

0

Shortcomings of new parametrizations of inflation

Christophe Ringeval Centre for Cosmology, Particle Physics and Phenomenology Institute of Mathematics and Physics Louvain University, Belgium

Meudon, 20/04/2017

Introduction Making observable predictions The new parametrizations Conclusion Ο Ο \bigcirc 00 \bigcirc

 \bigcirc

Outline

Introduction

What is primordial inflation? Motivations for inflation

Making observable predictions

Single field inflation The end of inflation and after Reheating effects Inflationary perturbations in slow-roll Solving for the time of pivot crossing

The new parametrizations

Universality classes Not universal Inflation of the number of classes Insufficiently accurate Equation-of-state inflation Example for the perturbative class Hydrodynamical cosmological perturbations

Conclusion

J. Martin, CR and V. Vennin: arXiv:1609.04739

Introduction What is primordial inflation?
 Motivations for inflation Making observable predictions
The new parametrizations Conclusion O

0

What is primordial inflation?

- A yet to be proven theoretical paradigm describing the early Universe:
 - Our Universe should have undergone a phase a exponentially fast accelerated expansion
 - ◆ Length scales × e^N with N > 60 (e-folds)
 - Occured at a redshift: $z_{inf} > 10^{10}$
 - Could have lasted from 10^{-32} s to an infinite amount of time

- Energy involved: $10 \text{ MeV} \ll E_{\text{inf}} < 10^{16} \text{ GeV}$
 - ◆ $10^{16} \text{ GeV} = 1000$ billion times the energy of the LHC (7.5 billion €)

★What is primordial inflation?
★ Motivations for inflation

Making observable predictions

The new parametrizations

Conclusion

 \square Ο Ο Ο \bigcirc Ο 0 \bigcirc \cap \bigcirc

Motivations for inflation

- Originally proposed to solve the "monopole" problem [Guth:1981], inflation ends up adressing various issues of the Friedmann-Lemaître cosmology [Linde:1982].
- Unexplanable or inconsistent with the standard Big-Bang model:
 - Flatness of the spatial sections: $\Omega_{\rm K} = 0.0008 \pm 0.004$
 - Statistical isotropy of the observable Universe (horizon problem)
 - Origin of the CMB anisotropies and large scale structures
 - Gaussianity of the CMB fluctuations: $f_{\rm NL} = 0.8 \pm 5.0$
 - Adiabaticity of the cosmological perturbations: isocurv. < 4%
 - Almost scale invariance of the primordial perturbations: $n_{\rm S} = 0.9667 \pm 0.004$
- Within General Relativity (GR) inflation requires "repulsive gravity"
 - Negative pressure
 - Or deviations from GR?

Making observable predictions

- Single field inflation
 The end of inflation and after
- * Reheating effects
- * Inflationary
- perturbations in slow-roll
- Solving for the time of pivot crossing
- The new parametrizations
- Conclusion
- 0

 \bigcirc

Making observable predictions

Single field inflation

Introduction

Making observable predictions Single field inflation The end of inflation and

- perturbations in slow-rol
- Solving for the time of pivot crossing
- The new parametrizations

 \square

```
Conclusion
```

0

• Dynamics given by $(\kappa^2=1/M_{_{
m P}}^2)$

 $S = \int dx^4 \sqrt{-g} \left[\frac{1}{2\kappa^2} R + \mathcal{L}(\phi) \right] \quad \text{with} \quad \mathcal{L}(\phi) = -\frac{1}{2} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi - V(\phi)$

- Can be used to describe:
 - Minimally coupled scalar field to General Relativity
 - Scalar-tensor theory of gravitation in the Einstein frame the graviton' scalar partner is also the inflaton (HI, RPI1,...)
- Everything can be consistently solved in the slow-roll approximation
 - Background evolution $\phi(N)$ where $N \equiv \ln a$
 - Linear perturbations for the field-metric system $\zeta(t, \boldsymbol{x})$, $\delta \phi(t, \boldsymbol{x})$
- Slow-roll = expansion in terms of the Hubble flow functions [Schwarz 01]

$$\epsilon_0 \equiv \frac{H_{\rm ini}}{H} \,, \quad \epsilon_{i+1} \equiv \frac{\mathrm{d} \ln |\epsilon_i|}{\mathrm{d} N} \quad \text{measure deviations from de-Sitter}$$

