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The standard covariant differentiation procedure for fields in vector bundles is generalized so as
to be applicable to fields in general nonaffine bundles in which the fibers may have an arbitrary non-
linear structure. In addition to the usual requirement that the base space should be flat or endowed
with its own linear connection I, and that there should be an ordinary gauge connection 4 on the
bundle, it is necessary to require also that there should be an intrinsic, bundle-group-invariant con-
nection T on the fiber space. The procedure is based on the use of an appropriate primary-field-
(i.e., section-) dependent connector @ that is constructed in terms of the natural fiber-tangent-vector
realization A of the gauge connection. The application to gauged-harmonic mappings will be

described in the following article.

I. INTRODUCTION

Since at least the time of Clerk-Maxwell, or even ear-
lier, nearly all the most successful mathematical models
for the description of the physical world at a fundamental
(and often also at a higher) level have been essentially
based on the conceptual framework of local field theory.
The fields in question, whose behavior is governed by lo-
cal differential equations of usually not higher than
second order, are generally interpretable—at a classical
level—as sections of fiber bundles over some appropriate
base space (which might, for example, represent ordinary
four-dimensional space-time, or some higher-dimensional
extension or lower-dimensional subspace or quotient space
thereof).

In the most familiar and well-developed examples (in-
cluding Yang-Mills theory), although the theories them-
selves may be nonlinear (in the sense that the field equa-
tions contain coupling terms of quadratic or higher order)
the actual fields are intrinsically linear in so much as they
belong to bundles whose fibers are flat. In the simplest
cases the fiber space is actually vectorial, and even in the
case of gauge-connection fields (e.g., of Yang-Mills type)
the fiber space still has a well-defined affine structure, al-
though there is no longer any preferred origin. For fields
in such essentially linear (i.e., affinely fibered) bundles, the
standard procedure for the construction of the relevant
gauge-covariant derivatives (in terms of which the field
equations are expressed) provided an appropriate gauge-
connection field is available, is widely known and familiar
(see, e.%., Choquet-Bruhat, Morette-DeWitt, and Bleck-
Dillard").

The main purpose of the present work is to describe
how the standard machinery for gauge-covariant differen-
tiation can be generalized so as to be applicable to fields
that are intrinsically nonlinear, in the sense of being sec-
tions of nonaffinely fibered bundles. Such nonaffine fields
(as exemplified by nonlinear o models) have attracted an
increasing amount of interest in recent years.

The usual procedure for ordinary vector bundles needs
the provision only of a gauge connection A, in addition to
the requirement that the base space should either be flat or
at least provided with an ordinary linear connection T.
The natural generalization to be described here requires
also that the (curved) fiber-space should be provided with
its own linear connection I'.

In the following article we shall describe the application
of the general-purpose formalism set up below to the par-
ticular case where the fibers have a Riemannian connec-
tion induced automatically by the Lagrangian for the
natural minimally gauge-coupled generalization of the
class of harmonic mappings that was discussed by Mis-
ner.2 These gauged-harmonic mappings will include as a
special case with the gauge-coupled generalization of the
nonlinear 0 model with fully homogeneous-symmetric
fibers that was recently described by the present author.’

II. THE CONCEPTS OF BITENSORIAL
DIFFERENTIATION AND CONNECTOR FIELDS

One of the essential guidelines whose observance quali-
fies a theoretical treatment for description as geometric is
the requirement that one should work as far as possible in
terms of entities that are invariant in the sense of being in-
dependent of any arbitrarily chosen system of reference
that one might wish to introduce for the sake of explicit-
ness at some intermediate stage in the treatment. Howev-
er, the strictest observance of this precept risks giving a
treatment that either needs to be unduly abstract as the
price of being elegant or else that needs unwieldy
mathematical machinery as the price of being concrete.
For this reason most theoretical physicists do not insist on
the exclusive use of entities that are strictly invariant, but
as a compromise prefer nevertheless to work as far as pos-
sible in terms of entities that are at least covariant in the
sense of being subject to simply prescribed rules of varia-
tion when the relevant reference system is altered. One of
the simplest and most convenient examples is that of
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quantities represented in terms of sets of components
whose rules of variation are of tensorial type in the sense
of being expressible in terms of appropriate contractions
with relevant coordinate transformation matrices. In the
specific context of general field theories we shall be par-
ticularly concerned with entities whose covariance is of bi-
tensorial type insomuch as they involve two independent
matrices expressing independent coordinate changes on
the base and fiber spaces, respectively.

