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Introduction|



o Accurate equilibrium solutions In Circular orbits are u
investigate the final stage of inspiral.

* Initial data sets of simulations.

* Reference for the inspiral orbit of simulations; calibrat
circularity of the last couple of orbits

* Determination of the upper limit of the gravitational w
fow of the inspiraling orbit — constrain nuclear EOS.
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Preparation for templates of gravitational waveforms.

o Wavetrain for inspiralling to merger of binary neutron
(Duez, Baumgarte, Shapiro, Shibata and Uryd, PRD 2002.)
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o The GW frequency at the final inspiral ~ 1 kHz.
o Merger object (hypermassive neutron star) oscillation
o Target for the narrow band search of Advanced LIGO
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Initial data construction|



initial data COnStI’UCtIOnl

Data on the initial slice has to satisfy constraints (G,5—
(O Isenberg-Wilson-Mathews (IWM) formulation.

e 4 constraints and the spatial trace of Einstein equatic
for spatially conformally flat metric on a maximally emb

ds? = —a?dt® + * f;;(da" + B'dt)(da? + fla
Ji;+ flat metric.

(5 components of the metric coefficients are solved. S
dition in rotating frame is assumed for the fluid equatiot

e T he balance of the gravity and orbital acceleration is
correctly due to the truncation, which induces an ecce
inspiral orbit.

(IWM formulation agrees with GR in a static and spheric:
spacetime, and with the first post-Newtonian approxima



(O Initial data for BBH in IWM formulation.

o For the metric, ds? = —a2dt?4y* f;;(dz'+'dt) (dz! 467
we solve five equations G,gn” = 0, and G537’ = 0. (v,

A¢+¢—5( Aab+§K2) = 0,

A(ap) 4+ 3£, 5K—mp5( A A% + 2K2>

o _ l]o o _ o 6 4 o
ABq + gDanﬁb + 2aA.°Dy In v SODaK =
84

e Choosing K=0, and imposing boundary condition a
asymptotics, a sysmtem of the eliptic equations are solv



e Coordinate and Poison solver for Binary black hole/neut

o Green’s integral formula is applied on
three overlapped domains of spheircal
coordinates. For Lo = S,

——i z, )8 (2" d>x!
6e) = = | Glaa)5()a

+ o [ (GG Ve) — 6NV G, 2] P
T Jov

o For the central domain,
1

G(ZU,Q?I) p— m iS Chosen.
o For the black hole domains,

the Green’s function for either Dirich-
let or Neumann boundary between two
concentric spheres is chosen depending (Tsokaros, Ury

on the condition imposed on the fields. in preparati




Shift vector Ir

) In Xy-plane

- o[ O
i 40O X § O
N ©
-
s 4 < QA
i = /
W f’f"lllﬂf.‘l‘\‘\l\t\ - B
- 4 &N
I~ -~ e e —eeee—e———— — — -— -] 1 /
S Jf,,/:f;,;,
I_r_ _’_r_[_.__-_______________ _I ﬂ(—U M w o w_ M_
Fa
I____ ___________________ T TTT 3 ,,,,,,,, [T \,w
C 17 /
B C\
— — I
L [a1]
- o
" X [n
- X 28
- (@]
- T \
- —a
- \
M____ Lo 7 ,,,,,,, /,\
™ I3V
()




New Formulations]



(O New formulations for the initial data of binary compec
circular orbits solve all components of Einstein-Euler s
in 341 form on a spacelike hypersufrace > without a

(1) Waveless Approximation. (Shibata, Uryl, Friedman, 200«

« Waveless condition 8;7% = 0 is imposed on . (v
~ All fields have Coulomb type fall off in the asympto
~ All components of Einstein’s equation are written e
~ For the fluid sources, stationarity in rotating frame

(2) Helically symmetric perfect fluid spacetime.

(Blackburn, Detweiler, 1992; Friedman, Uryi, Shibata, 2002;
Whelan, Beetle, Krivan, Price 2002; Klein 2004)

* Helical symmetry £,9,3 = 0 is imposed.