Making observable predictions

- ♦ Single field inflation
- The end of inflation and after
- Reheating effects
- Inflationary
- perturbations in slow-roll
- Solving for the time of pivot crossing
- The new parametrizations

Ο

 \bigcirc

0

Conclusion

0

Decoupling field and space-time evolution

Friedmann-Lemaître equations in e-fold time (with $M_{_{
m P}}^2=1)$

$$\begin{pmatrix} H^2 = \frac{1}{3} \left(\frac{1}{2} \dot{\phi}^2 + V \right) \\ \frac{\ddot{a}}{a} = -\frac{1}{3} \left(\dot{\phi}^2 - V \right) \end{pmatrix} \Rightarrow \begin{cases} H^2 = \frac{V}{3 - \frac{1}{2} \left(\frac{\mathrm{d}\phi}{\mathrm{d}N} \right)^2} \\ -\frac{\mathrm{d}\ln H}{\mathrm{d}N} = \frac{1}{2} \left(\frac{\mathrm{d}\phi}{\mathrm{d}N} \right)^2 \end{cases} \Leftrightarrow \begin{cases} H^2 = \frac{V}{3 - \epsilon_1} \\ \epsilon_1 = \frac{1}{2} \left(\frac{\mathrm{d}\phi}{\mathrm{d}N} \right)^2 \end{cases}$$

- Klein-Gordon equation in e-folds: relativistic kinematics with friction $\frac{1}{3-\epsilon_1}\frac{\mathrm{d}^2\phi}{\mathrm{d}N^2} + \frac{\mathrm{d}\phi}{\mathrm{d}N} = -\frac{\mathrm{d}\ln V}{\mathrm{d}\phi} \quad \Leftrightarrow \quad \frac{\mathrm{d}\phi}{\mathrm{d}N} = -\frac{3-\epsilon_1}{3-\epsilon_1+\frac{\epsilon_2}{2}}\frac{\mathrm{d}\ln V}{\mathrm{d}\phi}$
- Slow-roll approximation: all $\epsilon_i = \mathcal{O}(\epsilon)$ and $\epsilon_1 < 1$ is the definition of inflation ($\ddot{a} > 0$)
 - \bullet The trajectory can be solved for N

$$N - N_{\text{end}} \simeq \int_{\phi}^{\phi_{\text{end}}} \frac{V(\psi)}{V'(\psi)} \,\mathrm{d}\psi$$

Making observable predictions

Single field inflation

✤ The end of inflation and after

Reheating effects

Inflationary

perturbations in slow-rollSolving for the time of

pivot crossing

The new parametrizations

0

Conclusion

The end of inflation and after

Accelerated expansion stops for $\epsilon_1 > 1$ ($\ddot{a} < 0$) at $N = N_{\text{end}}$

- Naturally happens during field evolution (graceful exit) at $\phi = \phi_{end}$ $\epsilon_1(\phi_{end}) = 1$
- Or, there is another mechanism ending inflation (tachyonic instability) and ϕ_{end} is a model parameter that has to be specified
- The reheating stage: everything after $N_{\rm end}$ till radiation domination
 - Basic picture \longrightarrow
 - But in reality a very complicated process, microphysics dependent
 - Reheating duration is unknown:

 $\Delta N_{\rm reh} \equiv N_{\rm reh} - N_{\rm end}$

Making observable predictions Single field inflation O The end of inflation and after

Reheating effects

 Inflationary perturbations in slow-roll
 Solving for the time of pivot crossing

```
The new parametrizations
```

