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Uniqueness problems in the elliptic sector of constrained formulations of Einstein equations have a

dramatic effect on the physical validity of some numerical solutions, for instance, when calculating the

spacetime of very compact stars or nascent black holes. The fully constrained formulation (FCF) proposed

by Bonazzola, Gourgoulhon, Grandclément, and Novak is one of these formulations. It contains, as a

particular case, the approximation of the conformal flatness condition (CFC) which, in the last ten years,

has been used in many astrophysical applications. The elliptic part of the FCF basically shares the same

differential operators as the elliptic equations in the CFC scheme. We present here a reformulation of the

elliptic sector of the CFC that has the fundamental property of overcoming the local uniqueness problems.

The correct behavior of our new formulation is confirmed by means of a battery of numerical simulations.

Finally, we extend these ideas to the FCF, complementing the mathematical analysis carried out in

previous studies.
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I. INTRODUCTION

In recent years we have seen the successful application
of numerical codes to accurately calculate the spacetimes
of compact astrophysical objects like collapsing stellar
cores, (proto)neutron stars, and black holes. Most of these
codes are based on the 3þ 1 formalism of general relativ-
ity (see, e.g., [1–3] for reviews). They typically fall into
two classes. One approach relies on the free evolution of
the 3þ 1 Einstein equations, recast in order to cure long-
term stability problems. Here the constraint equations are
only solved initially, and closely monitored at each time
step to control the accuracy of the numerical solution.

Alternatively, formulations based on a constrained evo-
lution, where the constraints are solved in parallel with
evolution equations, have proven to be successful as well.
Such approaches exhibit the advantage that the solution
cannot violate the constraints by definition (within the
accuracy of the numerical scheme). In particular, the con-
formally flat approximation [4,5] (hereafter CFC) of the
full Einstein equations, which constitutes a fully con-
strained formulation, has been shown to yield long-term
stable evolutions of such astrophysical scenarios (see, e.g.,
[6–9]). However, apart from computational challenges,

arising from the need to frequently solve the elliptic con-
straint equations, constrained formulations suffer from
mathematical nonuniqueness problems when the configu-
ration becomes too compact. In the case of the collapse of a
stellar core or a (proto)neutron star to a black hole, such a
situation is encountered already before the apparent hori-
zon forms. This issue has, in the past, been prohibitive to
successfully applying such formulations in numerical
simulations of a wide range of astrophysical problems.
The nonuniqueness of solutions stems from the nonline-

arity of the constraint equations and has been studied
within the so-called extended conformal thin sandwich
(XCTS) [10–12] approach to the initial data problem in
general relativity. In Ref. [13] a parabolic branching was
numerically found in the solutions to the XCTS equations
for perturbations of Minkowski spacetime, providing the
first evidence of nonuniqueness in this elliptic system. First
analytical studies have been carried out in [14,15], finding
support for the genericity of this nonuniqueness behavior.
More specifically, the XCTS elliptic system is formed by
the Einstein constraint equations in a conformal thin sand-
wich (CTS) decomposition [10] supplemented with an
additional elliptic equation for the lapse function, which
follows from the maximal slicing condition. Although no
general results on the existence and uniqueness for the
XCTS system are available (in contrast to the CTS case
and similar elliptic systems encompassing only the con-
straints; see, e.g., [1,10,11,16,17]), the analysis in [14]
strongly suggests the presence of a wrong sign in a certain
term of the lapse equation as the culprit for the loss of
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uniqueness, essentially because it spoils the application of
a maximum principle to guarantee uniqueness. Moreover,
in these circumstances (namely, the existence of a non-
trivial kernel for the XCTS elliptic operator) it is shown in
[15] that the parabolic behavior found in [13] is indeed
generic.

Certain constrained evolution formalisms which incor-
porate elliptic gauges in their schemes contain elliptic
subsystems which share essential points with the XCTS
equations. Nonuniqueness in the elliptic subsystem is cer-
tainly an issue for the well-posedness of the whole elliptic-
hyperbolic evolution system. In numerical implementa-
tions this can depend on the employed numerical scheme,
in particular, on its capability to remain close to one of the
solutions, at least as long as the solution stays sufficiently
far from the branching point. In fact, constrained or par-
tially constrained evolutions have shown to be robust in a
variety of contexts (see, e.g., the references in [18] and
Sec. 5.2.2 of [19]). However, the problems described above
have also emerged, for instance, in the axisymmetric case
in [20,21] (see also [22]). The analysis in [18] concludes
that the reason behind the failures in these axisymmetric
formulations is in fact related to the presence of wrong
signs or, more precisely, to the indefinite character of
certain nonlinear Helmholtz-like equations present in the
scheme (see [18] for details and also for a parallel numeri-
cal discussion in terms of a class of relaxation methods for
the convergence of the elliptic solvers). Regarding the full
three-dimensional case, fully constrained formalisms have
been presented in [23–25]. While the work in [23,24]
includes an elliptic subsystem closely related to the
XCTS equations and therefore suffers potentially from
these nonuniqueness problems, the uniqueness properties
of the scheme of [25] must yet be studied. In both cases, the
full numerical performance still has to be assessed.

The goal of the present work is to discuss a scheme
addressing the nonuniqueness issues of XCTS-like elliptic
systems in the full three-dimensional case, with astrophys-
ical applications as our main motivation. Having the analy-
sis of the fully constrained formalism (hereafter FCF) of
[23,24] as our ultimate aim, we focus on an approximation
in the spirit of the CFC approximation by Isenberg,Wilson,
and Mathews [4,26]. This methodological choice is justi-
fied since the CFC scheme already contains the relevant
elliptic system of FCF, but in a setting in which potential
additional problematic issues related to the FCF hyperbolic
part do not mix with the specific problem we are address-
ing here. Therefore, we discuss in detail a modification of
the CFC scheme (in the presence of matter) where
maximum-principle lines of reasoning can be used to infer
the uniqueness of the solutions. We investigate numerically
the performance of the new CFC scheme and finally in-
dicate the main lines for its generalization to the full
Einstein FCF case.

This article is organized as follows. In Sec. II we review
the FCF and CFC formalisms, and then discuss the limita-

tions found in the numerical implementations of the latter.
In Sec. III we introduce the modification of the CFC
scheme, with the aim of solving the uniqueness issues,
and we present various numerical tests of the new scheme
in Sec. IV. In Sec. V the guidelines for the generalization to
the FCF case are discussed, and conclusions are drawn in
Sec. VI. In the Appendix we justify a further approxima-
tion assumed in Sec. III which is consistent with the CFC
setting. Throughout the paper we use the signature
ð�;þ;þ;þÞ for the spacetime metric, and units in which
c ¼ G ¼ M� ¼ 1. Greek indices run from 0 to 3, whereas
Latin ones run from 1 to 3 only.

II. THE FULLY CONSTRAINED FORMALISM AND
THE CONFORMAL FLATNESS CONDITION

A. A brief review of the fully constrained formalism

Given an asymptotically flat spacetime ðM; g��Þ we

consider a 3þ 1 splitting by spacelike hypersurfaces �t,
denoting timelike unit normals to �t by n�. The data on
each spacelike hypersurface �t are given by the pair
ð�ij; K

ijÞ, where ��� ¼ g�� þ n�n� is the Riemannian

metric induced on �t. We choose the convention K�� ¼
� 1

2Ln��� for the extrinsic curvature. With the lapse

function N and the shift vector �i, the Lorentzian metric
g�� can be expressed in coordinates (x�) as

g��dx
�dx� ¼ �N2dt2 þ �ijðdxi þ �idtÞðdxj þ �jdtÞ:

(1)

On the other hand, we can write

2NKij ¼ @t�
ij þDi�j þDj�i; (2)

where Di is the Levi-Civita connection associated with
��� and @t�

ij represents the Lie derivative with respect

to the evolution vector t� :¼ ð@tÞ� ¼ Nn� þ ��. As in
[23] we introduce a time independent flat metric fij, which

satisfies Ltfij ¼ @tfij ¼ 0 and coincides with �ij at spa-

tial infinity. We define � :¼ det�ij and f :¼ detfij. This

fiducial metric permits the use of tensor quantities rather
than tensor densities. The next step in the formulation of
[23] is the conformal decomposition of the 3þ 1 fields.
First, a representative ~�ij in the conformal class of �ij is

chosen, so we can write

�ij ¼ c 4 ~�ij; Kij ¼ c ��8 ~Aij þ 1
3K�

ij; (3)

where K ¼ �ijKij and ~� :¼ det~�ij, and � 2 R. In

Ref. [23], the choice � ¼ 4 was adopted, leading to the

following expression of ~Aij in terms of the lapseN and shift
�i:

~A ij ¼ 1

2N

�
~Di�j þ ~Dj�i � 2

3
~Dk�

k ~�ij þ @t ~�
ij

�
; (4)

~Di being the Levi-Civita connection associated with ~�ij.