(Stationary condition in a rotating frame. k% := t® 4+ Q¢“.)
* Helically symmetric spacetime is no more asymptoti
~ Field equations are written mixed elliptic and Helmt
* The latter may be solved for half-advanced -+ half-i



(O Formulation.

o The field equation G,3 = 87T,3 IS projected to > and

Hamiltonian constraints : (Gop — 81T ,5)nnP = C
Momentum constraints : (G&ﬁ 87TTa5)'y anﬁ =
Trace of a projection to X : (Gap — 87rTa5)’y = 0.

Tr free part of a projection to X : (G,3—871T,3) (v a’yﬁb_

Solved for the metric {¥, 8% a,7,} On a slice X, in a ch.

ds® = —a?dt® + *7;;(dz’ + pldt)(da? + B dt

o Gauge conditions:
(1) the maximal slicing K = 0.
(2) the spatial gauge Dafyab — 0, Dirac gauge.

o A condition to specify the conformal decomposition:
det(Yq4p) = det(fup),

(The confomally rescaled the spatial metric is defined by F,, = ¢



(O Field equations for 7, for the waveless and helical fo

The waveless condition : 8;5% =
The helical symmetry : £.9, = 8t’yab + £0¢Yap = 0.

» Each condition yeilds a different relation for K, resp:

1 1 )
Kap = gcﬁgﬂab + @%ch(be ), W
1 1
Kap = zéﬁcﬂab = 5 (£57ab T £Q¢7ab) : h

B9 the shift in non-rotating frame.
w?: the shift in rotating frame, w® = B 4 Q¢°.

~ For the time derivative of the extrinsic curvature, we .

£.K,p = K + Q£¢Kab = 0.



~ Spatial trace free projection of the Einstein equation i

1 1
(Gap — 81Top) (’Yaa%ﬁ - g'yamo‘ﬁ ) = Eqb — g’yaw“lé

1 1
Ep = Ej:wKab + 3R, — ~DaDya + KKap - DK e K}©

~ A few variations to write the above equation: h, , = A
Waveless or Helical

y & L. _cdg L ©o¢ cd?
Ahab =2 (gab - g'Yab’Y gcd) — g’YabD h Dehc

AN

1 s 1
Eab 1= —E£uKap+ RN 4 3RY, — ~DaDyor+ KKy — 2Kac

Helical

y ' 1~ ~ca o 1~ P egc r 1~
(A - QQ@%) hab = 2 <8ab - g’yalﬂ/ dgcd) - ngabD h dDehcd + g’yabg

_ ~ 1
Ep = Ep— —Q%0%h,,, .
b bT 5 ¢ 'tab



Waveless binary neutron star solu
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non-conformally flat 3-metric.

(Uryt, Limousin, Friedman, Gourgoul-
hon, Shibata 2006)

Adiabatic EOS: p = /ﬁ;pr, [ = 2.
(M/R)so = 0.17, d/Rg = 1.75.

24 grids along the stellar radius.
(210 x 48 x 48) for the field.

Non-conformal flat part hg, =
Yab — fap May introduce the fol-
lowing corrections (Shibata and
Uryld 2002).
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Contours for h;;: Waveless BNS vs. 2PN point mass
1]
(2PN in K=0, and transverse gauge: Asada, Shibata, Futama

(hyy - hyy)/2 in xy-plane hXy in xy-plane
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(O Solution sequence for [ = 2 adiabatic EOS with (M/

Solution sequence : binding energy, (M/R).= 0.17
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Helically symmetric models|



(O Helically symmetric scalar field; a toy model.
(Yoshida, Bromley, Read, Uryl, Friedman, (2006)

~ A scalar wave equation with source terms that models
of the Einstein equation is solved under the helical syi

Oy — AN Y] = s,
(7 ﬁ(t))Q
s(t,r,0,¢) = Ei: \/(;]T)?’ exp [— — ], R(t) = a[cos(2t):

« Three different nonlinear terms, N[y] = 3, N[y] = |V
spatial gradient), and N[v] = [y are used, whose st
adjusted by a coefficient .

e Using the symmetry relation £59 = (0; + €204)¢ = 0, t
equation is rewritten

(V2 = QZ05)W — AN[W] = S.

The half retarded+half advanced solution to this equat
with each source is solved using iteration.



(O Divergence of iteration for unfavorable sign of A.

~ For each nonlinear term, strikingly different behaviou

opposite signs of .