As a basic starting point let us consider the case of a
field V of simple vectorial type, meaning that its com-
ponents ¥4 undergo a change of the form

VA GAgVE 2.1

under the effect of a fiber-coordinate transformation
characterized by the matrix G“5. Suppose that we simul-
taneously carry out a coordinate transformation

(2.2)

on the base space .# over which the field ¥V is defined,
thereby determining a corresponding base-space transfor-
mation matrix given by

ok, =apt, (2.3)
where we have introduced the abbreviation
__9
B axk

for partial coordinate differentiation of a field over the
base space. Then the components

A B
D, VA=,V +w, 5V

xt—yH(x)

(2.4)

will qualify for description as those of a covariant or more
explicitly bitensorial derivative if they transform accord-
ing to the corresponding matrix contraction rule as ex-
pressed by

D,V4>Q~",G*D, V" . (2.5

It is evident that the bitensorial covariance property
(2.5) will hold if and only if the components ,"p have a
covariance property of a rather more complicated nature,
namely,

w0, 5~ Q"G 1% (G*p0,Pc—3,6%¢) . (2.6)

This will be of bitensorial form only if the base gradient
38,G“p of the fiber-coordinate transformation matrix G4,
happens to vanish (which will not, in general, be the case
for the examples we wish to consider).

We shall use the term connector to denote any field »
having components w,‘AB specified by one (covariant)
base-coordinate index and two (mixed) fiber-coordinate in-
dices and transforming according to the rule (2.6). A con-
nector can be considered as a particular kind of biaffini-
tor, using the term affinitor as an abbreviation for affine
tensor to denote quantities whose components transform
according to a rule that generalizes the ordinary kind of
tensorial transformation law by allowing for the presence
of an inhomogeneous additive term [having the form
Q~",G1%43,G ¢ in the example (2.6)] over and above
the usual homogeneous-linear multiplicative term [having

the form Q ~",G ~'%3G*p0,’¢ in the example (2.6)].

Insomuch as it is subject to the bi-aftensorial transfor-
mation rule (2.6), a connector @ can be interpreted as a
genuine field in the sense that it is a section in an ap-
propriately constructed fiber bundle €’ over the base
space .#, the bundle being of affine (rather than ordinary
vectorial) kind in the sense that (as well as being subject to
the usual group of homogeneous base-coordinate transfor-
mations specified by the matrices Q*,) the fibers of the
bundle are subject to an actlon of the assoc1ated inhomo-
geneous adjoint group '" of linear transformations gen-
erated by uniform translations and by the adjoint action
of the matrices G45.

We use the term connector (as distinct from connection)
for the purpose of emphasizing this interpretation of w as
a genuine (biaffinitorial) field in the sense of being a sec-
tion in the relevant (affine) fiber bundle, €', as character-
ized by an actxon of the corresponding mhomogeneous ad-
joint group &''. . Of course, such an o can also be given a
more traditional mathematical interpretation as a connec-
tion, meaning an algebra-valued form on an appropriate
principal fiber bundle £’ (see, e.g.,, Choquet-Bruhat
et al.! or Carter*) associated with the corresponding vec-
tor bundle 7™ say containing V, as charactenzed by the
left action on itself of the subgroup ¥’ of ¥'! generated
directly by the multiplicative action of the allowed
transformation matrices G“5.

