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Abstract

In the framework of the theory of scale relativity, we suggest a solution to the cosmo-
logical problem of the formation and evolution of gravitational structures on many
scales. This approach is based on the giving up of the hypothesis of differentiabil-
ity of space-time coordinates. As a consequence of this generalization, space-time
is not only curved, but also fractal. In analogy with Einstein’s general relativistic
methods, we describe the effects of space fractality on motion by the construction
of a covariant derivative. The principle of equivalence allows us to write the equa-
tion of dynamics as a geodesics equation that takes the form of the equation of free
Galilean motion. Then, after a change of variables, this equation can be integrated in
terms of a gravitational Schrödinger equation that involves a new fundamental grav-
itational coupling constant, αg = w0/c. Its solutions give probability densities that
quantitatively describe precise morphologies in the position space and in the velocity
space. Finally the theoretical predictions are successfully checked by a comparison
with observational data: we find that matter is self-organized in accordance with the
solutions of the gravitational Schrödinger equation on the basis of the universal con-
stant w0 = 144.7± 0.7 km/s (and its multiples and sub-multiples), from the scale of
our Earth and the Solar System to large scale structures of the Universe.
c©2002 Elsevier Science Ltd. All rights reserved.

1 Introduction

One of the main, still open, problems of today’s cosmology is that of the forma-
tion and evolution of gravitational structures. In a recent paper [1], J. Silk wrote:
“Galaxy formation theory is not in a very satisfactory state. This stems ultimately
from our lack of any fundamental understanding of star formation. There is no
robust theory for the detailed properties of galaxies.” The same can be said of the
formation of planetary systems, as now demonstrated by the discovery of extrasolar
planetary systems with fundamental properties that were totally unexpected from
the standard model of formation. Moreover, at the scale of galaxies and at extra-
galactic scales, this question is strongly interconnected with that of “dark matter”.
Namely, the existence of large quantities of unseen matter is a necessary ingredient
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in the standard approach, since in its absence the formation of galaxies would be
totally impossible. However, while the anomalous dynamical effects (flat rotation
curves of spiral galaxies, velocity dispersion of galaxy clusters, etc...) and gravita-
tional lensing effects that the dark matter hypothesis attempts to explain are firmly
established, the dark matter itself escapes any detection.

The aim of the present paper is to suggest possible solutions to these problems
in the framework of the theory of scale relativity and fractal space-time. Recall that
the introduction of a fractal and/or Cantorian space-time have been suggested in
different contexts and using different tools by Ord [2], one of us [3, 4], El Naschie
[5] and now many other authors. As we shall see, this approach provides a solution
for both the formation problem (this paper) and the anomalous effects (joint paper
[6]) without needing any additional unseen matter. Moreover, it allows one to
understand the morphogenesis of several structures at all scales and to theoretically
predict the existence of new relations and constraints, that are now successfully
checked from an analysis of the astrophysical data.

After having briefly recalled the foundations of the theory, we apply it more
specifically to a generalized theory of gravitation in which, beyond some scale rela-
tive to the system under consideration, space-time becomes not only curved but also
fractal. The induced effects on motion (in standard space) of the internal fractal
structures (in scale space), are to transform classical mechanics into a quantum-like
mechanics. Then we give the fundamental solutions of the macroscopic quantum
equations, which are adapted to a large class of astrophysical situations (central
potential, constant density, halos).

Finally the main body of the paper aims at giving for the first time a large
panorama of the various predicted effects and of quantitative and statistically sig-
nificant verifications in astrophysical data. We describe structures, self-organized
in terms of the same gravitational coupling constant, ranging from the scale of our
Earth, the Solar System and extra-solar planetary systems, stars forming zones,
galaxies and clusters of galaxies, to large scale structures of the universe, with a
special emphasis about planetary nebulae and our Local Group of Galaxies. It is
clear that, due to the large number and the diversity of the various effects, we can-
not enter in the details about the nature of the observations and the data analysis:
several of these results have already been published in specialized papers that we
quote, while publications are in preparation concerning those which are presented
here for the first time.