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

Redshift at which reheating ends

Denoting $N = N_{\rm reh}$ the end of reheating = beginning of radiation era

• If thermalized, and no extra entropy production: $a_{reh}^3 s_{reh} = a_0^3 s_0$

$$\begin{cases} s_{\rm reh} = q_{\rm reh} \frac{2\pi^2}{45} T_{\rm reh}^3 \\ \rho_{\rm reh} = g_{\rm reh} \frac{\pi^2}{30} T_{\rm reh}^4 \end{cases} \Rightarrow \qquad \frac{a_0}{a_{\rm reh}} = \left(\frac{q_{\rm reh}^{1/3} g_0^{1/4}}{q_0^{1/3} g_{\rm reh}^{1/4}}\right) \frac{\rho_{\rm reh}^{1/4}}{\rho_{\gamma}} \\ \sigma_{\gamma} = \frac{\pi^2}{30} T_{\rm reh}^4 \qquad \sigma_{\gamma} = \left(\frac{\rho_{\rm reh}}{\tilde{\rho}_{\gamma}}\right)^{1/4} \end{cases}$$

Depends on
$$ho_{
m reh}$$
 and $\widetilde
ho_\gamma\equiv {\cal Q}_{
m reh}
ho_\gamma$

- Energy density of radiation today: $\rho_{\gamma} = 3 \frac{H_0^2}{M_p^2} \Omega_{\rm rad}$
- Change in the number of entropy and energy relativistic degrees of freedom (small effect compared to $\rho_{\rm reh}/\rho_{\gamma}$)

$$\mathcal{Q}_{\mathrm{reh}} \equiv rac{g_{\mathrm{reh}}}{g_0} \left(rac{q_0}{q_{\mathrm{reh}}}
ight)^{1/4}$$

predictions

after

Making observable

Single field inflation
The end of inflation and

Reheating effectsInflationary

pivot crossing

Conclusion

 \bigcirc

 \bigcirc

The new parametrizations

Redshift at which inflation ends

Depends on the redshift of reheating

$$1 + z_{\text{end}} = \frac{a_0}{a_{\text{end}}} = \frac{a_{\text{reh}}}{a_{\text{end}}} (1 + z_{\text{reh}}) = \frac{a_{\text{reh}}}{a_{\text{end}}} \left(\frac{\rho_{\text{reh}}}{\tilde{\rho}_{\gamma}}\right)^{1/4} = \frac{1}{R_{\text{rad}}} \left(\frac{\rho_{\text{end}}}{\tilde{\rho}_{\gamma}}\right)^{1/4}$$

• The reheating parameter
$$R_{\rm rad} \equiv \frac{a_{\rm end}}{a_{\rm reh}} \left(\frac{\rho_{\rm end}}{\rho_{\rm reh}}\right)^{1/4}$$

• Encodes any observable deviations from a radiation-like or instantaneous reheating $R_{rad} = 1$

 $R_{
m rad}$ can be expressed in terms of $(
ho_{
m reh},\overline{w}_{
m reh})$ or $(\Delta N_{
m reh},\overline{w}_{
m reh})$

$$\ln R_{\rm rad} = \frac{\Delta N_{\rm reh}}{4} (3\overline{w}_{\rm reh} - 1) = \frac{1 - 3\overline{w}_{\rm reh}}{12(1 + \overline{w}_{\rm reh})} \ln\left(\frac{\rho_{\rm reh}}{\rho_{\rm end}}\right)$$

where
$$\overline{w}_{\rm reh} \equiv \frac{1}{\Delta N_{\rm reh}} \int_{N_{\rm end}}^{N_{\rm reh}} \frac{P(N)}{\rho(N)} dN$$

A fixed inflationary parameters, $z_{
m end}$ can still be affected by $R_{
m rad}$

 \bigcirc

Reheating effects on inflationary observables

Model testing: reheating effects must be included!

Inflationary perturbations in slow-roll

Equations of motion for the linear perturbations

$$\mu_{\mathbf{T}} \equiv ah \\ \mu_{\mathbf{S}} \equiv a\sqrt{2}\phi_{,N}\boldsymbol{\zeta} \right\} \Rightarrow \mu_{\mathbf{TS}}'' + \left[k^2 - \frac{(a\sqrt{\epsilon_1})''}{a\sqrt{\epsilon_1}}\right]\mu_{\mathbf{TS}} = 0$$