The need for rather more care than usual in the inter-
pretation of w—either as a connector in €’ or as a con-
nection on Z’'—arises in situations where our primary
purpose is to deal with differentiation of a primary field
® having values in a nonaffinely fibered bundle & subject
to the provision of an ordinary gauge field 4 with respect
to the bundle group ¥ of #. Such a gauge field 4 will
be interpretable in the traditional way as a connection on
the directly associated principle bundle & of # (with
nonlinear fibers having the form of ¥ itself, subject to its
own left action) and it will also be interpretable as a con-
nector field in an appropriate affine bundle & subject to
the action of the inhomogeneous adjoint group %' associ-
ated with & (as well as base coordinate transformations)
on the fibers. This primary principal bundle Z, and the
indirectly associated primary connector bundle ¥, con-
taining the gauge section 4 will in the general case (for a
nonlinearly fibered primary bundle %) be distinct from
what we shall refer to as the derived principal bundle 2’
and the derived connector bundle &' containing what we
shall refer to as the derived connector @ (for which the
corresponding groups ¢’ and ¥'" may be larger than %
and 9'). These derived bundles and the connector  are
not (in the nonlinear case) determined in advance by the
corresponding primary bundles and the gauge field A4, but
are specified as functions of a choice of the section ® in
#. Any such section immediately determines a corre-
sponding bundle 7 of ordinary vectorial type (over the
same base .#) whose elements V are just the tangent vec-
tors to the fibers of # at the section ®. This section-
dependent vector bundle 7™ is the basic building block
from which, in conjunction with the ordinary cotangent
bundle over .#, one can proceed to construct the corre-
sponding tensorially associated vector bundles that are
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needed to contain bitensorial derivatives of various orders.
The derived bundles Z’' or €' that are needed for the
definition—as, respectively, a connection or a section—of
the connector w that will be required (for the explicit
specification of such bitensorial covariant derivatives) will
be, respectively, the directly associated principal bundle
P’ of 7" or the corresponding affine bundle €’ as
characterized by the bundle group 9 "of 77" and of its (in-
homogeneous adjoint) extension gt actingon ¢'.

The possibility that the derived bundle group &' may
be considerably larger than the primary bundle group &
results from the fact that it arises from (in general, base-
position-dependent) fiber coordinate transformations

XAX,x)—G4X,x) (2.7)

for X€ #°, x E#, where # is the base space and £ the
fiber space of 4, that arise not only from the action of
the primary gauge group & but also from the group of
nonlinear transformations between coordinates of the dif-
ferent patches that may be needed to cover the fiber space
& when it has itself a nonlinear manifold structure. In
terms of the original fiber coordinates X4, the elements of
%' will be represented by matrices of the form

G3(X,x)=G* p (2.8)
as evaluated on the chosen section
X =d(x), (2.9)

where a comma denotes partial differentiation so that, in
particular, the total space gradient components (with
respect to the local coordinates x* and X4) by that ap-
pear in the connector transformation formula (2.6) will be
given explicitly by

allGAB =GA,B,p+GA,B,Cq>C,p ’ (2.10)

where
OYUx)=X(D(x)) .

In the following sections we shall describe the natural
procedure for explicitly constructing a well-defined
section-dependent connector field ® obeying the rule (2.7),
in terms of a previously given primary gauge field 4 and
of ordinary linear connections I and I' on the base and
fiber spaces .# and £, respectively. Before doing so we
remark that because such a section-dependent connector
can be interpreted as an ordinary connection on the artifi-
cially constructed (section-dependent) vector bundle 7, it
follows that  will automatically have the usual properties
that are familiar from the standard theory of fixed
(section-independent) connections. In particular, the con-
nector o will determine a corresponding well-defined (but
section-dependent) bitensorial curvature field ( (over the
section) according to a formula of the familiar form

QpVAB =za[pmv]AB +260[,4A |C va]CB (2.11)

(where square brackets denote antisymmetrization) and
this field will satisfy a Bianchi identity of the familiar
form

B1up) ' = | ¢ 1098 — 01 ? | €| Q1B - (2.12)

III. BITENSORIAL DIFFERENTIATION
IN THE ABSENCE
OF A GAUGE TRANSFORMATION

Before dealing with the general situation (where there is
a nontrivial gauge group ¥) let us start by dealing with
the comparatively simple case for which the fundamental
bundle # under consideration is endowed with a trivial
direct product structure & X.# where .# is the base
space, with local coordinates x#, and £ is the fiber space,
with local coordinates X4. The imposition of such a
direct product structure is equivalent to the specification
of an integrable connection on the bundle. Its presence en-
ables us to restrict our attention for the time being to
fiber-coordinate transformations

XAX)— YAX) (3.1)

that are independent of base-space position, i.e., such that
Y"),,:O (3.2)

unlike the more general transformations of the form (2.7)
that were mentioned in the introduction and to which we
shall return in the next section.

