An evolving paradigm of radio-loud AGN structures

Pc jet of M87 observed with the VLBA (15 GHz) (NRAO/AUI)

Olivier Hervet

LUTH seminar April 2017, Meudon

Outline

- Blazars in the AGN classification scheme
- Intermediate blazars, the key sources
- Recollimation shocks in transverse stratified jets
- Conclusion

I - Blazars in the AGN classification scheme

Interest of blazars – special relativity effects

O. Hervet Radio-loud AGN structures, April 2016, Meudon

60

SANTA CRUZ INSTITUTE FOR PARTICLE PHYSICS

80

4

Interest of blazars – Spectral energy distribution

O. Hervet Radio-loud AGN structures, April 2016, Meudon

5

SANTA CRUZ INSTITUTE FOR PARTICLE PHYSICS

Spectral classification of blazars

The "new" blazar sequence (Ghisellini 2016) 48 Log νL_{ν} [erg s⁻¹] 46 **FSRO** LBL 44 IBL HBL 42 40 25 10 15 20 Log ν [rest frame]

Counter-intuitive Classification:

The less powerful sources are the most energetic ones

 \rightarrow more efficient particle acceleration process for low powers

S C I P P

SANTA CRUZ INSTITUTE FOR PARTICLE PHYSICS

6

Current scheme of R-L AGN classification

- Scheme from the 90's , no significant change since then
- Transition/evolution between low and high powers still not well known

O. Hervet Radio-loud AGN structures, April 2016, Meudon S C I P P

SANTA CRUZ INSTITUTE FOR PARTICLE PHYSICS

7

Questions on variability – source differentiation

- FSRQs : Occasional powerful flares between quiescent states
- **BL Lacs:** Erratic variability with some very powerful flares

O. Hervet Radio-loud AGN structures, April 2016, Meudon

S C I P P

Questions on variability – fast flares and low flow apparent speed

Minute-scale gamma flare of the HBL PKS 2155-304

 BL Lacs : Usually slow motion in their radio jet but high Lorentz factor deduced from fast variability

• FSRQs : Usually slower flare but higher observed apparent speeds...

Majority of gamma ray flares are associated with a radio knot ejection

But majority of radio knot ejection are **not** associated with gamma ray flares (Jorstad et al. 2001)

9

II - Intermediate blazars, the key sources

Intermediate blazars, the key sources – example of the bright LBL AP-Librae

Intermediate blazars: LBLs & IBLs

Intermediate accretion efficiency

Hybrid pc jet kinematics

Classifying blazars from the pc kinematics

General features of MOJAVE:

VLBA Observations at 15 GHz since 1994 295 AGN jets Angular resolution < mas

For this study:

161 blazars selected with known redshift and sufficient monitoring

3 kinematic classes defined from the MOJAVE sample

Pc kinematics fit well the AGN classification scheme

With kpc radio jets...

With spectral classes...

Spectral classes	# sources	Class I	Class I/II	Class II
HBLs	5	100 %	0 %	0 %
LBLs/IBLs	24	32 %	56 %	12%
FSRQs	125	8 %	16,5 %	75,5 %

HBLs unfortunately under-represented in the MOJAVE database

Jet aperture increase for intermediate blazars

Spectral classes	# sources	Aperture increase
HBLs	5	20 %
LBLs/IBLs	24	63 %
FSRQs	125	15 %

O. Hervet Radio-loud AGN structures, April 2016, Meudon

S C I P P

III – Recollimation shocks in transverse stratified jets

Two flows in jets

Two flow model (Sol et al. 1989)

- Mildly relativistic sheath composed of e-/p+ and driven by MHD forces
 - → transports most of the kinetic energy
- Ultra-relativistic spine composed of e-/e+ pairs
 - → responsible for most of the emission

Radio VLBI observations (M87)

Recollimation shock in AGN jets – the dominant paradigm

- Developed by Marscher & Gear (1985)
- Deduced from blazar variability, moving radio knots, polarization changes

17

SCIPP

Successive recollimation shocks structure

Does VLBI radio knots are tracers of recollimation shocks?