This is in the spirit of the decomposition employed in the
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(X)CTS approach to initial data. Regarding the choice of
the representative of the conformal metric ~�ij, a unimodu-

lar condition ~� ¼ f was adopted in [23], so that c ¼
ð�=fÞ1=12. The deviation of the conformal metric from
the flat fiducial metric is denoted by hij, i.e.

hij :¼ ~�ij � fij: (5)

Once the 3þ 1 conformal decomposition is performed, a
choice of gauge is needed in order to properly reformulate
the Einstein equations as partial differential equations. The
prescriptions in [23] are maximal slicing and the so-called

generalized Dirac gauge,

K ¼ 0; Dk ~�
ki ¼ 0; (6)

whereDk stands for the Levi-Civita connection associated
with the flat metric fij. The Einstein equations then be-

come a coupled elliptic-hyperbolic system to be solved for
the basic variables hij, c , N, and �i [23].
Expressing the differential operators in terms of the

connection of the flat metric, the elliptic part can be written
as

�c ¼ �2�Ec 5 � hklDkDlc þ c
~R

8
� c 5

8ð2NÞ2 ~�ik ~�jl

�
ðL�Þij þ @hij

@t
�L�h

ij � 2

3
Dk�

khij
�

�
�
ðL�Þkl þ @hkl

@t
�L�h

kl � 2

3
Dm�

mhkl
�
; (7)

�ðNc Þ ¼ 2Nc 5�ðEþ 2SÞ þ Nc
~R

8
� hklDkDlðNc Þ þ 7

32

c 6

ðNc Þ ~�ik ~�jl

�
ðL�Þij þ @hij

@t
�L�h

ij � 2

3
Dk�

khij
�

�
�
ðL�Þkl þ @hkl

@t
�L�h

kl � 2

3
Dk�

khkl
�
; (8)

��i þ 1

3
DiDj�

j ¼ 16�Nc 4Si � hklDkDl�
i � 1

3
hikDkDl�

l þ c 6

N
Dj

�
N

c 6

�
½ðL�Þij�

þ c 6

N
Dj

�
N

c 6

��
@hij

@t
�L�h

ij � 2

3
Dk�

khij
�
� 2N�i

kl
~Akl; (9)

where� stands for the flat Laplacian (� :¼ fijDiDj), and
E, Si, and S are, respectively, the energy density, momen-
tum density, and trace of the stress tensor, all measured by
the observer of four-velocity n� (Eulerian observer): in
terms of the energy-momentum tensor T��, E :¼
T��n

�n�, Si :¼ ��i�T��n
�, and S :¼ �ijSij, with Sij :¼

T���
�
i �

�
j . Furthermore,

~R ¼ 1
4
~�klDkh

mnDl ~�mn � 1
2
~�klDkh

mnDn ~�ml; (10)

ðL�Þij :¼ Di�j þDj�i � 2
3f

ijDk�
k; (11)

�k
ij
:¼ 1

2
~�klðDi ~�lj þDj ~�il �Dl ~�ijÞ: (12)

Equation (7) follows from the Hamiltonian constraint,
whereas Eq. (9) results from the momentum constraint
together with the preservation of the Dirac gauge in time.
Equation (8) corresponds to the preservation in time of the
maximal slicing condition, @K=@t ¼ 0. Note that expres-
sion (10) for the Ricci scalar of the conformal metric does
not involve any second-order derivative of the metric; this
property follows from Dirac gauge [23]. The resulting
elliptic subsystem coincides with the XCTS system [11],
except for the field chosen to solve the maximal slicing
equation: Eq. (8) above is to be solved for Nc , whereas in

[11] the conformal lapse ~N :¼ Nc�6 is employed instead.
This directly affects the value (and, in particular, the sign)
of the power of the conformal factor in the nonlinear terms
of Eqs. (7) and (8). More generally, one could define a
generic rescaling of the lapse, N ¼ ~Nc a, such that the
choice in [11] corresponds to a ¼ 6, whereas the choice in
Eq. (8) above corresponds to a ¼ �1 (see [27] for the
general equations in the vacuum case). An important re-
mark is the absence of a choice of a such that the factors
multiplying c and ~N on the right-hand side of the line-
arized versions of Eqs. (7) and (8) both present a positive
sign. In the presence of matter, terms multiplying the
energy density E also contribute to these sign difficulties,
though in this case they can be fixed by an appropriate
conformal rescaling of the energy density (see below). An
additional concern in a generic evolution scenario is the
sign of ~R, which is also relevant in the linearized equations.
Implications of this issue are discussed in Sec. III.
The Einstein equations in the form of the elliptic equa-

tions (7)–(9) and the hyperbolic equation for hij as given in
Ref. [23] are to be solved together with the hydrodynamic
equations,

r�ð�u�Þ ¼ 0; (13)
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r�T
�
� ¼ 0; (14)

wherer� is the Levi-Civita connection associated with the
metric g��, � is the rest-mass (baryon mass) density, and

u� is the four-velocity of the fluid.

B. The conformal flatness approximation

If the hyperbolic part of the FCF system is not solved,
but rather the condition hij ¼ 0 is imposed, the resulting
three-metric �ij is conformally flat, and the CFC approxi-

mation is recovered. Therefore, the FCF is a natural gen-
eralization of the CFC approximation. The latter has been
used in many astrophysical applications, like the rotational
collapse of cores of massive stars [6,28–30] or supermas-
sive stars [8], the phase-transition-induced collapse of
rotating neutron stars to hybrid quark stars [9], and equi-
librium models of rotating neutron stars [31,32], as well as
for binary neutron star merger [7,26,33,34]. The elliptic
subsystem of the FCF, Eqs. (7)–(9), reduces, in the CFC, to

�c ¼ �2�c�1

�
E� þ c 6KijK

ij

16�

�
; (15)

�ðNc Þ ¼ 2�Nc�1

�
E� þ 2S� þ 7c 6KijKij

16�

�
; (16)

��i þ 1

3
DiDj�

j ¼ 16�Nc�2ðS�Þi þ 2c 10KijDj

N

c 6
;

(17)

where the following rescaled matter quantities have been
introduced, following York [1]:

E� :¼
ffiffiffiffiffiffiffiffiffi
�=f

q
E ¼ c 6E; (18)

S� :¼
ffiffiffiffiffiffiffiffiffi
�=f

q
S ¼ c 6S; (19)

ðS�Þi :¼
ffiffiffiffiffiffiffiffiffi
�=f

q
Si ¼ c 6Si: (20)

Equations (15) and (16) inherit the local nonuniqueness
problems already present in the FCF equations. Although
the sign problems specifically related to the energy density
terms are solved by the conformal rescaling of the compo-
nents of the energy-momentum tensor and the CFC elim-
inates the ~R term, problems related to the KijK

ij term

remain in the scalar CFC equations. This is apparent
once the extrinsic curvature is expressed in terms of the
lapse and the shift.

Conformal rescaling of the hydrodynamical variables is
not only relevant for local uniqueness issues. The hydro-
dynamic equations (13) and (14) can be formulated as a
first-order hyperbolic system of conservation equations for
the quantities ðD�; ðS�Þi; E�Þ [35,36], where, similarly to
Eqs. (18)–(20), D� :¼ c 6D, D :¼ Nu0� being the baryon

mass density as measured by the Eulerian observer. We can
thus consider E� and ðS�Þi as known variables in the
computation of the CFC metric. Note that these quantities
differ from E and Si by a factor c 6, and hence it is not
possible to compute the nonstarred quantities before know-
ing the value of c . If the energy-momentum tensor repre-
sents a fluid, then the source of Eq. (16) cannot be
explicitly expressed in terms of ðD�; ðS�Þi; E�Þ, the reason
for that being the dependence of S� on the pressure P. The
pressure can only be computed in terms of the ‘‘primitive’’
quantities, e.g., as a function Pð�; �Þ of the rest-mass
density and the specific internal energy �. The primitive
quantities are, in general, recovered from ðD; Si; EÞ implic-
itly by means of an iteration algorithm. So far, two solu-
tions of the problem related to the fact that S� directly
contains P have been used in numerical simulations per-
formed with the CFC approximation.
The first approach [26] is to consider P, and hence also

S�, as an implicit function of c . Then Eqs. (15)–(17) can
be solved as a coupled set of nonlinear equations using a
fixed-point iteration algorithm. The convergence of the
algorithm to the correct solution depends not only on the
proximity of the initial seed metric to the solution, but also
on the uniqueness of this solution. The latter point is
extensively discussed in Sec. III. Furthermore, one prob-
lem of this approach is the necessity of performing the
recovery of the primitive variables (which is numerically a
time-consuming procedure) to compute the pressure dur-
ing each fixed-point iteration. Because of the uniqueness
problem, this approach can only be successfully applied in
numerical simulations for, at most, moderately strong
gravity (like stellar core collapse to a neutron star or the
inspiral and initial merger phase of binary neutron stars),
but fails for more compact configurations like the collapse
of a stellar core or a neutron star to a black hole. For such
scenarios with very strong gravity, one finds convergence
of the metric to a physically incorrect solution of the
equations or even nonconvergence of the algorithm.
A second approach to the recovery algorithm problem is

the attempt to calculate P independently of the CFC equa-
tions. This can be achieved by computing the conformal
factor by means of the evolution equation

@c 0

@t
¼ c 0

6
Dk�

k: (21)

The conformal factor c 0 obtained in this way is analyti-
cally identical to the c from Eqs. (15)–(17), but here we
use a different notation to keep track of the way it is
computed. The value of c 0 is solely used to evaluate P,
and the coupled system of Eqs. (15)–(17) is solved to
determine c , N, and �i. Although this approach allows
one to avoid the problem of recovering the primitive var-
iables at each iteration, it also suffers from the convergence
problem, and the simulation of configurations with very
strong gravity is still not feasible. Furthermore, new com-
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plications are introduced by using two differently com-
puted values, c and c 0, of the same quantity. For some
scenarios, like the formation of a black hole from stellar
collapse, the numerical values of these two quantities
during the evolution of the system start to diverge signifi-
cantly at some point. We find that this inconsistency cannot
be avoided, since any attempt to artificially synchronize
both values leads to numerical instabilities.