In such integrable cases the procedure described by Mis-
ner? for the Riemannian case can be taken over directly
provided that the base .# and the fiber £ each has its
own linear connection. An ordinary linear connection on
A will be specified by a corresponding purely affinitorial
(as opposed to the more general biaffinitorial) connector
field I with mixed components l" o which can be used,
e.g., for a simple tangent vector v w1th components v¥, to
specify the covariant variation dv with components (dv)}*
associated with an infinitesimal component variation
d (v*) in conjunction with a base displacement dx* by the
formula

(dv}=d (v*)+T ' FpvPdx” (3.3)

so that if v is defined as a field over .# there will be a cor-
responding fensorial covariant differentiation operation V
whose effect is given by

Vuk=0p#+ T FpPf . (3.4)

In an exactly analogous manner, the connection on the
fiber space £” will be specxfled by another such connector
field I' with components T2 4~ ¢ whose use can be illustrat-
ed as before by the case of a simple fiber-tangent vector ¥V
say, with components V4, whose covariant variation dV
will be given in terms of corresponding component varia-
tions d (V4) and fiber displacement components dX 4 by

(@V)A=d (V4 + T4 VCdXx® (3.5
so that if we were concerned with a field defined over the

fiber space we would have a corresponding fiber-covariant
differentiation operation whose effect would be given by

VaVA=v4 5+ T4 V. (3.6)

What we are actually most interested in is situations
where the entities such as ¥ under consideration are speci-
fied as fields not over the fiber space £ but over the base
space .# or to be more explicit where they are specified as
fields on some section ®(x) of the bundle # with fibers
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& over #. In such a situation we shall be concerned
with variations for which the fiber displacement dX“ ap-
pearing in (3.5) will be determined (via the section ®) by a
base-space displacement dx* in the form

dX*=(V,2%)dx" , 3.7
where the bitensorial gradient components are defined by
V,01=3,X(D(x)) . (3.8)

There will thus be a corresponding bitensorial generaliza-
tion of the covariant differentiation operation V, whose
effect on a fiber-tangent field V at the section ¢ over .#
will be given by

V. VA=3,V4+T,4pV?, 3.9

where the (biaffinitorial) section-dependent connector
components I',*p are given by

FMAB =chf‘CAB ’ (3.10)
where we introduce the abbreviation
c c
X4, =v,0". (3.11)

For the components of the (gradient) projection bitensor
defined by the section ® according to (3.8).

Once the connectors I',°, and F,,"B are available one
can proceed at once in the usual way to write down the
covariant (bitensorial) derivatives of bitensors of arbitrary
orders by including a connector term of the appropriate
kind for each index. The lowest- (zero) order example is
the case of the covariant derivative of the section @ itself,
as given by (3.8), for which no connector term is needed at
all.

As one would expect, commuting the order of covariant
differentiation operations brings to light torsion and cur-
vature effects resulting from torsion and curvature in .#
and #°. The ordinary base-space torsion and curvature
tensors are defined by the usual expressions

0,/ =2I"1f, (3.12)
and
Ruvpa'_‘zaiﬂrﬂpo'*'zr[#ipfrlv}fa

while the analogous fiber torsion and curvature are de-
fined similarly by

0 5= 2T 4%

(3.13)

(3.14)
and
ﬁABCD=2f[B$CD,|A]+2f‘[A |CEfIB]ED . (3.15)

In terms of these, the effect of commuting two covariant
differentiations at the zero-order levels, i.e., when acting
on the primary section P itself, will be given by
2V, V, @ =X X2 0 p1—0,,,X", . (3.16)
At the first-order level, when acting on a base-space vec-
tor field we shall obtain an expression of the usual form

2V V0P =R,, 07 -0,V 0P (3.17)

and when acting on a fiber-tangent vector field we shall
obtain

2V Y VA=R,, V2 -0,V , V1, (3.18)

where the (bitensorial) section-dependent base projection of
the fiber curvature is given by

R, 5=XSX",Rcpp . (3.19)

Having seen how the specification of the linear connec-
tions I and I" on the base and fiber spaces .# and £°,
respectively, will automatically determine a natural biten-
sorial differentiation operator in the trivial case of a bun-
dle with a direct-product structure (or equivalently with
an integrable bundle connection) we now want to consider
the generalization of this procedure to the case in which
one has a nonintegrable bundle connection 4 in a bundle
whose fibers are subject to a nontrivial action of an auto-
morphism group &. As a preliminary to setting up the
actual gauge-covariant differentiation procedure in Sec. V,
we shall first describe the appropriate primary realization
of the gauge algebra in terms of vertical vector fields on
the primary bundle & .

