define a reference Riemannian metric ĝ on
BT (0, r0). Compute the norms |A|T on BT (0, r0).



Investigate the geometry of the local covering

expp : BT (0, r0) → B(p, r0) := expp(BT (0, r)).

Theorem 2. (B.-L. Chen & P.G. LeFloch, 2006)
Let (M, g) be an (n + 1)-dimensional Lorentzian manifold, and consider a
point p ∈ M together with a reference vector T ∈ TpM. Assume that
expp is defined on the ball BT (0, r0) ⊂ TpM and

|Rmg |T ≤ r−2
0 on BT (0, r0).

Then, there exists c(n) ∈ (0, 1) depending only on the dimension of the
manifold such that

Injg (M, p,T ) ≥ c(n)
Volg (B(p, c(n) r0))

rn+1
0

r0.



GOWDY MATTER SPACETIMES WITH BOUNDED VARIATION
Joint work with J.M. Stewart, Cambridge.

Spacetime. (M, g) : (3 + 1)-dimensional Lorentzian manifold satisfying
Einstein field equations : Gαβ = κ Tαβ .

Perfect fluids. Tαβ = (µ + p) uα uβ + p gαβ

I energy density µ > 0

I equation of state for the pressure
p = c2

s µ, 0 < cs < 1, cs : sound speed

I light speed normalized = 1

I time-like, unit velocity vector uα

Existence theory in the bounded variation class (BV) under
symmetry assumptions.



Plane-symmetric Gowdy-type spacetimes with matter.

I Two linearly independent, commuting Killing fields X ,Y and in
coordinates

g = e2a (−dt2 + dx2) + e2b (e2c dy2 + e−2c dz2)

for some coefficients a, b, c depending on t, x . Work pioneered by
Moncrief, Isenberg, Rendall, Chrusciel, etc.

I Velocity vector has only an x-component

uα = e−aγ(1, v , 0, 0), γ = (1− v2)−1/2, |v | < 1

I From Tαβ we define τ,S ,Σ

T 00 = e−2a
(
(µ + p)γ2 − p

)
=: e−2a τ

T 01 = T 10 = e−2a (µ + p) γ2 v =: e−2a S

T 11 = e−2a
(
(µ + p) γ2 v2 + p

)
=: e−2a Σ



Evolution and constraint equations.

I Three evolution equations (second-order nonlinear wave equations)

att − axx = b2
t − b2

x − c2
t + c2

x −
κ

2
e2a (µ + p)

btt − bxx = −2 b2
t + 2 b2

x +
κ

2
e2a (µ− p)

ctt − cxx = −2 btct + 2 bxcx

I Two constraint equations (first-order in time)

2atbt + 2axbx + b2
t − 2bxx − 3b2

x − c2
t − c2

x = κe2aτ

−2atbx − 2axbt + 2btx + 2btbx + 2ctcx = κe2aS

I From Bianchi identities we deduce the Euler equations

τt + Sx = −τ(at + 2bt)− S(2ax + 2bx)− Σat − 2pbt ,

St + Σx = −τax − S(2at + 2bt)− Σ(ax + 2bx) + 2pbx .



Special case : vacuum.

I Blow-up in sup norm in finite time.

I As long as the variable b remains bounded, the variables a and c
remain bounded.

I Only expect existence for the Euler-Einstein equations until the
geometry blows-up.

Special case : Relativistic Euler equations in the Minkowski space.

I Letting a = b = κ = 0 we obtain the fluid equations

(1 + c2
s v2

1− v2
µ
)
t
+

(1 + c2
s

1− v2
µ v

)
x

= 0,(1 + c2
s

1− v2
µ v

)
t
+

(v2 + c2
s

1− v2
µ
)
x

= 0.

I Nonlinear hyperbolic equations, discontinuities in (µ, v). Work by
Smoller, Temple, etc.



Theorem.(Initial-value problem for the Euler-Einstein equations in a
plane-symmetric Gowdy spacetime).
Fix initial data (at , ax , bt , bx , ct , cx , µ, v)(0) satisfying the constraint
equations and having locally bounded variation (BV). Then :

I There exists a solution (a, b, c , µ, v) which is defined for all x ∈ R
on a maximal time interval t ∈ [0,Tmax).

I It satisfies the constraint equations and (at , ax , bt , bx , ct , cx , µ, v)
has bounded variation at every time.

I The fluid variables satisfy entropy inequalities.

I When Tmax < ∞, the sup norm of (a, b, µ) must blow-up at
t = Tmax.

Remarks.

I Arbitrary large data, shock waves, Lipschitz continuous metric,
Gravitational waves.

I Possible blow-up in the geometry a, b and matter concentration in µ.

I Work in progress : T3 Gowdy spacetimes in areal coordinates, and
censorship conjecture for Euler-Einstein spacetimes.