III. THE NEW SCHEME IN THE CONFORMALLY
FLAT CASE

A. Uniqueness of the elliptic equations and convergence
of elliptic solvers

Well-posed, elliptic partial differential systems admit
nonunique solutions whenever the associated differential
operator has a nontrivial kernel. When discussing sufficient
conditions guaranteeing uniqueness, it is illustrative to first
consider the case of a scalar elliptic equation. In particular,
for the class of scalar elliptic equations for the function u of
the form

�uþ hup ¼ g; (22)

where h and g are known functions independent of u, a
maximum principle can be used to prove local uniqueness
of the solutions as long as the sign of the exponent p is
different from the sign of the proper function h [1,37–39].

In the CFC case, we are not dealing with a single scalar
elliptic equation, but rather with the coupled nonlinear
elliptic system (15)–(17). Therefore, assessing whether or
not the scalar equations (15) and (16) present good signs
for the application of a maximum principle is an important
step for understanding the uniqueness properties of the
whole system. However, as pointed out in the previous
section, the CFC equations for the conformal factor and
the lapse possess the wrong signs in the quadratic extrinsic
curvature terms (once everything is expressed in terms of
the lapse and the shift). This problem can be fixed in
Eq. (15) by an appropriate rescaling of the lapse, N ¼
~Nc 6, but this strategy does not solve the problem for the
lapse equation (cf. the discussion on the conformal lapse ~N
in Sec. II A). Therefore, we cannot use the maximum
principle to infer local uniqueness of the solutions to the
CFC equations. In these conditions of potential nonunique
solutions, convergence to an undesirable solution may
happen. As mentioned in the Introduction, this pathology
has been illustrated using simple analytical examples of
scalar equations of the type (22) in [14], as well as in
numerical implementations of the vacuum Einstein con-
straints in the XCTS approach [13] and certain constrained
evolution formalisms (see, e.g., [18]).

In the context of the CFC approximation this sign issue
has also appeared, in particular, associated with the ‘‘re-
covery algorithm’’ problem discussed in Sec. II B since it
involves the evaluation of the conformal factor. Nonunique
solutions of c , either due to the use of the nonconformally

rescaled E or the quadratic extrinsic curvature term, spoil
the convergence of the algorithm when density, and thus
compactness, increases. We again emphasize that a pos-
sible synchronization of c and c 0 does not solve the
problem in general, since numerical instabilities eventually
arise at sufficiently high compactness.

B. Numerical examples

The nonuniqueness of solutions has also been observed
in the FCF, as described in the following example. Let us
consider a vacuum spacetime, with initial data formed by a
Gaussian wave packet, as in [23], but with a much higher
amplitude, 	0 ¼ 0:9 instead of 	0 ¼ 10�3 in [23] (see the
latter reference for notations). The integration technique
and numerical settings are the same as in [23], but contrary
to the results for small amplitudes obtained in that refer-
ence, the wave packet does not disperse to infinity and
instead starts to collapse. Figure 1 displays the time evo-
lution of the central lapse Nc at r ¼ 0 and of the system’s
Arnowitt-Deser-Misner (ADM) mass MADM, which in the
present conformal decomposition can be expressed as

0.0 0.5 1.0 1.5 2.0
0.5

0.6

0.7
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1.0
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c

0.0 0.5 1.0 1.5 2.0
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0.05

0.10

0.15

M
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D
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ar
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FIG. 1. Time evolution of the central lapse Nc (top panel) and
the ADM mass MADM (bottom panel) for a collapsing packet of
gravitational waves, using the integration scheme proposed in
[23]. The unit of t is given by the initial width of the wave
packet.
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MADM ¼ � 1

2�

I
1

�
Dic � 1

8
Dj ~�ij

�
dAi

¼ � 1

2�

I
1
Dic dAi; (23)

where the integral is taken over a sphere of radius r ¼ 1
and the second equality follows from the use of Dirac
gauge [Eq. (6)].

The very sudden change at t ’ 0:4 in both the central
lapse and the ADMmass, which is also present in, e.g., the
central conformal factor c c, originates from the conver-
gence of the elliptic system (7)–(9) to another solution with
a different (unphysical) value of the ADM mass. The good
conservation of MADM and the smooth evolution of Nc for
t * 0:4 indicate that this other solution remains stable until
t ’ 2, when high-frequency oscillations appear. These os-
cillations may be due to the overall inconsistency of the
system, destabilizing the whole scheme. On the other hand,
the time evolution of hij does not show any such type of
behavior, and hij exhibits a continuous radial profile at all
times. This is numerical evidence that, also for the full
Einstein case (i.e. without the approximation), the gener-
alized elliptic equations suffer from a convergence prob-
lem similar to the CFC case.

The same subject is also exemplified when one tries to
calculate the spacetime metric for an equilibrium neutron
star model from the unstable branch using either Eqs. (7)–
(9) in the FCF case or Eqs. (15)–(17) in the CFC approxi-
mation. Even for the simple setup of a polytrope with an
adiabatic index � ¼ 2 in spherical symmetry, those metric
equations yield—when converging at all—a grossly incor-
rect solution if the matter quantities ðD; Si; EÞ in the source
terms are held fixed. Both the metric components and the
ADMmass can deviate from the physical solution by a few
tens of percents, even though that incorrect metric satisfies
the asymptotic flatness condition. The reason why pro-
grams for constructing rotating relativistic neutron star
models, like the KEH code [40], the RNS code [41], or
the BGSM code [42], are not obstructed by this nonunique-
ness problem is apparently that they all utilize an iteration
over both the metric and the hydrodynamic equations
simultaneously, thereby allowing the matter quantities to
change during the calculation of the metric.

We want to stress here that these nonconvergence issues
in the CFC case are not related to the approximation that is
made. If one considers this system in the spherical (one-
dimensional) case, the CFC is no longer an approximation,
but is the choice of the so-called isotropic gauge. Even
then, the elliptic system (15)–(17) no longer converges to
the proper (physical) solution.

C. The new scheme and its theoretical properties

Despite the above-mentioned convergence problems,
numerically simulating the physical problem of spherical
collapse to a black hole in isotropic coordinates has been

successfully studied by Shapiro and Teukolsky in [43].
Because of the spherical symmetry, there exists only one
independent component of the extrinsic curvature. It is
then possible to compute directly a conformal extrinsic
curvature, c 6Kr

r , from the conserved hydrodynamical var-
iables. The elliptic equation for c then decouples from the
other elliptic equations by introducing this conformal ex-
trinsic curvature and using the conserved hydrodynamical
variables in the source. This source term presents no prob-
lem for proving local uniqueness, and the equation for c
always converges to the physically correct solution. Once
the conformal factor, the extrinsic curvature (from the
conformal factor and the conformal extrinsic curvature),
and the conserved hydrodynamical variables are known,
the elliptic equation for Nc can be solved and, again, the
source exhibits no local uniqueness problem. This follows
from the fact that the extrinsic curvature is not expressed in
terms of the lapse and the shift. This contrasts with the CFC
equation (16) where a division byN2 occurs in the last term
when the extrinsic curvature is expressed in terms of its
constituents N, c , and �i. In addition, there is no need to
use c 0. Finally, the elliptic equation for the shift vector can
be solved. In summary, no problems of instability or di-
vergence are encountered.
We now generalize this scheme to the CFC case in three

dimensions. This involves the use of two different confor-
mal decompositions of the extrinsic curvature: first, two
different conformal rescaling and, second, two different
decompositions of the traceless part into longitudinal and
transverse parts. Adopting maximal slicing, K ¼ 0, a ge-
neric conformal decomposition can be written as