IV. THE PRIMARY FIBER-TANGENT
VECTOR REALIZATION OF A GAUGE FIELD

Instead of supposing that the primary bundle has a pre-
ferred (or indeed any) direct-product structure (as was
done in the previous section) we now consider the more
general situation in which the bundle fibers are horizon-
tally related only by a nonintegrable connection A4 subject
to a nonintegrable action of an automorphism group ¥
with Lie algebra a.

In this more general case, the bundle will still have a
simple (albeit no longer uniquely preferred) local-direct-
product structure £ X.#°, i.e., what is traditionally
known as a gauge, above each (sufficiently small) neigh-
borhood .#” in the base space .#: in terms of local coordi-
nates X“ on some local fiber-space patch % and x* on
the base-space patch .4~ the bundle points represented in
terms of the product structure by the pair (X,x) with
Xew, xes C#, will be specified by a corresponding
set of local gauge coordinates { X4,x#]. However,""* it is
now no longer required that any particular such gauge
(i.e., direct-product) structure be preserved when the local
bundle patches are fitted together. Since a given gauge
over .4 will specify an isomorphism mapping J(x) of the
fiber over each point x €4 into the abstract fiber space
&, and any other gauge over an overlapping neighbor-
hood .#"" will specify an analogous isomorphism J'(x) for
x €, it follows that there will be a corresponding iso-
morphism of the form

G
-, X—GX (4.1)

of the fiber space onto itself, determined for any
X EANNA"' by the product mapping G =J'oJ ~L. If the
second (new) gauge is represented in an overlapping patch
by the local gauge-coordinates { Y4,x#} where the Y4 are
coordinates on some local path %'C £, then there will
be a relation of the general form (2.7) specifying the new
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gauge coordinates { G#,x#} of a point represented by the
pair (X,x) with local coordinates {X“4(X),x#(x)} in the
original gauge by a prescription of the form

GAX,x)=Y4Gx)X) . (4.2)

If the elements G of the gauge group & were allowed to
consist of arbitrary diffeomorphisms then the form (4.2)
would allow quite arbitrary transformation X“4—G“.
Even when ¥ is restricted by the requirement that the
transformations G should be isomorphisms, i.e., that they
must preserve any intrinsic structure (such as the connec-
tion I") given on the fiber space £°, it will still be possible
to choose the transformation X+ G arbitrarily on any
single given fiber by adjusting the new coordinates ¥# on
& accordingly, but the variation of G* as a function of
the base position x will not be arbitrary but will be re-
stricted by the criteria for G to remain an isomorphism.
As usual, the bundle connection over .# will be deter-
mined by the specification of a corresponding connector
one-form A4 , with (gauge-patch-dependent) valves in the
Lie algebra .7, and there will be a corresponding (gauge-
patch-independent) Lie-algebra-valued two-form

IFM=28“,A v]+2A [“A v 4.3)
satisfying a Bianchi identity of the form
a[MF ) +[A [#’F vp]] =0 (4.4)

and vanishing if and only if the connection is integrable.
In terms of a representation of the form

A,=A4,%, (.5)

in terms of a fixed basis a ,€a (a=1,...,m), of the Lie
algebra with structure constants specified by

[81 a@ B] = %a £ Y (46)

the corresponding curvature two-form components in the
corresponding representation

F/w: ;waa a 4.7)
have the explicit expression
F,,*=20(,4,)°+% 5,"4,P4,7 . 4.8)

In the simple vector bundles that are most commonly
used in physics, the algebra & can conveniently be
represented in terms of matrices, but in the general non-
linear case it is more useful to think of the algebra instead
as represented by the vector fields that generate the corre-
sponding infinitesimal diffeomorphisms on the primary
fiber space £ under consideration. The basic function of
the gauge field A4 is to determine, for any infinitesimal
base displacement dx, a corresponding algebra element

a =A dxt 4.9)

which will be realized by a corresponding fiber vector

field a with components
aA=AFAdx“ . 4.10)

The role of this vector field a is to specify the (infini-
tesimal) deflection between the horizontal projection, as

determined by the local-direct-product structure associat-
ed with the gauge patch under consideration (in effect the
local coordinates {X#x*}), between fibers over base
points differing by the infinitesimal base displacement dx,
and the corresponding horizontal projection as determined
by the connection.