• Can be consistently solved using slow-roll and pivot expansion [Stewart:1993, Gong:2001, Schwarz:2001, Leach:2002, Martin:2002, Habib:2002, Casadio:2005, Lorenz:2008, Martin:2013, Beltran:2013]

$$\begin{aligned} \mathcal{P}_{\zeta} &= \frac{H_*^2}{8\pi^2 M_{\mathrm{P}}^2 \epsilon_{1*}} \left\{ 1 - 2(1+C)\epsilon_{1*} - C\epsilon_{2*} + \left(\frac{\pi^2}{2} - 3 + 2C + 2C^2\right) \epsilon_{1*}^2 + \left(\frac{7\pi^2}{12} - 6 - C + C^2\right) \epsilon_{1*} \epsilon_{2*} \\ &+ \left(\frac{\pi^2}{8} - 1 + \frac{C^2}{2}\right) \epsilon_{2*}^2 + \left(\frac{\pi^2}{24} - \frac{C^2}{2}\right) \epsilon_{2*} \epsilon_{3*} \\ &+ \left[-2\epsilon_{1*} - \epsilon_{2*} + (2+4C)\epsilon_{1*}^2 + (-1+2C)\epsilon_{1*} \epsilon_{2*} + C\epsilon_{2*}^2 - C\epsilon_{2*} \epsilon_{3*} \right] \ln \left(\frac{k}{k_*}\right) \\ &+ \left[2\epsilon_{1*}^2 + \epsilon_{1*} \epsilon_{2*} + \frac{1}{2} \epsilon_{2*}^2 - \frac{1}{2} \epsilon_{2*} \epsilon_{3*} \right] \ln^2 \left(\frac{k}{k_*}\right) \right\}, \\ \mathcal{P}_h &= \frac{2H_*^2}{\pi^2 M_{\mathrm{P}}^2} \left\{ 1 - 2(1+C)\epsilon_{1*} + \left[-3 + \frac{\pi^2}{2} + 2C + 2C^2 \right] \epsilon_{1*}^2 + \left[-2 + \frac{\pi^2}{12} - 2C - C^2 \right] \epsilon_{1*} \epsilon_{2*} \\ &+ \left[-2\epsilon_{1*} + (2+4C)\epsilon_{1*}^2 + (-2 - 2C)\epsilon_{1*} \epsilon_{2*} \right] \ln \left(\frac{k}{k_*}\right) + \left(2\epsilon_{1*}^2 - \epsilon_{1*} \epsilon_{1*} \right) \ln^2 \left(\frac{k}{k_*}\right) \right\} \end{aligned}$$

$$\bullet \text{ Notice that: } H_* \equiv H(\Delta N_*) \text{ and } \epsilon_{i*} \equiv \epsilon_i (\Delta N_*) \text{ with } k_* \eta(\Delta N_*) = -1 \end{aligned}$$

13 / 26

Introduction

predictions

Conclusion

 \bigcirc

0

 \cap

Making observable

Single field inflation
 The end of inflation and after
 Reheating effects
 Inflationary perturbations in slow-roll
 Solving for the time of pivot-crossing

The new parametrizations

predictions

after

Making observable

Single field inflation
The end of inflation and

Reheating effects
 Inflationary

pivot crossing

Conclusion

0

perturbations in slow-roll
 Solving for the time of

The new parametrizations

8

 \bigcirc

The power law parameters

From the observable point of view, one defines spectral index, running, tensor-to-scalar ratio, ...

$$n_{\rm S} - 1 \equiv \left. \frac{\mathrm{d} \ln \mathcal{P}_{\zeta}}{\mathrm{d} \ln k} \right|_{k_*}, \qquad \alpha_{\rm S} \equiv \left. \frac{\mathrm{d}^2 \ln \mathcal{P}_{\zeta}}{\mathrm{d} (\ln k)^2} \right|_{k_*}, \qquad r \equiv \left. \frac{\mathcal{P}_h}{\mathcal{P}_h} \right|_{k_*}$$