Kij ¼ c ��8ðAð�ÞÞij :¼ c ��8

�
1



ðLXÞij þ Aij

TT

�
; (24)

where � is a free parameter, 
 is a free function, Aij
TT is

transverse traceless, and L is the conformal Killing opera-
tor defined by Eq. (11). We implicitly make use of a flat

conformal metric, with respect to which Aij
TT is transverse,

although, in principle, it would be more general to use the
metric ~�ij and the conformal Killing operator associated
with it, ~L. But such a decomposition would introduce many
technical difficulties in our treatment. In particular, it is
numerically easier to handle tensors which are divergence-
free with respect to the flat metric in the generalization to
the FCF. The vector Xi, on which L is acting, is therefore

called the longitudinal part of ðAð�ÞÞij. The first decom-
position we use is the one introduced in Eqs. (3) and (4)
with the choice � ¼ 4 and 
 ¼ 2N. This corresponds to a
CTS-like decomposition of the traceless part, so that Xi is

given by the shift vector �i and Aij
TT can be expressed in

terms of the time derivative of the conformal metric. We

denote this traceless part as ~Aij :¼ ðAð4ÞÞij. In the CFC
approximation this becomes
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Kij ¼ c�4 ~Aij; ~Aij ¼ 1

2N
ðL�Þij: (25)

The second conformal decomposition,

Kij ¼ c�10Âij; Âij ¼ ðLXÞij þ Âij
TT; (26)

refers to � ¼ �2 and 
 ¼ 1. It instead corresponds to a
conformal transverse traceless (CTT) decomposition of the
traceless part of the extrinsic curvature introduced by

Lichnerowicz [44]. Notice that we have defined Âij :¼
ðAð�2ÞÞij, not to be confused with ~Aij :¼ ðAð4ÞÞij. The rela-
tion between Âij and ~Aij is given by

Â ij ¼ c 10Kij ¼ c 6 ~Aij: (27)

In terms of Âij, the CFC momentum constraint can be
written as

D jÂ
ij ¼ 8�c 10Si ¼ 8�c 6fijSj ¼ 8�fijS�j : (28)

Consistency between the CTT-like decomposition (26) and
the CTS-like one (25) generically requires a nonvanishing

transverse part, Âij
TT in Eq. (26). However, as it is shown in

the Appendix, this Âij
TT is smaller in amplitude than the

nonconformal part hij of the spatial metric, and Âij can be
approximated on the CFC approximation level as

Â ij � ðLXÞij ¼ DiXj þDjXi � 2
3DkX

kfij: (29)

From Eqs. (26) and (28), an elliptic equation for the vector
Xi can be derived,

�Xi þ 1
3D

iDjX
j ¼ 8�fijS�j ; (30)

from which Xi can be obtained. With this vector field, one

can calculate the tensor Âij via (29). Notice that in the case

of spherical symmetry, Ârr ¼ c 10Krr ¼ c 6Kr
r is the

quantity used by Shapiro and Teukolsky [43].
The elliptic equation for the conformal factor can be

rewritten in terms of the conserved hydrodynamical vari-

ables and Âij:

�c ¼ �2�c�1E� � c�7
filfjmÂ

lmÂij

8
: (31)

This equation can be solved in order to obtain the confor-
mal factor. Once the conformal factor is known, the pro-
cedure to implicitly recover the primitive variables from
the conserved ones is possible, the pressure P can be
computed using the equation of state, and therefore S� is
at hand. The elliptic equation for Nc can be reformulated

by means of the conserved hydrodynamical variables, Âij,
and the conformal factor:

�ðcNÞ ¼ 2�Nc�1ðE� þ 2S�Þ þ Nc�7
7filfjmÂ

lmÂij

8
:

(32)

From this equation Nc can then be obtained and, conse-

quently, so can the lapse function N. Note that, since Âij is
already known at this step, no division by N2 spoils the
good sign for the maximum principle.
Using the relation between the two conformal decom-

positions of the extrinsic curvature, Âij ¼ c 6 ~Aij, Eq. (25)

can be expressed as ðL�Þij ¼ 2Nc�6Âij. Taking the di-
vergence, we arrive at an elliptic equation for the shift
vector,

��i þ 1
3D

iðDj�
jÞ ¼ Djð2Nc�6ÂijÞ; (33)

where the source is completely known. This elliptic equa-
tion can be solved in order to obtain the shift vector �i

consistent with @t ~�ij ¼ 0, as required by the CFC

approximation.
In this recast form of the CFC equations, an extra elliptic

vectorial equation for the vector field Xi is introduced.
However, now the signs of the exponents of c and N are
compatible with the maximum principle for scalar elliptic
equations, and the problem is linearization stable. While
this does not guarantee global uniqueness of the solutions,
it provides a sufficient result for local uniqueness. This
strongly relies on the fact that the system decouples in a
hierarchical way, which we summarize here once more:
(1) With the hydrodynamical conserved quantities at

hand, solve Eq. (30) for Xi, and thus for Âij.
(2) Solve Eq. (31) for c , where local uniqueness is now

guaranteed. Then S� can be calculated consistently.
(3) Solve Eq. (32) for Nc , a linear equation where the

maximum principle can be applied and uniqueness
and existence follow with appropriate boundary
conditions.

(4) As the source of Eq. (33) is then fully known, solve
it for �i.

Note that this scheme is similar to that used by Shibata and
Uryū [45] to compute initial data for black hole–neutron
star binaries. Wewill discuss this point further in Sec. VI B.
The new CFC metric equations presented here not only

allow us to evolve the hydrodynamical equations and
recover the metric variables from the elliptic equations in
a consistent way (no auxiliary quantity c 0 is needed), but
they also permit us to introduce initial perturbations in the
hydrodynamical variables (strictly speaking, in the con-
served quantities) in a set of previously calculated initial
data and directly deliver the correct values for the metric. It
is even possible to perturb only the primitive quantities,
and consistently resolve for the metric by iterating until the
conformal factor c , which links the primitive to the con-
served quantities, converges. We find that such an iteration
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method fails for sufficiently strong gravity if the original
CFC formulation is used.

IV. NUMERICAL RESULTS

We recapitulate that the original CFC formulation ex-
hibits serious convergence problems when dealing with
highly compact configurations such as nascent black holes.
This weakness of the original formalism is noticeable in
the fact that no simulations of rotational collapse to a black
hole substantially beyond the formation of the apparent
horizon have been performed so far in the CFC.
Furthermore, some scenarios which do not involve the
formation of a black hole are already feasible with the
old formulation only if procedures like using Eq. (21),
with all associated problems and inconsistencies, are em-
ployed. An example is the migration of a neutron star
model from the stable to the unstable branch, which is a
standard test for relativistic hydrodynamics codes. In con-
trast, the new CFC scheme presented in this work solves all
the problems that prevented performing such simulations
in the past. In order to show the suitability of the new
scheme, we present the results of numerical simulations of
the migration test and of the rotational collapse to a black
hole.

A. Model setup

The numerical simulations presented here are performed
using the numerical code COCONUT [28,46]. This code
solves the evolution of the hydrodynamics equations
coupled to the elliptic equations for the spacetime metric
in the CFC approximation. Standard high-resolution
shock-capturing schemes are used in the hydrodynamic
evolution, while spectral methods are employed to solve
the metric equations. The code is based on spherical polar
coordinates, and for the tests presented here we assume
axisymmetry and symmetry with respect to the equatorial
plane. Note that the metric equations presented in this
paper are covariant. Thus the formalism can be used for
any coordinate basis as well as without any symmetry
conditions.

The initial models are general relativistic � ¼ 2 poly-
tropes in equilibrium with a polytropic constant K ¼ 100.
The models are chosen to be situated on the unstable
branch, i.e. @MADM=@�c < 0, where �c is the central
rest-mass density. Therefore, any perturbation of the star
induces either a collapse to a black hole or migration to a
configuration of the same baryon mass on the stable
branch. Table I shows the main features of these initial
models. Models D1 to D4 are uniformly rotating models
which are identical to those presented in [47]. The model
labeled SU is a spherical model, while the model labeled
SS is the counterpart model with the same baryon mass but
it is located on the stable branch. The equilibrium rotating
star models in Dirac gauge (the axisymmetric and sta-
tionary limit of the FCF) used here are described in [48],

and are computed using the LORENE [49] library. We map
the hydrodynamic and metric quantities to the CFC code
neglecting the hij � 10�3 terms, which are negligible due
to their smallness. Alternatively, we compute CFC equi-
librium initial models. In this case we find that the differ-
ences with respect to the FCF models are small (� 0:1%)
for representative metric and hydrodynamic quantities,
initially and during the evolution, and therefore we discuss
only the FCF initial models here.
The hydrodynamic equations are discretized on the finite

difference grid with nr � n� grid points. The radial grid
size is �r0 for the innermost cell and increases geometri-
cally outwards, while the angular grid is equidistantly
spaced. The metric equations are solved on a spectral
grid consisting of nd � 1 radial domains distributed such
as to homogeneously cover the finite difference grid and a
compactified exterior domain extending to radial infinity.
On the spectral grid we resolve each radial domain with 33
collocation points. The spherical model needs only one
angular collocation point, while we use 17 angular points
for the rotating models.
We track the location of the apparent horizon by means

of a three-dimensional spectral apparent horizon finder,
described in detail and tested in [50]. The apparent horizon
location is given by a function H ðr; �Þ, which is decom-
posed into a set of spherical harmonics. The coefficients of
H in this basis are computed iteratively, in order to satisfy
the condition that the expansion in the outgoing null di-
rection vanishes at the apparent horizon location.