→ If yes they should not be randomly distributed

O. Hervet Radio-loud AGN structures, April 2016, Meudon

SANTA CRUZ INSTITUTE FOR PARTICLE PHYSICS

18

S C I P P

Radio knots as recollimation shocks – check the idea

Basic assumptions

- Flow speed: v(Z) = cste
- Density: $ho(Z) \propto Z^{-2}$
- Magnetic field: $B(Z) \propto Z^{-1}$ from radio polarimetry (Gabuzda et al. 2014)
- Non-structured magnetic field acting as a pressure: $p(Z) \propto B^2(Z) \propto Z^{-2}$

Sound speed:
$$v_s(Z) \propto \sqrt{\frac{p(Z)}{\rho(Z)}} = cste$$
 Mach number: $\mathcal{M} = \frac{\Gamma v}{\Gamma_s v_s} = cste$

Inter-knot gaps only depending of the inner- jet radius

Radio knots as recollimation shocks – *results*

- Results in good accordance with a successive recollimation shocks scenario $r_n \propto \Delta k_n$
- Slope coefficient α can be used to deduce the inner jet Mach number

Mach angle:
$$\beta = \arctan\left(\frac{2 \alpha}{\sin \theta}\right)$$

Mach number $\mathcal{M} = \frac{1}{\sin \beta} = 1.08^{+0.15}_{-0.06}$
(M87):
O. Hervet
Radio-loud AGN structures, April 2016, Meudon

20

Successive recollimation shocks in transverse stratified jets - *Simulations*

	external medium	inner jo	inner jet outer jet		Structured jet			
case	p_0	$\eta_{ ho\ ,\mathrm{in}}$	$M_{ m c,in}$	$\eta_{ ho}$, $_{ m out}$	$M_{\rm c,out}$	$L_{ m k,in}/L_{ m k,total}$	$L_{ m k,out}/L_{ m k,total}$	Two-component jet
A	5×10^{-2}	4.5×10^{-4}	1.22			1	0.0	No
В	1×10^{-3}	5×10^{-1}	4.34	5×10^{-6}	1.16	0.95	0.05	Yes
С	5×10^{-2}	5×10^{-3}	1.22	5×10^{-1}	16.34	0.70	0.30	Yes
D	1×10^{-3}	5×10^{-6}	1.22	1×10^{-1}	6	0.25	0.75	Yes
E	5×10^{-2}	5×10^{-3}	1.22	5×10	19.0	5×10^{-3}	0.995	Yes
F	5×10^{-2}	1×10^{-3}	0	5×10^{-2}	6.0	0	1	Yes

O. Hervet Radio-loud AGN structures, April 2016, Meudon

SANTA CRUZ INSTITUTE FOR PARTICLE PHYSICS

Link with the blazar classification - HBLs

Strong inner jet, weak (or absent) outer jet → Consistent with their spectral energy distribution

Multiple stationary shocks

→ Consistent with radio VLBI observations

Successive shocks can re-accelerate particles

- (Meli & Biermann 2013)
- \rightarrow Consistent with higher sync. peak frequencies

ΡP

22

S

Link with the blazar classification - FSRQs

Strong inner and outer jets

→ Consistent with their spectral energy distribution

Powerful first shock

- → Consistent with usual variability pattern
- \rightarrow Consistent with emission zone close to the nucleus (deduced from external IC radiation)

Fast damping of successive shocks

→ Consistent with lower sync. peak frequencies

рр

23

S

Link with the blazar classification -LBLs & IBLs

Weak inner jet and strong outer jets

 $\rightarrow\,$ Consistent with their spectral energy distribution

Jet aperture increase

→ Consistent with VLBI observations

Fast damping but close successive shocks

 \rightarrow Consistent with intermediate sync. peak frequencies

Powerful shock seen far from the stationary structure

 \rightarrow Seen in M87 (HST1 knot)

O. Hervet

Fast motions observed in jet are not reproduced by these simulations \rightarrow Not enough perturbations to break the recollimation shock structure

25

A new global scheme

Conclusion & Outlook

- Radio-loud AGN can be differentiated following the relative kinetic powers between inner and outer jets
- This AGN differentiation is favoured to be linked to intrinsic properties of the accretion disk rather than influence of the external medium

Next steps

- Reproduce the fast motions in jets by injecting perturbations
- Check the consistency of radio knots as powerful particle accelerator by looking the non-thermal variability of blazars
- Study the influence of a structured magnetic field in the recollimation shocks configuration
- Study the particle re-acceleration process of successive shocks

27

SCIPP