They are read-off from the previous slow-roll expression

$$n_{\rm S} = 1 - 2\epsilon_{1*} - \epsilon_{2*} - (3 + 2C)\epsilon_{1*}\epsilon_{2*} - 2\epsilon_{1*}^2 - C\epsilon_{2*}\epsilon_{3*} + \mathcal{O}(\epsilon^3)$$

$$\alpha_{\rm S} = -2\epsilon_{1*}\epsilon_{2*} - \epsilon_{2*}\epsilon_{3*} + \mathcal{O}(\epsilon^3)$$

$$r = 16\epsilon_{1*} (1 + C\epsilon_{2*}) + \mathcal{O}(\epsilon^3)$$

• One has to know the functions $\epsilon_i(\Delta N_*)$ and the value of ΔN_* to make predictions

Making observable predictions

- ♦ Single field inflation
- The end of inflation and after
- Reheating effects
- Inflationary perturbations in slow-roll
- Solving for the time of pivot crossing
- The new parametrizations

0

0

Conclusion

 \cap

0

Solving for the time of pivot crossing

To make inflationary predictions, one has to solve $k_*\eta_*=-1$

$$\frac{k_*}{a_0} = \frac{a(N_*)}{a_0} H_* = e^{N_* - N_{\text{end}}} \frac{a_{\text{end}}}{a_0} H_* = \frac{e^{\Delta N_*} H_*}{1 + z_{\text{end}}} = e^{\Delta N_*} \frac{R_{\text{rad}}}{\tilde{\rho}_{\gamma}} \left(\frac{\rho_{\text{end}}}{\tilde{\rho}_{\gamma}}\right)^{-\frac{1}{4}} H_*$$

- Defining $N_0 \equiv \ln\left(\frac{k_*}{a_0}\frac{1}{\tilde{\rho}_{\gamma}^{1/4}}\right)$ (number of e-folds of deceleration)
 - This is a non-trivial integral equation that depends on: model + how inflation ends + reheating + data

$$-\left[\int_{\phi_{\text{end}}}^{\phi_{*}} \frac{V(\psi)}{V'(\psi)} d\psi\right] = \ln R_{\text{rad}} - N_{0} + \frac{1}{4} \ln(8\pi^{2}P_{*}) \\ -\frac{1}{4} \ln \left\{\frac{9}{\epsilon_{1}(\phi_{*})[3 - \epsilon_{1}(\phi_{\text{end}})]} \frac{V(\phi_{\text{end}})}{V(\phi_{*})}\right\}$$

• Result: one gets ϕ_* , or equivalently ΔN_* , as a function of inflationary model parameters and R_{rad}

Making observable predictions

- Single field inflation
 The end of inflation and after
- ★ Reheating effects
- *Inflationary
- perturbations in slow-roll
- Solving for the time of pivot crossing
- The new parametrizations
- Conclusion

Hubble-flow functions from the potential

One would prefer a "slow-roll" hierarchy based on $V(\phi)$ only

$$\epsilon_{v_0}(\phi) \equiv \sqrt{\frac{3}{V(\phi)}}, \qquad \epsilon_{v_{i+1}}(\phi) \equiv \frac{\mathrm{d}\ln\epsilon_{v_i}(\phi)}{\mathrm{d}\tilde{N}} \quad \text{with} \quad \frac{\mathrm{d}}{\mathrm{d}\tilde{N}} \equiv -\frac{\mathrm{d}\ln V}{\mathrm{d}\phi} \frac{\mathrm{d}}{\mathrm{d}\phi}$$

• Can be mapped with the Hubble flow hierarchy

$$\epsilon_{v_0} = \frac{\epsilon_0}{\sqrt{1 - \epsilon_1/3}}, \quad \epsilon_{v_1} = \epsilon_1 \left(1 + \frac{\epsilon_2/6}{1 - \epsilon_1/3} \right)^2$$

$$\epsilon_{v_2} = \epsilon_2 \left[1 + \frac{\epsilon_2/6 + \epsilon_3/3}{1 - \epsilon_1/3} + \frac{\epsilon_1 \epsilon_2^2}{(3 - \epsilon_1)^2} \right], \quad \epsilon_{v_3} = \cdots$$