B. Migration of unstable neutron stars to the stable
branch

The first test we consider is the migration of a neutron
star model in equilibrium from the unstable branch to the
stable branch, which is a standard but still demanding test
for general relativistic hydrodynamic codes, as it involves
the dynamic transition between two very compact equilib-
rium states. This test has been performed in the past in full
general relativistic simulations [51]. We start the evolution

TABLE I. Initial models used in the migration test and the
rotational collapse to a black hole. �c;i is the initial central rest-

mass density, �i is the initial angular velocity, rp;i=re;i is the

initial ratio of the polar to the equatorial coordinate radius,
MADM is the gravitational ADM mass, and J is the total angular
momentum (which is conserved in the CFC during the evolution
in the axisymmetric case). Units in which G ¼ c ¼ M� ¼ 1 are
used.

Model �c;i ½10�3� �i ½10�2� rp;i=re;i re;i MADM J=M2
ADM

SU 8.000 0 1.00 4.267 1.447 0

SS 1.346 0 1.00 7.999 1.424 0

D1 3.280 1.73 0.95 5.947 1.665 0.207

D2 3.189 2.88 0.85 6.336 1.727 0.362

D3 3.134 3.55 0.75 6.839 1.796 0.468

D4 3.116 3.95 0.65 7.611 1.859 0.542
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with the nonrotating equilibrium model labeled SU. Since
it belongs to the unstable branch, any perturbation from
exact equilibrium (which can, for instance, be caused by
discretization errors) leads either to a collapse or to an
expansion to a new equilibrium configuration of the same
baryon mass on the stable branch. The corresponding
equilibrium configuration with the same baryon mass,
model SS, has a smaller ADM mass than the initial system
(see Table I). Therefore, to preserve the ADM mass, the
final configuration cannot be exactly the equilibriummodel
given by SS. The energy difference between the SU and SS
models should be transformed into kinetic energy, remain-
ing in the final object in the form of pulsations.

In our case the numerical truncation error is sufficient to
trigger the migration. Since the final neutron star on the
stable branch is larger than the initial model (see Table I),
the outer boundary of the finite difference grid is chosen to
be 4.5 times the radius of the SS model. We perform two
simulations on a finite difference grid with 150 or 300
radial cells and �r0 ¼ 0:022 or 0.012, respectively. We
use nd ¼ 6 radial domains for the spectral grid. We evolve
the system with either a polytropic or an ideal gas equation
of state.

Figure 2 shows the time evolution of the central values
of the rest-mass density and the lapse. As the star expands,
�c decreases while Nc grows until the new stable equilib-
rium configuration is reached. In the polytropic case, there
are no physical mechanisms to damp the strong pulsations,
and the final state resembles a star oscillating around the
equilibrium configuration until numerical dissipation fi-
nally damps the oscillations. This can be seen in the
pulsating values of rest-mass density and lapse around
the value corresponding to the equilibrium model on the
stable branch (solid horizontal line in Fig. 2).

In the ideal gas case, shock waves are formed at every
pulsation, and they dissipate kinetic energy into thermal
energy, thereby damping the oscillations. As these shock
waves reach the surface of the star, a small amount of mass
is expelled from the star and matter is ejected outwards into
the surrounding artificial low-density atmosphere until it
leaves the grid across the outer numerical boundary. We

approximately compute the escape velocity as ve ¼ffiffiffiffiffiffiffi
2U

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c 2 � 1

p
, where U is the Newtonian potential.

This formula is not exact in general relativity, but it should
by sufficiently accurate near the outer numerical boundary
where gravity is weaker. We find that the shock waves
leaving the computational domain exceed the escape ve-
locity, and therefore the lost mass is gravitationally un-
bounded. We also check that these results are not affected
by changing the resolution or setting the outer boundary
twice as far away. As the oscillations are damped, the
shock waves become weaker and the mass expelled at
each oscillation is smaller. At the end of the simulation
the star has lost about 10% of its initial baryon mass,
approaching a state of constant baryon mass. As a conse-

quence, the final equilibrium configuration on the stable
branch is not the SS model anymore but, rather, the corre-
sponding model from the stable branch with lower baryon
mass and central density. In Fig. 2 we plot the central rest-
mass density and lapse of a series of equilibriummodels on
the stable branch corresponding to the baryon mass re-
maining in the computational domain at each time. It can
be seen that these values deviate with time from the SS
model and fit the final state in the hydrodynamical evolu-
tion of the star.
As a by-product of this study we draw the reader’s

attention to the consistency (as it should be) between the
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FIG. 2. Time evolution of the central rest-mass density �c (top
panel) and the central lapse Nc (bottom panel) for the migration
of the unstable neutron star model, SU, to the stable branch, with
either a polytropic (solid lines) or an ideal gas (dashed lines)
equation of state. The dotted horizontal lines mark the values of
�c and Nc for the SS equilibrium configuration from the stable
branch with the same baryon mass Mb as the SU model, while
the dash-dotted lines are obtained from a series of equilibrium
models where mass shedding, like in the migration model with
an ideal gas equation of state, is taken into account. In the inset
the baryon massMb versus the �c relation for this model setup is
displayed. The SU (the initial model) and SS (the final state for a
polytropic equation of state) models as well as the final state for
an ideal gas equation of state are marked. The arrows symbolize
the respective migration paths.

IMPROVED CONSTRAINED SCHEME FOR THE EINSTEIN . . . PHYSICAL REVIEW D 79, 024017 (2009)

024017-9



amplitude and the frequency of the oscillations. The period
of these oscillations is approximately of the order of the
hydrodynamical characteristic time ��, which decreases

with density like �� � ��1=2. In the polytropic case, the

maxima of the oscillations in �c are systematically higher
than in the ideal gas case. Consequently, the characteristic
time is shorter than in the ideal gas case, as Fig. 2 shows. A
second property worth pointing out is that the low numeri-
cal viscosity of our code is responsible for maintaining a
nearly constant amplitude of the oscillations (in the poly-
tropic case) during many characteristic times.

Our simulations are consistent with the results from the
fully relativistic three-dimensional code in [51]. Similar
simulations of this test, with the original, unmodified CFC
scheme, lead to a completely incorrect solution with a
grossly incorrect ADM mass. When running with the
new improved CFC scheme, we obtain MADM ¼
1:451M� and initial values for the conformal factor and
lapse of c c ¼ 1:561 and 
c ¼ 0:273, respectively. On the
other hand, with the unmodified conventional CFC
scheme, the metric solver already initially converges to a
solution with MADM ¼ 0:647M� (55%), c c ¼ 1:221
(61%), and 
c ¼ 0:532 (63%), where the relative differ-
ences from the physically correct solution are given in
parentheses.

As presented in [52] the migration test can be success-
fully simulated using the old CFC scheme, if one resorts to
additionally solving the evolution equation (21) for the
conformal factor (which would lead to large inconsisten-
cies in scenarios with higher compactness but still yield
acceptable results for the standard migration case). Here
the superiority of the new, fully consistent CFC scheme,
which does not depend on such scenario-dependent
amendments, already becomes apparent.

C. Collapse of unstable neutron stars to a black hole

As the second test, we present the collapse of a (spheri-
cal or rotating) neutron star model to a black hole.
Following [47] we trigger the collapse to a black hole by
reducing the polytropic constant K by 2% in the initial D1
to D4 models. Alternatively, in the spherical SU model we
increase the rest-mass density by 0.1%, which yields a
similar dynamic evolution. However, since the models
are initially in equilibrium, the total collapse time depends
strongly on the perturbation applied. In these cases, the
outer boundary of the finite difference grid is 20% larger
than the star radius. For the spherical SU model, we
perform two simulations using 150 or 300 radial cells
and �r0 � 10�3 or 10�4, respectively, to assess the reso-
lution dependence of our simulations. For the rotating D1
to D4 models the grid is made up of 150� 20 and 150�
40 cells, with the same radial grid spacing as in the
spherical model. We choose nd ¼ 8 radial domains for
the spectral grid. As in [47] we use a polytropic equation
of state in the evolution.