2 Theory

The construction of the theory is based on the giving up of the Gauss-Riemann
hypothesis of local flatness that underlies the building of Einstein’s generalized
relativity. In other words, we attempt to describe physical laws in a continuous
manifold which may be not only curved, but also non-differentiable. The foundation
of the theory and its developments has been detailed in several previous papers and
books [4, 7, 8, 9, 10, 11], so that we shall only give here a summary of its tools and
its methods.
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2.1 Scale laws

The first step consists of a description of the internal scale structures in terms
of differential equations written in scale-space. It has indeed been demonstrated
[8, 9, 10, 12] that continuity and non-differentiability implies scale-divergence, i.e.,
fractality, so that non-differentiable coordinates in space-time can be described in
terms of explicitly resolution-dependent variables.

The simplest possible form for a scale-differential equation describing the depen-
dence of a fractal coordinate X in terms of resolution ε is given by a first order,
linear, renormalization-group like equation:

∂X(t, ε)

∂ ln ε
= a− δ X , (1)

where a and δ are independent of ε. Its solution can be written under the form:

X(t, ε) = x(t)

[
1 + ζ(t)

(
λ

ε

)δ
]
. (2)

We recognize here a fractal asymptotic behavior at small scales with fractal di-
mension D = 1 + δ, which is broken at large scale beyond the transition scale λ.
Moreover, it is easy to check that the fractal asymptotic behavior comes under the
principle of scale relativity, since in a scale transformation of the resolution, ε→ ε ′,
lnX transforms according to the mathematical structure of the Galileo group (but
here in scale space).

By differentiating this solution, one obtains the elementary displacement dX as
the sum of two terms:

dX = dx+ dξ. (3)

Here dξ represents a scale-dependent, “fractal part”, and dx a scale-independent,
“classical part” of the full elementary displacement, which are such that:

dx = v dt, (4)

dξ = η
√

2D (dt2)1/2D, (5)

where < η >= 0 and < η2 >= 1.
Therefore, while the full variable X is non-differentiable, its “classical part” x

is differentiable and can therefore be described in terms of standard differentiable
calculus. In what follows we shall consider only the case of a fractal dimension
D = 2, that corresponds to a Markovian process and that plays the role of a critical
fractal dimension [9].

2.2 Quantum mechanics induced in space-time

2.2.1 Demonstration of Schrödinger’s equation

In the minimal theory, two consequences arise from the non-differentiability and
fractality of space, in addition to the fractality of each individual trajectory (i)
which has been established in the previous section:

(ii) The test-particles can follow an infinity of possible trajectories: this leads
one to jump to a non-deterministic, fluid-like description, in terms of the “classical
part” of the velocity field of the family of trajectories, v = v(x(t), t).
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(iii) The reflection invariance under the transformation (dt↔ −dt) is broken as a
consequence of nondifferentiability (see e.g. [10]), this leading to a two-valuedness of
the velocity vector. The use of a complex velocity, V = (v+ + v−)/2− i(v+ − v−)/2
to deal with this two-valuedness can be shown to be a covariant and simplifying
representation [13].

These three effects of nondifferentiability and fractality can be combined to
construct a complex time-derivative operator [8] that writes

d́

dt
=

∂

∂t
+ V · ∇ − iD 4 . (6)

Using this tool, one can now reformulate the action principle of mechanics. One
defines a Lagrange function L(x,V, t). Since the “classical part” of the velocity is
now complex, the same is true of the Lagrange function, then of the generalized
action S. A complex probability amplitude can therefore be introduced as a simple
change of variable:

ψ = eiS/2mD. (7)

Finally we can use the equivalence / general covariance principle and write a
geodesic equation in fractal space under the form of the equation of free Galilean
motion:

d́

dt
V = 0. (8)

After re-expression in terms of ψ and integration, it becomes the free Schrödinger
equation [8]:

D2 4 ψ + iD ∂

∂t
ψ = 0. (9)

This result is supported by a numerical simulation of the underlying fractal pro-
cess described hereabove performed by Hermann [14], which allowed him to obtain
solutions of the Schrödinger equation without explicitly writing it.

2.2.2 Generalized theory of gravitation

We shall not develop in the present contribution the application of this method to
standard quantum mechanics in the microphysical domain (see e.g. [13] on this
subject). We are interested here in its macrophysical applications.