• Inversion can only be made perturbatively

$$\begin{aligned} \epsilon_{1} &= \epsilon_{v_{1}} - \frac{1}{3}\epsilon_{v_{1}}\epsilon_{v_{2}} - \frac{1}{9}\epsilon_{v_{1}}^{2}\epsilon_{v_{2}} + \frac{5}{36}\epsilon_{v_{1}}\epsilon_{v_{2}}^{2} + \frac{1}{9}\epsilon_{v_{1}}\epsilon_{v_{2}}\epsilon_{v_{3}} + \mathcal{O}(\epsilon^{4}) \\ \epsilon_{2} &= \epsilon_{v_{2}} - \frac{1}{6}\epsilon_{v_{2}}^{2} - \frac{1}{3}\epsilon_{v_{2}}\epsilon_{v_{3}} - \frac{1}{6}\epsilon_{v_{1}}\epsilon_{v_{2}}^{2} + \frac{1}{18}\epsilon_{v_{2}}^{3} - \frac{1}{9}\epsilon_{v_{1}}\epsilon_{v_{2}}\epsilon_{v_{3}} + \frac{5}{18}\epsilon_{v_{2}}^{2}\epsilon_{v_{3}} \\ &+ \frac{1}{9}\epsilon_{v_{2}}\epsilon_{v_{3}}^{2} + \frac{1}{9}\epsilon_{v_{2}}\epsilon_{v_{3}}\epsilon_{v_{4}} + \mathcal{O}(\epsilon^{4}) \end{aligned}$$

Example with Higgs and Starobinski inflation

Same potential but not the same reheating

$$V(\phi) \propto \left(1 - e^{-\sqrt{2/3}\,\phi/M_{\rm P}}\right)^2$$

Introduction

 \bigcap

Ο

 \bigcirc

0

9

Making observable predictions

The new parametrizations

✤ Universality classes

✤Not universal

♦ Iffation of the number of classes

Insufficiently accurate

✤Equation-of-state

Example for the

Operturbative class

Hydrodynamical
 cosmological perturbations

<u>Conclusion</u>

The new parametrizations

Making observable predictions

- The new parametrizations
- ✤ Universality classes
- ✤ Not universal
- Inflation of the number of classes
- Insufficiently accurate
- Equation-of-state inflation
- Example for the perturbative class
- Hydrodynamical cosmological perturbations

Universality classes

- Because hundred of inflationary models have been proposed since the 80s \Rightarrow some desire to avoid specifying a potential, its parameters, the reheating, ...
- Are there "universality classes" favoured by Planck?
 - Proposals of Refs. [arXiv:0706.2215, arXiv:1309.1285, arXiv:1412.0678]: the large ΔN_* limit is somehow universal

$$\epsilon_{1*} = \frac{\beta}{(\Delta N_*)^{\alpha}} + \cdots$$

- Order one: $\epsilon_{1*} \propto 1/\Delta N_*$ (currently under pressure), motivates to search of next order $\epsilon_{1*} \propto 1/\Delta N_*^2$ (typical of Starobinski inflation)
- Universality classes would avoid specifying a model (bottom to top approach)
 - Only two parameters to fit: α and the order β
 - Effective approach as in Particle Physics [arXiv:1407.0820]
- Unfortunately...

Not universal

Introduction

Making observable predictions

The new parametrizations

✤ Universality classes

✤ Not universal

✤ Inflation of the number of classes ____

♦ Insufficiently accurate

Equation-of-state

- perturbative class
- Hydrodynamical
- cosmological perturbations

Conclusion

One of the most favoured models by Planck is Khäler Moduli Inflation
 ◆ Two parameters ā and β

$$V(\phi) \propto 1 - \bar{\alpha} \left(\frac{\phi}{M_{\rm P}}\right)^{4/3} \exp\left[-\bar{\beta} \left(\frac{\phi}{M_{\rm P}}\right)^{4/3}
ight]$$

• Slow-roll parameter in the large ΔN_* limit

$$\epsilon_{v_{1*}} = \frac{\ln^{5/2} \left(16\bar{\alpha} \sqrt{\frac{9\bar{\beta}^{1/2}}{8}} \Delta N_* \right)}{324\bar{\beta}^{3/2} \Delta N_*^2} + \mathcal{O}\left(\frac{1}{\Delta N_*^3}\right)$$

- Many models are not in $1/(\Delta N_*)^{\alpha}!$
- Proposal of [1402.2059]: there are more than one "Universality Classes"
 - Perturbative (the original one), "logarithmic" (see above) and "non-perturbative" (exponentials in ϵ_{v_1})
- Unfortunately...