The specification of a connection in this way enables
one to define a gauge-covariant vertical displacement dX
between neighboring points on neighboring fibers, as
determined with respect to the horizontality specified by
the connection. The components of the covariant vertical
displacement may be evaluated as the difference,

dXA=dx*—d, x4 (4.11)

between the vertical deviation dX“ determined by the lo-
cal coordinates (i.e., by the local-product structure of the
gauge path) and the vertical deviation

doX4=—a" 4.12)

between horizontality with respect to the connection and
horizontality as determined by the local coordinates.
Hence if we are considering a section &, substitution of
the corresponding coordinate displacement formula

dx*=Xx",dx" (4.13)
into (4.11) gives the expression
ax4=(x4,+A44,)dx* (4.14)

for the corresponding covariant displacement components
where X "“ are the tangent projection components associ-
ated with the section ® as given by (3.11). (See Fig. 1.)

It is evident that the quantity @X* constructed in this
way will be vectorially covariant under the effect of a gen-
eral (base-position-dependent) fiber-coordinate transfor-
mation of the form (2.7), which gives

dX*—GpdX®+ G4 dxt (4.15)

provided that the gauge-connection field 4 undergoes the
corresponding transformation, which will be given expli-
citly for the vector realization A by

A, N—>Gp4,2—-G1, (4.16)
since the inhomogeneous terms will cancel so as to give
the purely vectorial covariant rule

dXr>GAzdx® . 4.17)

By a (rather longer) calculation one can also verify that
(2.7) and (4.16) also imply an analogous purely vectorial
covariance rule

F,,%—>G*sF,* (4.18)

for the components of the vector realization F of the
gauge curvature, as defined by

FuA=F,%a,", (4.19)

where a,* are the components of the vector realization a,
of a 4, and the base components F,,* of the gauge curva-
ture are specified by (4.6).

Since the algebra commutator relations will be realized
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FIG. 1. Schematic representation showing (two-dimensional subspaces of) a (curved) fiber space £°, a base space .#, and a bundle
# with fiber £ over .#, indicating the relationships between the various local coordinate patches mentioned in the text, and showing
the distinction between the original gauge projection J determined (for X € £, x E.#) in the form J(X,x)=X by the local product
structure corresponding to some initially given gauge over a neighborhood .#"C.# and a new gauge projection J’ over .#"’ given in
terms of the initial local product structure over the overlap region .#"N.#"' by J'(X,x)=G (x)X. (The positions of the patches .+,
in .# and %,%' in & are indicated by pairs of points representing the coordinate origin and some other arbitrary constant values

denoted by the letter c.)

by the Lie differentiation commutator of the vector fields
on #°, the structure relations (4.6) will be realized con-
cretely by

2a(q)* pa® gj=C og'ay” (4.20)

Hence by substitution in (4.8) we obtain an explicit, Lie-
algebra-basis-independent, expression for the components
F, ,WA of the realization F of the gauge curvature, namely,

FuA=24p," 1 +24,°%4,,% 5 . 4.21)

It is an essentially straightforward exercise in partial dif-
ferentiation to verify directly this fundamental primary
bundle realization of the gauge curvature does indeed un-
dergo a transformation of the vectorial form (4.18) under
the effect of a general gauge patch transformation as
specified by (2.7) and (4.16). This establishes that the
base-space two-form valued vertical (i.e., fiber-space
tangent) vector field F specified by (4.18) is globally well
defined over the whole of the primary bundle &, unlike
the base space one-form valued vertical vector field A
which is gauge-patch dependent.