Let us indeed consider the motion of a free particle in a curved space-time whose
spatial part is also fractal beyond some time transition (e.g., the predictability hori-
zon in case of strong chaos) and/or space transition (e.g., galaxy sizes). Its equation
can be written, in the first order approximation, as a free motion / geodesics equa-
tion that combine the general relativistic covariant derivative (that describes the
effects of curvature) and scale-relativistic covariant derivative (that describes the
effects of fractality, Eq. 6), namely, in the Newtonian limit

D̄

dt
V =

d́ V
dt

+ ∇
(
φ

m

)
= 0, (10)
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where φ is the Newton potential energy. Once written in terms of ψ (Eq. 7), this
equation can be integrated in terms of a gravitational Schrödinger equation with a
potential term:

D2 4 ψ + iD ∂

∂t
ψ =

φ

2m
ψ. (11)

Since the imaginary part of this equation is the equation of continuity, and basing
ourselves on our description of the motion in terms of an infinite family of geodesics,
ρ = ψψ† can be interpreted as giving the probability density of the particle positions.
For a Kepler potential and in the time-independent (stationary) case, the equation
becomes:

2D2 4 ψ + (
E

m
+
GM

r
)ψ = 0. (12)

Even though it takes this Schrödinger-like form, this equation is still in essence
an equation of gravitation, so that it must keep the fundamental properties it owns
in Newton’s and Einstein’s theories. Namely, it must agree with the equivalence
principle [15, 16, 17], i.e., it is independent of the mass of the test-particle, while
GM provides the natural length-unit of the system under consideration. As a
consequence, the parameter D takes the form:

D =
GM

2w
, (13)

where w is a fundamental constant that has the dimension of a velocity. The ratio
αg = w/c actually plays the role of a macroscopic gravitational coupling constant
[17, 22]). As we shall see in what follows, the main result of the theory is that
the solutions of this gravitational Schrödinger equation are indeed characterized by
an universal quantization of velocities in terms of the constant w = 144.7 ± 0.5
km/s or its multiples or sub-multiples (the precise law of quantization depending
on the potential). The universality of this constant is corroborated by its effective
intervention in the observed structuration of matter in the Universe on a range of
scales reaching 19 orders of magnitude.

Before applying in what follows these fundamental equations of physics to as-
trophysical problems of formation and evolution of structures, let us conclude this
section by recalling that : (i) using the same method, Schrödinger-like forms have
also been obtained for the equation of motion in an electromagnetic field, the Eu-
ler and Navier-Stokes equations, the equations of the rotational motion of solids,
dissipative systems, and field equations in a simplified case [10]; (ii) the quantum
rules obtained in this approach are fully demonstrated from first principles, and
not a priori set; (iii) the scale relativity method consists of introducing explicitly a
scale-space in the physical description. This is a key point for the understanding of
our approach. It means that, depending on the scale, either the classical part of the
fundamental variables or their fractal part dominates. As a consequence the math-
ematical tool is quantum at some scales and classical at others, with a transition
between the two regimes.
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3 Theoretical predictions

The generalized gravitational Schrödinger equation obtained above can now be used
as the motion equation for a large class of systems, namely, all those coming under
the three conditions that underlie its demonstration: large number of possible tra-
jectories, fractal dimension 2 of trajectories, and local irreversibility. Actually these
conditions amount to a loss of information about angles, position and time.

In general, the equations of evolution are the Schrödinger-Newton equation and
the classical Poisson equation:

D2 4 ψ + iD ∂ψ

∂t
− φ

2m
ψ = 0, (14)

4ϕ = 4πGρ, (15)

where ϕ is the potential and φ = mϕ the potential energy.
By separating the real and imaginary parts of the Schrödinger equation we get

respectively a generalized Euler-Newton equation (written here in terms of the New-
tonian potential energy φ) and a continuity equation:

m (
∂

∂t
+ V · ∇)V = −∇(φ+Q), (16)

∂P

∂t
+ div(PV ) = 0, (17)

This system of equations is equivalent to the classical one used in the standard
approach of gravitational structure formation, except for the appearance of an extra
potential energy term Q that writes:

Q = −2mD2 ∆
√
P√
P

. (18)

In the case when the particles are assumed to fill the “orbitals” (for example,
the planetesimals in a protoplanetary nebula), the density of matter becomes pro-
portional to the density of probability, ρ ∝ P = ψψ†, and the two equations can be
combined in terms of a single Hartree equation for matter alone [10]:

∆

(
D2∆ψ + iD∂ψ/∂t

ψ

)
− 2πGρ0|ψ|2 = 0. (19)

Another situation occurs when the number of bodies is small. They follow at ran-
dom one among the possible trajectories, so that P = ψψ† is nothing else than a
probability density, while space remains essentially empty. This case will be studied
in more detail in the joint paper [6]: we suggest that it allows to explain the effects
that have up to now been attributed to unseen “dark matter”.