Making observable predictions O

The new parametrizations

- Universality classes
- ♦ Not universal^O
- Inflation of the number of classes
- Insufficiently accurate
 Equation-of-state
- inflation [◦]
 ♦ Example for the
- perturbative class
- ♦ Hydrodynamical
- cosmological perturbations

Conclusion

Inflation of the number of classes

The simplest inflationary model at next-to-leading order (SI):

$$\epsilon_{v_{1*}} = \frac{3}{4\Delta N_*^2} - \frac{9}{8\Delta N_*^3} \left[\frac{2}{\sqrt{3}} - \ln\left(1 + \frac{2}{\sqrt{3}}\right) + \ln\left(\frac{4}{3}\Delta N_*\right) \right] + \mathcal{O}\left(\frac{1}{\Delta N_*^4}\right)$$

- SI belongs to the "perturbative class" at leading order but becomes "logarithmic" at next-to-leading order!
- Other big troubles: $1/\Delta N_*$ expansion may not make sense!
 - Quadratic small field model: $V(\phi) \propto 1 (\phi/\mu)^2$

$$\epsilon_{v_{1*}} = \frac{M_{\rm P}^4}{\mu^4} \left(\sqrt{1 + 2\frac{\mu^2}{M_{\rm P}^2}} - 1 \right)^2 e^{-\frac{M_{\rm P}^2}{\mu^2} \left(4\Delta N_* + 1 + \frac{\mu^2}{M_{\rm P}^2} - \sqrt{1 + 2\frac{\mu^2}{M_{\rm P}^2}} \right)} + \mathcal{O}(f_*)$$

$$\epsilon_{v_{2*}} = 4\frac{M_{\rm P}^2}{\mu^2} + \mathcal{O}(f_*) \quad \text{where} \quad f_* \equiv e^{-4\frac{M_{\rm P}^2}{\mu^2}\Delta N_*}$$

+ Expansion makes sense for $\Delta N_* M_{\rm P}^2/\mu^2 \gg 1$ in which $\mu < M_{\rm P}$ breaks slow-roll!

Making observable predictions

The new parametrizations

- ✤ Universal(t) classes
- ✤Not universal
- Inflation of the number of classes

Insufficiently accurate

- Equation-of-state
- inflation
- Example for the perturbative class

0

- Hydrodynamical
 cosmological perturbations
- Conclusion

 \bigcirc

Insufficiently accurate

The large ΔN_* limit (when it exists) leads to inaccurate predictions Starobinski Inflation Quartic Small Field Inflation

 $V(\phi) \propto \left(1 - e^{-\sqrt{2/3}\,\phi/M_{\rm P}}\right)^2$

 $V(\phi) \propto 1 - (\phi/\mu)^4$

• ΔN_* without a potential is unpredictable: an additional model parameter?

Introduction Making observable predictions The new parametrizations

✤ Universality classes Ο *Not universal Inflation of the number of classes \bigcirc

 \frown

- Insufficiently accurate ✤ Equation-of-state
- inflation
- Example for the perturbative class Hydrodynamical cosmological-perturbations
- Conclusion

Equation-of-state inflation

- Instead of $V(\phi)$, one fixes $w(\Delta N_*) \equiv P(\Delta N_*)/\rho(\Delta N_*)$
 - Hydrodynamical approached proposed by Mukhanov [arXiv:1303.3925].
 - It is not an expansion \Rightarrow does not suffer from the previous inconsistencies
- At the background level, ends up being equivalent to a scalar field Hydrodynamical Friedmann-Lemaître equations

$$H^2 = \frac{\rho(N)}{3M_{\rm P}^2}, \qquad \frac{\mathrm{d}H}{\mathrm{d}N} = -\frac{3}{2} \left[1 + w(N)\right] H(N)$$