The top panel of Fig. 3 shows the evolution of the rest-
mass density and lapse at the center. Since for the maximal
slicing condition the singularity cannot be reached in a
finite time, Nc rapidly approaches zero once the apparent
horizon has formed. In parallel, �c grows, which results in
a decrease in the numerical time step due to the Courant
condition applied to the innermost grid cell. We terminate
the evolution as the central regions of the collapsing star
inside the apparent horizon become increasingly badly
resolved on the regular grid, and thus numerical errors
grow. We check in the SU model that by refining the radial
resolution we are able to follow the collapse to even higher
densities. Therefore, the only limitation to perform a stable
evolution after the apparent horizon formation is the nu-
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FIG. 3. Collapse to a black hole for the spherical model SU,
and the rotating models D1 and D4. The top panel shows the time
evolution of the central lapse Nc (thin lines) and the central rest-
mass density �c relative to the initial value �c;0 (thick lines). The

bottom panel shows the time evolution of the apparent horizon
radius rAH;e in the equatorial plane (thin lines) and the rest mass

Moutside AH remaining outside the apparent horizon relative to the
total rest massM (thick lines). The dashed vertical lines mark the
time when the apparent horizon first appears. If the axes of the
lower panel were exchanged, the resulting plot would resemble
the typical spacetime diagram of a star collapsing to a black hole.
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merical resolution used. Note, however, that the spatial
gauge condition is fixed in the CFC, and thus we are not
able to utilize the common method of exploiting the gauge
freedom for the radial component of the shift vector in
order to effectively increase the central resolution.

In the bottom panel of Fig. 3 we display the time
evolution of the apparent horizon radius. As expected,
the apparent horizon appears at a finite radius and already
encompasses a significant fraction of the total mass of the
star (� 70%–80%) at that time. Afterwards, its radius
grows as the surrounding matter falls inside beyond the
horizon. The fraction of the rest mass remaining outside
the horizon is also plotted in the figure. In the rotating case
the apparent horizon is slightly nonspherical. The ratio of
the polar to the equatorial proper circumferential radius of
the apparent horizon at the end of the simulation is
Rp=Re ¼ 0:998–0:978 for models D1 to D4, where Re :¼R
2�
0

ffiffiffiffiffiffiffiffiffi
g’’

p
d’=ð2�Þ and Rp :¼

R
�
0

ffiffiffiffiffiffiffi
g��

p
d�=�.

Since we cannot reasonably determine the location of
the event horizon, as this would require the evolution of
spacetime until the black hole has become practically sta-
tionary, we utilize the apparent horizon radius to estimate
the mass of the newly formed black hole. Following the
prescription in [47] we use the expression MBH ¼ Re=2.
Note that this formula is only strictly valid for a stationary
Kerr black hole. In our case, however, first of all, some
(albeit small) amount of matter is still outside the horizon
and the black hole is still dynamically evolving, and sec-
ond, the metric of a Kerr black hole is not conformally flat
[53]. Still, according to [47] this approximation (excluding
the effects of the CFC) introduces an error in the mass
estimate of only �2%. For the spherical model the esti-
mated value for MBH at the end of the simulation agrees
within 0.5% with the ADM mass MADM of the initial
model, while in the rotating D1 to D3 models the error is
� 4%. In all these cases the above formula overestimates
the black hole mass. Because of its rapid rotation and the
resulting strong centrifugal forces, in model D4 the col-
lapse deviates significantly from sphericity, leading to a
strongly oblate form of the density stratification.
Consequently, we still find a non-negligible amount of
matter outside the apparent horizon at the end of the
simulation (about 12% of the total rest mass). Therefore
the value forMBH is 8.2% smaller thanMADM. In Fig. 4 we
present the distribution of the rest-mass density and the
location of the apparent horizon at the end of the simula-
tion for this particular model. Since the time evolution is
limited by our chosen, still computationally affordable,
grid resolution in the central region, we are not able to
evolve this model to times when a disk forms as in [47].
Nevertheless, all other quantities qualitatively agree with
the results in that work, although we refrain from perform-
ing a more detailed comparison due to the respective
differences in the gauge of the two formulations used in
[47] and in this study, respectively.

In the near future we plan to carry out an exhaustive
analysis of the scenario of a collapse to a black hole by
comparing, on one hand, the CFC formulation with the
FCF (see Sec. V) and, on the other hand, the FCF with
other (free evolution) formulations. The difficulties in-
duced by the use of different gauges can be overcome by
using gauge-invariant quantities for comparison and ana-
lyzing their behavior as a function of proper time.

V. GENERALIZATION TO THE FULLY
CONSTRAINED FORMALISM

The ideas presented in Sec. III can be generalized to the
FCF approach of the full Einstein equations described in
Sec. II A.
As shown in [24], the hyperbolic part of the FCF can be

split into a first-order system. The reformulation of the
CFC equations presented in Sec. III relies on the rescaled

extrinsic curvature Âij given by Eq. (27). Consequently, we
write the FCF hyperbolic part as a first-order system in

ðhij; ÂijÞ, instead of a first-order system in ðhij; @hij=@tÞ as
in [24], arriving at

@hij

@t
¼ 2Nc�6Âij þ �kwij

k � ~�ikDk�
j � ~�kjDk�

i

þ 2

3
~�ijDk�

k; (34)

( )

(
)

FIG. 4. Isocontours of the rest-mass density for model D4 after
the apparent horizon first appears at t ¼ 129:9. The dashed line
shows the location of the apparent horizon.
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@Âij

@t
¼ �Dk

�
�Nc 2

2
~�klwij

l � �kÂij

�
� ÂkjDk�

i � ÂikDk�
j þ 2

3
ÂijDk�

k þ 2Nc�6 ~�klÂ
ikÂjl

� 8�Nc 6

�
c 4Sij � S~�ij

3

�
þ Nðc 2 ~Rij

� þ 8~�ik ~�jlDkcDlc Þ þ 4c ð~�ik ~�jlDkcDlN þ ~�ik ~�jlDkNDlc Þ

� 1

3
½Nðc 2 ~Rþ 8~�klDkcDlc Þ þ 8c ~�klDkcDlN�~�ij � 1

2
ð~�ikwlj

k þ ~�kjwil
k ÞDlðNc 2Þ � ~�ik ~�jlDkDlðNc 2Þ

þ 1

3
~�ij ~�klDkDlðNc 2Þ; (35)

where

wij
k
:¼ Dkh

ij; (36)

~R ij
� :¼ 1

2½�wik
l w

jl
k � ~�kl ~�

mnwik
mw

jl
n þ ~�nlw

mn
k ð~�ikwjl

m þ ~�jkwil
mÞ� þ 1

4
~�ik ~�jlwmn

k Dl ~�mn: (37)

The system is closed by adding the equation

@wij
k

@t
�Dkð�lwij

l þ 2Nc�6ÂijÞ ¼ �wil
kDl�

j � ~�ilDkDl�
j � wlj

k Dl�
i � ~�ljDkDl�

i þ 2

3
~�ijDkDl�

l þ 2

3
wij

k Dl�
l;

(38)

which is derived from applying partial derivatives
with respect to t in the definition of wij

k . Moreover, the
system observes the constraint of the Dirac gauge, wij

i ¼ 0
[Eq. (6)], and for the determinant of the conformal
metric, we obtain ~� ¼ f. The first-order system given by
Eqs. (34)–(38) has the same properties regarding hyper-
bolicity and existence of fluxes as the one in [24]. It has the
advantage over the second-order system for hij proposed in
Ref. [23] of getting rid of partial derivatives with respect to
t of the lapse N, the shift �i, or the conformal factor c .

The elliptic part of the FCF can be rewritten, using the

tensor Âij, as

~� klDkDlc ¼ �2�c�1E� � ~�il ~�jmÂ
lmÂij

8c 7
þ c ~R

8
;

(39)

~� klDkDlðNc Þ ¼
�
2�c�2ðE� þ 2S�Þ

þ
�
7~�il ~�jmÂ

lmÂij

8c 8
þ ~R

8

��
ðNc Þ; (40)

~�klDkDl�
i þ 1

3
~�ikDkDl�

l

¼ 16�Nc�6 ~�ijðS�Þj þ ÂijDjð2Nc�6Þ � 2Nc�6�i
klÂ

kl:

(41)

The strategy to evolve the two symmetric tensors hij and

Âij relies on a decomposition of these tensors in longitu-
dinal and transverse traceless parts. The longitudinal parts
(divergences with respect to the flat metric) are either
known a priori or are determined by the elliptic equations.
More specifically, the divergence of hij vanishes according

to the Dirac gauge, whereas the divergence of Âij is deter-
mined by the momentum constraint (42)—see below.
Consequently, focus is placed on the transverse traceless
parts of these tensors. The latter are described in a pure-
spin tensor harmonic decomposition, as discussed in a
previous article [24]. In particular, each transverse trace-
less tensor is fully expressed in terms of two scalar poten-
tials (named A and ~B in [24]) that are evolved according to
evolution equations obtained from the transverse traceless

parts of Eqs. (34) and (35) for hij and Âij, respectively, by
consistently applying the decomposition in [24]. Once the
scalar potentials on the next time slice are determined, the

tensors hij and Âij
TT can be reconstructed completely, sat-

isfying the divergence-free conditions. This fully fixes hij,

whereas in the case of Âij the longitudinal part is computed
in a very similar way to the CFC case, i.e. by determining
the vector Xi from the momentum constraint as described
hereafter.
From Eq. (26), the momentum constraint can be written

as

D jÂ
ij ¼ 8�~�ijðS�Þj ��i

klÂ
kl; (42)

which is equivalent to the following elliptic equation for
Xi:

DjDjXi þ 1

3
DiDkX

k þ ~�im

�
Dk ~�ml �Dm ~�kl

2

�

�
�
DkXl þDlXk � 2

3
fklDpX

p

�

¼ 8�~�ijðS�Þj � ~�im

�
Dk ~�ml �Dm ~�kl

2

�
Âkl
TT: (43)
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This elliptic equation for the vector Xi is linear. Since hij

and Âij
TT have been calculated previously, we can solve the

elliptic equation (43) to obtain the vector Xi. With this
method, the Dirac gauge and the momentum constraint are

guaranteed to be satisfied. Then, Âij is reconstructed from

Âij
TT and Xi on the new time slice.