Now, as a first step, we shall mainly study in what follows the simplified case
of a potential which is assumed to be globally unaffected by the structures that
it contributes to form. Typical examples are the two-body problem (planetary
systems in the Kepler potential of the star, binary systems in terms of reduced mass,
..), cosmology (particles embedded into a uniform density background), ejection
processes...).
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3.1 Keplerian potential

Let us first study the general Keplerian problem. The classical potential ϕ =
−GM/r can be inserted in the Schrödinger equation:

D2 4 ψ + iD∂ψ
∂t

+
GM

2r
ψ = 0 (20)

We look for wave functions of the form ψ = ψ(r) × exp(iEt/2mD). Making the
two substitutions h̄/2m→ D and e2 → GMm, where m is the test particle inertial
mass), we obtain a quantum-like equation [8], [9] which is similar to the quantum
hydrogen atom equation (but it is now independent of inertial mass). Thus, we
can use the standard solutions (expressed in terms of Laguerre polynomials). In
spherical coordinates, the radial part and the angular part are separable:

ψ(r) = ψnlm̂(r, θ, φ) = Rnl(r) Y
m̂
l (θ, φ). (21)

Moreover, the ratio energy/mass is quantized as:

En

m
= −G

2M2

8D2n2
= −1

2

w2
0

n2
, for n ∈ N∗ (22)

while the natural length unit is the Bohr radius a0 = 4D2/GM = GM/w2
0 .

• Consequences for the radial distance distribution: Let us consider particles
(e.g., of gas, dust, planetesimals in a protoplanetary disk, etc...) involved in highly
chaotic and irreversible motion in a central Kepler potential. At time-scales longer
than the predictability horizon, the classical orbital elements such as semi-major
axes, eccentricities, inclinations, obliquities etc... are no longer defined. However,
the stationary Schrödinger equation (12) that describes their motion in terms of a
probability amplitude ψ does have solutions which are characterized by well-defined
and quantized values of conservative quantities (prime integrals) such as energy
E, angular momentum L, etc... Therefore we expect the particles to self-organize
themselves in the ‘orbitals’ described by these solutions, then to form objects (e.g.
planets) by accretion.

After the end of the formation process, the motion of the objects which have
been formed remains given by the same values of the prime integrals, thanks to
the conservation theorems, but it is either no longer chaotic, or it is characterized
by a far larger chaos time (inverse of the Lyapunov exponent). Then one recovers
classical orbital elements (semi-major axis a, eccentricity e, etc...) linked to the
conservative quantities by the classical relations, e.g., E/m = −GM/2a, (L/m)2 =
GM a (1 − e2),...

The theoretical prediction of the probability distribution of a given orbital el-
ement can therefore be obtained by searching for the quantum states of a con-
served quantity which is a direct indicator of the observable we want to study. This
is achieved by choosing the symmetry of the reference system in a way which is
adapted to the observable. For example, the spherical symmetry solutions describe
states of fixed E, L2 and Lz. From these solutions we can recover the semi-major
axis expectation, but not the eccentricity, since the definition of L2 combines a and
e. Now the parabolic coordinate solutions describe states of fixed E, Lz and Az,
where A is the Runge-Lenz vector, which is a conservative quantity that expresses
a dynamical symmetry specific of the Kepler problem (see e.g. [19]). This vector
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identifies with the major axis and is directed toward the perihelion while its modulus
is the eccentricity itself.

The radial part of the Kepler orbitals in a spherical coordinate system are ex-
pressed in terms of Laguerre polynomials. They depend on two integer quantum
numbers n > 0 and l = 0 to n− 1.Their average distance is given by (see e.g. [18]):

< r >nl = a0

(
3

2
n2 − 1

2
l(l + 1)

)
(23)

For the maximal value of the angular momentum (l = n− 1), the mean distance
of the test particle becomes < r >n = a0 (n2 + n

2 ), while the probability peak lies
at rpeak

n = a0 n
2. The energy being quantized as given in Eq. 22, the semi-major

axes can take the values:

an =
GM

w2
0

n2 = a0 n
2. (24)

The theoretical expectation for the eccentricity distribution is obtained in parabolic
coordinates by taking as z axis the major axis of the orbit. One obtains for the
projection of the Runge-Lenz vector on this axis [20]:

Az = e =
k

n
, (25)

where the number k is an integer and varies from 0 to n− 1.
• Consequences for the angular distribution: The angular part of the wave func-

tion is also quantized [9]. In spherical coordinates, the angular momenta is quan-
tized as (L/m)2 = 4D l(l+1) and its projected component as Lz/m = 2D m̂, where
m̂ is the third quantum number and varies from −l to l. The angular solutions
are expressed in terms of the spherical harmonics Y m̂

l (θ, φ), whose importance for
morphogenesis will be pointed out in a forthcoming section (ejection process).