This property of existing as a field over the whole of
the primary bundle # distinguishes the primary gauge

curvature realization F from the other bitensorial entities
introduced in the previous sections, which were defined
only over some particular section ® in #. In detailing
with entities such as F and A which are defined over the
whole of the fibers and not just at the section ®, one must
take care to distinguish the partial component derivatives
indicated by a comma, from the total base-space gradient
components for the field over .# that would be deter-
mined by the section ®. Thus, although we could use the
expressions d,4,% and 4,% , interchangably in (4.8), it is
important to notice that 4, , is not the same as 3,4,"
in the algebra-basis-independent expression (4.21), the dis-
tinction being specified as a function of the section ® by

3,4, =4, ,+4,% 3x5, . 4.22)

By paying due attention to this distinction it will be possi-
ble to work with an explicit, but Lie-algebra-basis-
independent notation scheme throughout the remainder of
this work, thereby avoiding any further reference to such
cumbersome paraphenalia as the structure constants.

Up to this point we have made no reference to any
specific properties required of the gauge group ¥: the
analysis in the present section would be valid for transfor-
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mations X 4— G4 resulting from the general action of the
entire (infinite parameter) group of diffeomorphisms on
the fiber space #°. However, for the purpose of con-
structing a gauge-covariant differentiation formalism, as
will be done in the section that follows, it will be neces-
sary to restrict ourselves to situations for which ¥ is in-
cluded in the at most finite-dimensional diffeomorphism
subgroup leaving the chosen fiber-space connection I in-
variant.

V. GAUGE-COVARIANT BITENSORIAL
DIFFERENTIATION

It is immediately evident from the work of the previous
section that for any section ®(x) in the primary bundle #
the gauge connection A4 will determine a well-defined co-
variant derivative field D® over the base-space .#, whose
components can be read out from the expression

aXA=d4| dx* (5.1

for the covariant vertical displacement dX resulting from
a base-space displacement dx, where we have introduced a
heavy bar notation convention

D, %=1, (5.2)

for gauge-covariant differentiation. Recalling our previ-
ous abbreviation

9,04=x"4, (5.3)
we immediately obtain the compact expression

4|, =Xx4,+4," (5.4
for the bitensorial derivative components | by substi-

tuting (4.14) in (5.1).

This lowest-order differentiation procedure obviously
does not depend on the specification of any intrinsic
structures on the fiber #° or base .# of #. However, in
order to go on (analogously to the work of Sec. III) to the
construction of higher-order bitensorial derivatives, the
reintroduction of the fiber connection T on £ and, more
routinely, of the base connection I" on .# will evidently be
necessary.

Before continuing, we now make the usual supposition
that the gauge group & acting effectively on the primary
bundle # should be restricted to consist only of fiber iso-
morphisms, i.e., that it should leave invariant all relevant
structure on the fiber space £ in which the primary field
is evaluated. As a minimal requirement we must at least
demand that the transformation group & should preserve
the only structure that has been introduced so far on &7,
namely, the indispensible fiber connection I ie., the
gauge transformations specified by (2.7) and (4. 2) must be
restricted so as not to violate the essential property

[ 48c,=0 (5.5)

characterizing any allowable local gauge coordinate sys-
em {X“,x"}. In order to express the corresponding re-
striction on the gauge algebra, it is convenient, following
Yano,’ to introduce an abbreviation, which we shall indi-
cate by a subscript colon, to indicate a covariant deriva-

tive of a vector field that differs from the usual one in
that the connection is inserted the wrong way round.
Thus, for the particular case of the gauge vector one-form
A we introduce a corresponding gauge tensor one-form
A. defined by

A“A:B =A“A_B+A“Cf‘CAB (5.6)
or equivalently
AuA:BzeBApA"'ApC@CBA , (5.7)

where as before V denotes the ordinary operation of co-
variant differentiation along the fibers with respect to the
fiber connection T". In the absence of the torsion ® the
distinction between this Yano covariant derivative and the
ordinary covariant derivative disappears. In terms of this
notation the essential requirement that the fiber connec-
tion I" be invariant under the action generated by the pri-
mary gauge field 4 can be obtained (from Yano’s formu-
1a® for the Lie derivative of the connection) in the form

Vs, c=A4, Rpp’c . (5.8)
This basic postulate includes, as a consequence the corre-
sponding decoupled invariance requirement for the torsion
tensor, i.e.,