By comparison with the ones coming from a scalar field, one gets:

$$\epsilon_1(N) = \frac{3}{2} [1 + w(N)], \qquad \phi(N) = \phi_0 \pm \sqrt{3} M_{\rm P} \int_{N_0}^N \sqrt{1 + w(n)} \, \mathrm{d}n$$
$$V(N) = V_0 \exp\left\{-3 \int_{N_0}^N [1 + w(n)] \, \mathrm{d}n\right\}$$

Making observable predictions

The new parametrizations

- Universality classes
- ♦ Not universal
- Inflation of the number
- of classes
- ♦ Insufficiently accurate
- Equation-of-state
- inflation _____
- Example for the perturbative class
- Hydrodynamical
 cosmological perturbations

 \bigcirc

 \bigcirc

0

Conclusion

Example for the perturbative class

Assuming inflation is driven by:

$$w(\Delta N_*) + 1 = \frac{\beta}{\left(c + \Delta N_*\right)^{\alpha}}$$

• End of inflation at $w(\Delta N_* = 0) = -1/3 \Rightarrow c = (3\beta/2)^{1/\alpha}$

• Solving for $\phi(N)$, V(N) and $V[N(\phi)]$:

$$V(\phi) \propto \left[1 - \frac{\beta}{2\left(1 + \frac{2 - \alpha}{2\sqrt{3\beta}} \frac{\phi}{M_{\rm P}}\right)^{\frac{2\alpha}{2 - \alpha}}} \right] \\ \times \exp\left\{ \frac{3\beta}{1 - \alpha} \left[\left(1 + \frac{2 - \alpha}{2\sqrt{3\beta}} \frac{\phi}{M_{\rm P}}\right)^{\frac{2(1 - \alpha)}{2 - \alpha}} - 1 \right] \right\}$$

Making observable predictions

The new parametrizations

- ✤Universality classes
- ✤Not universal
- Inflation of the number

0

00

8

- of classes
- Insufficiently accurate
- * Equation-of-state
 inflation
 * Example for the
- perturbative class
- Hydrodynamical cosmological perturbations

Conclusion

Hydrodynamical cosmological perturbations

For the Bardeen potential

$$\Phi_{\rm B}^{\prime\prime} + 3\mathcal{H}\left(1 + c_{\rm S}^2\right)\Phi_{\rm B}^{\prime} + \left[2\mathcal{H}^{\prime} + \mathcal{H}^2\left(1 + 3c_{\rm S}^2\right)\right]\Phi_{\rm B} + c_{\rm S}^2k^2\Phi_{\rm B} = \frac{a^2}{2M_{\rm P}^2}\delta P_{\rm nac}$$
$$\delta P_{\rm nad} \equiv \delta P - c_{\rm S}^2\delta\rho$$

- For a fluid, $c_{
 m s}^2(\Delta N_*)$ and $\delta P_{
 m nad}(\Delta N_*)$ should also be specified
- Cosmological perturbations during inflation would evolve as in scalar field inflation provided

•
$$c_{\rm s}^2 = 1 - \frac{4}{9[1 - w(N)^2]} \left\{ 3 + 3w(N) - \frac{\mathrm{d}\ln[1 - w(N)]}{\mathrm{d}N} \right\}$$

•
$$\delta P_{\rm nad} = -2M_{\rm P}^2 \left(1 - c_{\rm S}^2\right) \frac{k^2}{a^2} \Phi_{\rm B}$$

- This is implicitely assumed when one uses the standard expressions for the power spectra
- How to justify these relations if the gravitating fluid is not a scalar field?

2

Conclusion

Making observable predictions The new parametrizations Conclusion \bigcirc \bigcirc \bigcirc

New parametrizations of inflation fail in

- Being universal: number of classes blow-up at higher orders
- Being predictive: ΔN_* becomes an arbitrary parameter
- Being accurate: already obsoleted by the Planck satellite accuracy
- Being useful?
- Equation-of-state inflation is
 - Consistent
 - Equivalent to scalar field inflation (or incomplete)
 - A new way to construct exact solutions
- How to be model independent?
 - ♦ Use slow-roll...
- Why being model independant?
 - Planck 2015 has already ruled-out 30% of all inflationary models
 - Theoreticians should do their job: making observable predictions 26 / 26