• Consequences for dynamics: The momentum solutions are separable in spheri-
cal coordinates and expressed by the function: Ψn,l,m̂(p) = Fn,l(p)×Y m̂

l (ϑ, φ). The
functions Y m̂

l (ϑ, φ) are standard spherical harmonics, the Fn,l functions are propor-
tional to the Gegenbauer functions Cν

N (χ). The momentum distribution is given by
|p.Fn,l(p)|2. The mean square value of the observable p is given by [21]:

< p2 >=

∫ ∞

0
p2|Fn,l|2p2 dp =

(
p0

n

)2

, (26)

where p0 = h̄/a0 is the Bohr momentum. We obtain:

< p2 >=

(
GMm

2nD

)2

=

(
mw0

n

)2

for v << c, < v2 >=

(
w0

n

)2

, (27)

since D = GM/2w0. As we shall see in what follows, the observational data supports
the universality of the velocity constant w0. One indeed finds that matter is self-
organized on a wide range of scales in terms of the value w0 = 144.7 ± 0.7 km/s for
this constant (and its multiples and submultiples) [15]. An attempt of theoretical
prediction of this value has been made in Ref. [22].
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3.2 Harmonic oscillator

Let us now consider the gravitational potential given by a uniform mass density ρ.
The domain of application of this case is, evidently, cosmology in the first place, but
this can also apply as an approximation to the interior of extended bodies (stars
in galaxies, galaxies in superclusters, ...). Solving for the Poisson equation yields a
harmonic oscillator gravitational potential ϕ(r) = (2π/3)Gρr2, and the Schrödinger
equation becomes:

D2 4 ψ + iD∂ψ
∂t

− π

3
Gρr2ψ = 0. (28)

The stationary solutions [9], [18] are expressed in terms of the Hermite polyno-
mials (Hn):

R(x, y, z) ∝ exp(− r2

2b2
)Hnx(

x

b
)Hny(

y

b
)Hnz(

z

b
), (29)

where b = D1/2 (πGρ/3)−1/4. The energy/mass ratio is also quantized as En/m =
4D

√
πGρ/3 (n + 3/2). The main quantum number n is an addition of the three

independent axial quantum numbers n = nx + ny + nz.
• Spatial consequences: The theory allows one to predict that matter will have

a tendency to form structures according to the various modes of the quantized 3-
dimensional isotropic harmonic oscillator [9] whose dynamical symmetry group is
SU(3). Depending on the conservative quantities and their associated quantum
numbers (nx, ny, nz), a simple or multiple (double, chain, trapeze) structure is ob-
tained (see Fig. 13). As we shall see, this prediction can be checked in astrophysical
data, since such morphologies are indeed found in the universe on many scales (star
formation zones, compact groups of galaxies, multiple clusters of galaxies). More-
over, quantitative predictions can be made: e.g., the distance separation [9] of the
extreme density peaks is given by the approximation ∆rmax = b (n2 + 3n)1/2.

• Dynamical consequences: In the momentum representation, we can predict a
distribution of inter-velocities as ∆vmax = v0 (n2 + 3n)1/2 with the characteristic
velocity v0 = 2D1/2(πGρ/3)1/4 . The difference between the extreme velocity peaks
is quantized in a quasi-linear way [9], since it is of the order of 2v0, 3v0, and 4v0 for
the modes n = 1, 2, 3 respectively.

The main conclusion is the prediction that the various cosmological constituents
of the universe will be situated at preferential relative positions and move with
preferential relative velocities, as described by the various structures implied by the
quantization of the isotropic 3D harmonic oscillator.

3.3 Ejection process

In many ejection / growth processes (planetary nebulae, supernovae, star formation,
ejection of matter from Sun , as due e.g. to the infall of sungrazer comets, etc...),
the observed ejection velocity seems to be constant in the first approximation (as
a result of the cancellation between various dynamical effects). This particular
behavior is consistent with a constant or null effective potential, i.e., it corresponds
to the free motion case.