A”DQD@)BCA=A“A:D®BCD+2AMD:[Cl@p[B]A (59)

For purely base-tensorial entities the question of gauge

invariance does not arise. We therefore proceed directly
to consider the appropriate gauge-covariant generalization
of the definition (3.5) of the absolute variation of the sim-
plest kind of fiber-tensorial quantity, an ordinary vector V
between nearby points in nearby fibers separated by a base
displacement dx. Evidently the required gauge-covariant
variation @V should be defined as the covariant variation
with respect to the fiber connection I' along the covariant
vertical displacement @X as specified by the projection
that is horizontal with respect to the gauge connection.
This means that we must take

AVA=d (VA —d, VA+(@x® 1 z4.vC, (5.10)

where @X* are the components of the covariant vertical
displacement as specified by (4.11), or more explicitly,
(4.14), and d,V“ are the vector component variations re-
sulting from the fact that horizontality with respect to the
local fiber coordinates X4 differs from horizontality with
respect to the gauge connection by the effect of infini-
tesimal Lie displacement induced by the vector field a,
specified on the fiber by (4.10), which gives

d,V=—a"gzV8. (5.11)

Thus, explicitly, we shall have

aVA=d (V) +[4," pdxt+ (4, dx*+dXOT 451072 .
(5.12)

In the case where V is a tangent vector defined as a field
on a section ®(x), there will be a corresponding bitensori-
al covariant derivative which can be read out from the de-
ing formula
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avi=v4 dx (5.13)
using the abbreviated bar suffix notation system
D,,VA=V"|,, . (5.14)

Thus we obtain the covariant derivative components in
the form

VA =08,V 140, V2, (5.15)
where the section-dependent connector @ [as introduced in
(2.4)] will be given, using the notation of (5.4), by

w,‘AB =¢C“‘FCAB+A#A,B (516)

or equivalently, using the notation of (3.11) and (5.6), by

w0, '3=T,"3+4,"5 . (5.17)

Having thus obtained the required connector o that is
needed for covariant differentiation of a simple fiber vec-
tor on the section, one can go on immediately in the usual
way to construct the corresponding covariant derivatives
of more general fiber-tensorial and bitensorial quantities
by adding an appropriate connector term for each index (a
term involving a)FAB with a positive and/or negative sign
for each contravariant and/or covariant fiber index, and
similarly a term involving I',", for each base-space index).

The resulting generalization of the derivative commuta-
tor rule (3.16) for the primary section @ itself involves the
fiber and base torsions and the gauge curvature, taking the
form

207, 1= D€, PP O — O, PB4+ Ft . (5.18)

The analogous commutator rule (generalizing (3.18)) for
a fiber vector field over the section ® involves the fiber
curvature and the gauge curvature as well as the base tor-
sion, taking the form

2V = s V-0, V2, (5.19)

where the total connector curvature, as defined by (2.12)
can be evaluated [using (5.8) and (4.21) as the sum of two
separately bitensorially covariant terms] in the form

Q.5 =9, @ Rep?p +Fup .

The first (section-dependent) gauge-covariant term on the
right-hand side in (5.20) can evidently be expanded qua-
dratically in the gauge-connection field as

(5.20)

|, ®° | Rep?p =R, p+24[,X°;Rcp?p

+4,°4,°Rep’s . (5.21)
We recapitulate that in the second term on the right-hand
side in (5.20) in colon denotes the Yano-type (wrong way
round) covariant derivative, i.e.,

F;WA:B =eBF,wA+F,wC@CBA . (5.22)

Like the undifferentiated gauge curvature field F itself,
this Yano gauge-curvature gradient F, is well defined glo-
bally over the primary bundle (not just on the section ®
where » and Q) are defined). Since the gauge curvature
belongs, by construction, to the Lie algebra it will au-
tomatically satisfy a fiber-connection preservation condi-
tion of a form analogous to the fundamental requirement
(5.7), namely,

eBvaA:cszka\BDAc . (5.23)

This relation is useful for the purpose of verifying directly
as an exercise that the section-dependent curvature ()
given by (5.20) does indeed satisfy the Bianchi identity
(2.12).
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