At this point, since the tensors hij and Âij are known, we
can follow exactly the same scheme as in the CFC case to
solve in a hierarchical way the elliptic equations. First the
conformal factor is obtained from Eq. (39), then the lapse
function is obtained from Eq. (40), and finally the shift
vector is acquired from Eq. (41). These equations are
decoupled in the order mentioned. No sign problems are
exhibited in the scalar elliptic equation, and therefore the
maximum principle can be applied. A minor concern is
associated with the sign of the term ~R in Eq. (39), but
unique solutions also exist for negative conformal Ricci
scalars (closely related to ~R). Note that, contrary to the
CFC case, here no (additional) approximation has been
made: it is simply a new scheme to write down the FCF,
where the elliptic part is better behaved from the point of
view of local uniqueness. Numerical simulations with this
FCF scheme will be presented in a future publication.

VI. DISCUSSION

A. Summary

We have presented an approach to the solution of the
uniqueness issues appearing in certain constrained formu-
lations of Einstein equations. We have illustrated the prob-
lem and its solution through a detailed analytical and
numerical study of a waveless approximation that retains
all the involved essential features.

More specifically, we have reformulated XCTS-like el-
liptic systems appearing in constrained evolution schemes
of the Einstein equations, like the FCF of [23,24], as well
as in the CFC approximation [4,5]. Such systems require
the simultaneous solution of the constraints, in particular,
the momentum constraint for the shift, together with a
maximal slicing condition for the lapse. The resulting
elliptic system presents potential local nonuniqueness
problems, and numerical implementations have indeed
encountered such obstacles. The original CFC formulation
has not been able to cope with these problems, as it suffers
from convergence of the system to unphysical solutions or
from nonconvergence in high density regimes. We have
suggested that these problems are not due to the approx-
imative nature of the CFC, since FCF in the variant of
[23,24], which is a natural generalization of the CFC to the
nonconformally flat case, also suffers from the same prob-
lems. In order to address these issues, first focusing on the
simpler CFC case, we have considered the conformal
rescaling of the traceless part of the extrinsic curvature,

resulting in the expression for Âij in Eq. (27), which is a
rescaling that is different from the respective ones em-

ployed in the FCF and the CFC approximation, but coin-
cides with the one in the XCTS approach of [10,11]. This is
motivated by the work of Shapiro and Teukolsky [43], who
simulated the collapse of a neutron star model using such a
reformulation of the CFC metric equations (however, re-
stricted to spherical symmetry in their case) and apparently
did not encounter any of the problems described above.
Extending their approach to three dimensions, we have

decomposed Âij into longitudinal and transverse parts as
in the CTT formulation of the constraint equations (29).
The divergence (i.e. the longitudinal part) of this tensor is
determined by the momentum constraints, Eqs. (28) in the
CFC case, just as in the CTT formulation. In the CFC
scheme, we have neglected the transverse part of this
tensor, as the order of its error is higher than the one arising
from the CFC approximation itself. In the nonapproximate

FCF case, the transverse part of Âij is determined by an
evolution equation. Once the conformal extrinsic curvature
is obtained, it can be employed in the Hamiltonian equa-
tion to calculate the conformal factor c . The lapse is then
fixed through the maximal slicing condition, and the re-
sulting equation allows the application of a maximum-
principle uniqueness argument. Finally, the shift is found
through the kinematical relationship defining the extrinsic
curvature, leading to Eq. (33).
By performing a variety of tests, we have provided

evidence that the problem of convergence to an unphysical
solution of the metric equations (or even complete non-
convergence) in the original formulation of the CFC
scheme is fully cured by our new reformulation. Not only
can numerical results in the original CFC scheme (in the, at
most, moderately gravitationally compact regime where
that system still yields physically correct solutions) be
reproduced by the new formulation but, more importantly,
the new numerical results presented here exhibit the proper
numerical and physical behavior even for highly compact
configurations. For the first time, it has been possible to
successfully perform both the migration test and the col-
lapse of a neutron star to a black hole in the CFC case in a
consistent way. Our new formulation thus facilitates simu-
lations in the high density regime of those scenarios where
the CFC is still a reasonably fair approximation, that is, for
systems which are not too far from sphericity, like stellar
gravitational collapse.

B. Comparison with previous works

As compared to the original CFC formulation by
Isenberg [4] and Mathews and Wilson [5], the scheme
presented here is augmented by an additional vector ellip-
tic equation for Xi, while the elliptic character of the
system of metric equations is preserved. The new scheme
reformulates the CFC approximation in a CTT shape (one
scalar and one vector elliptic equation), and then solves for
the lapse and the shift (one additional scalar and one vector
elliptic equation). In contrast, the original CFC scheme
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employed a (X)CTS approach where, together with two
scalar elliptic equations, only one vector elliptic equation
was present. In contrast to the original scheme, the elliptic
system in the new formulation not only corrects the prob-
lem of local uniqueness in the scalar elliptic equations, but
also introduces a hierarchical structure that decouples the
system in one direction.

In the context of the conformally flat approximation, the
same ‘‘augmented CFC’’ scheme as that discussed here has
been introduced already by Saijo [8] to compute the gravi-
tational collapse of differentially rotating supermassive
stars. However, in this work the inconsistency between
Eqs. (25) and (29), i.e. setting to zero the transverse trace-

less part of Âij, has not been pointed out. On the contrary,
we have analyzed this inconsistency in detail (cf. the
Appendix) and have shown that it leads to an error of the
same order as that of the CFC approximation. In addition,
we have shown here that the introduction of the vector
potential Xi is the key ingredient for solving the non-
uniqueness issue.

The same scheme, but without the conformal rescaling
of the matter quantities, has also been used recently by
Shibata and Uryū [45] in the context of computing initial
data. As in [8], the inconsistency resulting from setting to

zero the transverse traceless part of Âij and the uniqueness
issue are not discussed in their work. We emphasize that
these studies [8,45] do not discuss the extension of the new
scheme to the nonconformally flat case, as done here.

Let us also mention that the augmented CFC scheme
presented here can be regarded as a hybrid mixture of
some of the waveless approximation theories (WAT) pro-
posed by Isenberg [4]. In fact, the CFC approximation
using the two choices ~�ij ¼ fij and @t ~�ij ¼ 0 [as em-

ployed in Eq. (33)] corresponds to WAT-I. On the other

hand, the approximation Âij
TT ¼ 0 used in Eq. (29) is in the

spirit of the vanishing transverse traceless part of the
extrinsic curvature in the (coupled) version, WAT-II
(although WAT-II refers to the physical extrinsic curvature,
whereas here we have dealt with the conformal one). As
mentioned above, both assumptions are consistent at the
considered level of approximation, as shown in the
Appendix.

Regarding the complete constrained evolution of the
Einstein equations, we have generalized the ideas pre-
sented here for the CFC case to the elliptic part of the
FCF. In previous studies [23,24], the hyperbolic part of the
Einstein equations resulted in a wave-type equation for the
tensor hij, representing the deviation of the three-metric

from conformal flatness. With the introduction of Âij we
have recovered here a first-order evolution system, analo-
gous to the standard Hamiltonian 3þ 1 system, in which
we have, however, retained only the divergence-free terms.