~ In each case, the sign of A favor for the convergence

the sign of the source term.
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(O Comparison of the full GR helical BNS and waveless
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Near zone helical solution is calculated: Helical symme
in the near zone r < /2, and waveless condition is usec

The near zone helical solution agrees well with the wav
Inaccuracy arises from neglecting gravitational wave n
the near zone where Coulomb field dominates.

* When the boundary of helically symmetric domain
r ~ 1—1.57/Q or larger, the helically symmetric BNS
not converge. A solution behaves to be unbound arounc



Summary and Discussionl

Two new formulations, (1) the waveless formulation ar
lically symmetric formulation, for the binary neutron si
initial data have been developed and implemented in ne
cessfully:

* For (1) : BNS solution sequence has been computed.
* For (2) : o Hybrid solution for BNS (WAT in the asyn
o Numerical toy model have been calculated.

e [ hese are more reliable initial data for the binary insp



+ Only at distances larger than about 10% M is the ener
radiation field comparable to the mass of the binary s
However, we haven’t made a success for calculating a fi
in a few wavezone where it is asymptotically decreseir
field4standing wave. (Nuemrical problem?)

« It is important to investigate an improvment for these
data to induced less eccentricity in the inspiral orbit. .
slowly turning on of the radiation reaction may furthe
eccentricity.



O Mapm-Mk relation for binary systems.

* We derived asymptotic conditions for an equality Map
satisfied for non-axisymmetric systems. (Shibata, Uryi, Fri

* T he condition for Mapm = Mk is satisfied in the prese

1 ;
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Gravitational two body problem with
helical killing vector. Friedman,Uryu
(cf. Schild, 1953; EM two body.)

(O A toy model in post-Minkowski gravity
with radiation and helical symmetry.

o Fokker action of two point mass with an in-
teraction that models post-Minkowski gravity
IS derived.

o A particle feels the force created by the
half retarded+half advanced field of the other
particle, whose Green’'s function is written
G(z,z) = 6[(z — 2)?], OG(z,z) = —4ndé(z—7).

o Solutions for the two body problem in circu-
lar orbits and its conserved energy and angular
momentum are calculated.

=



(O Fokker action for post-Minkowski gravity.

o Parameter-invariant action : (Ramond 1973)

I[(T1,T2,T1,T2) = —m/ dT(—:ija:ija)l/Q—q’_n/ d;(_fca;a)l/Q_F/ d

T1

(2az")2 — —a:aa: :EB:Eﬁ

(—iy@7)s (=75 )5

N w,z,z) = 2mm §(w) : w:= (x

e Fokker action yeilds correct equations of motion, and f«
conserved quantities by taking a limit after the variatior

o T — —00, To —
5[(7’1,7‘2,7’1,7’2) =O, then let _ _
T — —00, To —



cf) An action for a geodesic motion in the post-Minkow

12

where

T2

m [ dr (—gupd® i) = —m [ dr [~ o)

T

To 1 To 'OA'B
—m/ dT(—djadja)l/Q-I—Em/ dr h il =: 1

aﬁ(_:ijva'j"y)l/Q

T1

—O‘—B naﬁx a=f
af} — D
R (z) = 4m/ dT é (w) (=i a1)1/2
zazf
ot = _16aTP, Tof = _
h 167T T m/ dT é(x — ) (33757)1/
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(O Circular solutions.

For a paticle {m,z(7)}, z%=11%+aw®, 2% =yk%,
for a particle {m,z%(7)}, 2% =1tt*+aw®, z° =7k

EY = t% 4+ Qo : helical Killing vector.

+ The equations of motion, the conserved 4-momentum
lar momentums are integrated to be a set of algebraic rel

in terms of {p, 2,v,v,v,5,m,m}. (p: the retarded angle
©? = v2 4 72 4 200 cos o, v = qf?, v = afl2,
Napt®d’ = —y*(1 —0v?) = =1,  nupx’s’ = -3%(1 —v°):

« The energy turned out to be the same for the scalar
and tensor (PM) interactions.

E=-Py= "4
8 8
» Angular momentum is proportional to the potential dc

L=1Lio= %hoﬁk%ﬁ.

~ T he first law 0F = 20J is proved to be satisfied for
circular solutions.



o PM and PM+PN solutions for circular orbits.
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