Thus, for both hij and Âij, the transverse (divergence-free)
parts are evolved by this system, while the longitudinal
parts are fixed either by the gauge (for hij), or by the

momentum constraint (for Âij). Numerical results for this
case will be presented in future studies.
We finally comment on the recent work by Rinne [18],

where uniqueness problems appearing in certain con-
strained and partially constrained schemes for vacuum
axisymmetric Einstein equations [20,54] are addressed.
As in the present case, uniqueness issues related to the
Hamiltonian constraint equation are solved by adopting an
appropriate rescaling of the extrinsic curvature. On the
other hand, problems associated with the slicing condition
are tracked to the substitution in that equation of the
extrinsic curvature by its kinematical expression in
terms of the (shift and the) lapse. The latter spoils the
uniqueness properties by reversing the sign of the relevant
term in the slicing equation. This problem is solved by
enlarging the elliptic system with an additional vector so
as to reexpress the relevant components of the extrinsic
curvature without resorting to the lapse. The resulting
elliptic system also presents a hierarchical structure.
Although the spirit of such an approach is close to the
one presented here, the specific manner of introducing the
additional vector variable in [18] critically relies on the two
dimensionality of the axisymmetric problem (specifically,
on a choice of a particular gauge and on the fact that
vectors and rank-two traceless symmetric tensors have
the same number of components in two dimensions, a
property lost in three dimensions). On the contrary, the
introduction of the vector Xi through the CTT decomposi-
tion (29) is properly devised to work in three dimensions.
Relevant discussions in the three-dimensional context can
be found in Sec. 3.4 of [18] (where the relation between
nonuniqueness problems in XCTS and axisymmetric con-
strained evolution schemes is discussed) and in the three-
dimensional constrained evolution scheme presented by
Moncrief et al. in [25].
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APPENDIX: CONSISTENCY OF THE
APPROXIMATION

In the derivation of the new formalism, we make use of

the fact that ðLXÞij � Âij in the CFC. We show next that
this assumption is completely consistent at the accuracy
level of the CFC approximation. In the first place, we need
to estimate the error of the CFC approximation itself. By
definition, the CFC three-metric deviates linearly with hij

from the (exact) FCF case. It can easily be shown from the
FCF equations (39)–(41) that the metric quantities behave
as

c ¼ c CFC þOðhÞ; (A1)

N ¼ NCFC þOðhÞ; (A2)

�i ¼ �i
CFC þOðhÞ: (A3)

Therefore hij can be used as an estimator for the error of
the CFC approximation.

Two limits in which the CFC is exact will be considered.
First, in spherical symmetry the CFC metric system is an
exact reformulation of the Einstein equations since hij ¼ 0
in the FCF metric. If the system is close to spherical
symmetry (i.e. spheroidal), and if we are able to define a
quasispherical surface of the system (e.g., the surface of a
star or the apparent horizon of a black hole), then the
equatorial and polar circumferential proper radius, Re

and Rp, can be computed, and we can define the ellipticity

of the system as

e2 :¼ 1� R2
p=R

2
e : (A4)

Close to sphericity, e2 scales linearly with hij, and we can
ensure that the error of the CFC is hij �Oðe2Þ. The second
limit to consider is if a post-Newtonian expansion of the
gravitational sources is possible, i.e. if the post-Newtonian
parameter maxðv2=c2; GM=Lc2Þ< 1, where v, M, and L
are the typical velocity, mass, and length of the system,
respectively. In this case the CFC metric behaves like the
first post-Newtonian approximation [55,56], i.e.

c ¼ c CFC þOð1=c4Þ; (A5)

N ¼ NCFC þOð1=c4Þ; (A6)

c�i ¼ c�i
CFC þOð1=c4Þ: (A7)

Note that, for clarity, we explicitly retain powers of the
speed of light c as factors in the equations throughout this
appendix. In the case that both limits are valid, i.e. close to
sphericity and in the post-Newtonian expansion, the
nonconformally-flat part of the three-metric behaves like
hij �Oðe2=c4Þ. The next step is to compute the behavior

of the CFC metric if we assume ðLXÞij � Âij, considering
the two limiting cases introduced above.

In the spherically symmetric case the relation ðLXÞij ¼
Âij is trivially fulfilled. Therefore the behavior for a quasi-

spherical configuration is also hij �Oðe2Þ even if Âij
TT ¼ 0

is assumed. This limit in the approximation is very impor-
tant, since it is independent of the strength of the gravita-
tional field. For example, it allows us to evolve black holes,
with the only condition being that hij should be small, i.e.
close to the sphericity.
To check the approximation in the post-Newtonian limit,

we need to compare �i
CFC and Xi. This can be done by

means of the post-Newtonian expansion of the sources of
Eqs. (17) and (30), respectively,

��i
CFC þ 1

3D
iDj�

j
CFC ¼ 16�S�i þOð1=c7Þ; (A8)

�Xi þ 1
3D

iDjX
j ¼ 8�S�i þOð1=c7Þ: (A9)

From the comparison of Eqs. (A8) and (A9) we obtain that

c3
�i

CFC

2
¼ c3Xi þOð1=c2Þ: (A10)

Thus Âij can be computed in terms of Xi as

c4Âij ¼ c 6
CFC

2NCFC

c4ðL�CFCÞij ¼ c4ðLXÞij þOð1=c2Þ;
(A11)

where we make use of c 6
CFC=NCFC ¼ 1þOð1=c2Þ. The

effect of using ðLXÞij instead of Âij in the calculation of the
CFC metric can be seen in the expressions

c CFC ¼ ��1
s Sðc ÞðNCFC; c CFC; Â

ijÞ
¼ ��1

s Sðc ÞðNCFC; c CFC; ðLXÞijÞ þOð1=c8Þ;
(A12)

NCFC ¼ c�1
CFC�

�1
s SðNc ÞðNCFC; c CFC; Â

ijÞ
¼ c�1

CFC�
�1
s SðNc ÞðNCFC; c CFC; ðLXÞijÞ þOð1=c8Þ;

(A13)

c�i
CFC ¼ c��1

v Sð�ÞðNCFC; c CFC; Â
ijÞ

¼ c��1
v Sð�ÞðNCFC; c CFC; ðLXÞijÞ þOð1=c6Þ;

(A14)

where Sðc Þ, SðNc Þ, and Sð�Þ are the sources of Eqs. (31)–

(33), and ��1
s and ��1

v are just the inverse operators
appearing in the right-hand sides of these equations (for
the scalars c and Nc , and for the vector �i, respectively).
When comparing Eqs. (A12)–(A14) with Eqs. (A5)–(A7),
it becomes obvious that in all cases the error introduced by

making the approximation ðLXÞij � Âij is smaller than the
error of the CFC approximation itself.
As an illustration of the above properties, we study the

influence of the Âij
TT term in Eq. (29) when computing

rotating neutron star models with a polytropic � ¼ 2 equa-
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tion of state. This model setup contains the initial models
used in Sec. IV. They assume axial symmetry and statio-
narity, in combination with rigid rotation. We build a
sequence of rotating polytropes with increasing rotational
frequencies, while keeping the central enthalpy fixed,

which produces models of increasing masses from M ¼
1:33M� (no rotation) to M ¼ 1:57M� (the Kepler limit;
see below). For all these models, we use three gravitational
field schemes: the exact Einstein equations using the sta-
tionary ansatz in the FCF, and the two approximate ones,

regular CFC and CFC, neglecting the term Âij
TT in Eq. (29).

The results are displayed on a logarithmic scale in Fig. 5. In

the top panel we show the maximal amplitudes of Âij
TT

(relatively, to Âij) in both the FCF and the regular CFC, as
functions of the ellipticity e defined in Eq. (A4). This
quantity is physically and numerically limited by the mini-
mal rotational period at the so-called mass-shedding limit
(or Kepler limit), when centrifugal forces exactly balance
gravitational and pressure forces at the star’s equator. In the
FCF case we plot the maximal amplitude of hij. This
quantity is dimensionless and represents the deviation of
the three-metric from conformal flatness, which can be
interpreted as the relative error one makes in the metric
when using the CFC instead of the FCF. Note that this error

in computing Âij by discarding the Âij
TT term in the CFC

approximation is roughly of the same magnitude as the
error on the metric in the CFC case. All these quantities
decrease like Oðe2Þ as expected, except for stars rotating
close to the Kepler limit. Indeed, the development in
powers e is equivalent to a slow-rotation approximation
(see, e.g., [57]) by perturbing spherically symmetric con-
figurations, and, when comparing these slow-rotation re-
sults to numerical ‘‘exact’’ ones for rigidly rotating stars
(see, e.g., [58] in the two-fluids case), one sees that they
usually agree extremely well, excepted very close to the
Kepler limit, where this ‘‘perturbed spherical symmetry’’

approach is no longer valid. Finally, because Âij appears as
a quadratic source term in the Poisson-like equations (15)
and (16), the overall errors on the lapse N or the conformal
factor c are even smaller, as shown in the bottom panel of
Fig. 5. In the case of the central value Nc of the lapse, the
error due to the CFC approximation is maximal at the
Kepler limit and & 10�4 for the studied sequence. The

error which is then due to neglecting Âij
TT within the CFC

scheme amounts to & 10�6 and decreases faster than the
error due to the CFC approximation, namely, as Oðe4Þ,
again except near the Kepler limit. Our tests thus show that
for stationary rotating neutron star models this additional
approximation induces an error which falls within the
overall CFC approximation.
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