This means that this problem becomes formally equivalent to a scattering pro-
cess during elastic collisions. Indeed, recall that the collision of particles is described
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in quantum mechanics in terms of an incoming free particle plane wave and of out-
coming free plane and spherical waves. The Schrödinger equation of a free particle
writes:

2mD2 4 ψ(r) +E ψ(r) = 0 (30)

where E = p2/2m = 2mD2k2 is the energy of this free particle. The stationary
solutions of the problem in a spherical coordinate system are ψ(r) = R(r)Ylm̂(θ, φ).
The equation of radial motion becomes [18]:

R
′′

(r) +
2

r
R

′

(r) + [k2 − l(l + 1)

r2
]R(r) = 0. (31)

We keep the solution corresponding to a flow of central particles (ejection / scat-
tering process), namely, the divergent spherical waves. The general solution is
expressed in terms of the first order Hankel functions:

R(r) = +iA

√
kπ

2r
H

(1)

l+ 1

2

(kr). (32)

• Radial consequences: [Φ(r)]2 represents the spatial probability of presence
for a particle ejected in a unit of time. But our aim is to know the evolution
of the probability function for distances and times higher than the ejection area.
The spatial probability density for a particle emitted at time (te) in an elementary
spherical volume writes:

dP (r, θ, φ, t, te) = [R(r − V0 (t− te))]
2 1

r2
r2 dr [Ylm̂(θ, φ)]2 sin θ) sinφ dθ dφ. (33)

• Angular consequences: In a way similar to the interpretation of the spatial
solutions, we shall interpret the angular solutions in terms of a self-organized mor-
phogenesis. Indeed, the matter is expected to be ejected with a higher probability
along the angle values given by the peaks of the probability density distribution.
One may therefore associate quantized shapes, which can be spherical, plane, bipo-
lar, etc... to each couple of quantum numbers (l, m̂), i.e., to the discretized values
of energy and angular momentum. These different possibilities will be considered
in more detail in the section devoted to Planetary Nebulae.

4 Observational tests of the theory

4.1 Solar System

4.1.1 Planetary system formation

Consider a protoplanetary disk of planetesimals during the formation of a planetary
system. The motion of each planetesimal in the central Kepler potential of its star
comes under the conditions under which a gravitational Schrödinger equation can
be written. Therefore we expect the bodies to fill the orbitals (see Fig. 1), then to
accrete and to form planets. The final orbital elements of the planets are finally
expected to follow the laws that have been described in the previous section, i.e.,
semi-major axis ∝ n2, eccentricity ∝ k/n, etc...
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Figure 1: Example of solution of the gravitational Schrödinger equation for a Kepler potential.

An important feature of the scale-relativity approach is that it naturally leads
to a hierarchy of structures [8, 15]. Let us summarize the argument. Consider a
system of test-particles (e.g., planetesimals) in the dominant potential of the Sun.
Their evolution on large time-scales is governed by Eq. 12, in terms of a constant
Dj = GM/2wj . The particles then form a disk whose density distribution is given
by the solution of the Schrödinger equation based on this constant. This distribution
can then be fragmented in sub-structures still satisfying Eq. 12 (since the central
potential remains dominant), but with a different constant wj+1. We can iterate the
reasoning on several hierarchy levels. The matching condition between the orbitals
implies wj+1 = kjwj , with kj integer. Our own Solar System is indeed organized
following such a hierarchy on at least 5 levels, from the Sun’s radius to the Kuiper
belt (see Figs. 2 and 3 and the following sections). In particular, the inner solar
system in its whole can be identified as the fundamental level (n = 1) of the outer
solar system, in which Jupiter is in n = 2, Saturn in n = 3, etc....
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Figure 2: Hierarchical model of formation of the Solar System.
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4.1.2 Planetary orbits

The application of the scale-relativity approach to the solar system has been given
in detail in [8, 23, 24]. As expected in the hierarchical model formation, the inner
and outer solar systems are both organized in a similar way, in terms of semi-major
axes distributed according to a n2 law (see Fig. 3). For the inner system, the
gravitational coupling constant is found to be given by a value w0 = 144 km/s. As
we shall see in what follows, this value (or its multiples or submultiples) can be
identified on a wide range of astrophysical scales, from the Earth to cosmological
scales.

Moreover, such a n2 law is not adjustable (contrarily to a scaling law of the
Titius-Bode type), so that the ranks of the planets are fixed in a constrained way.
One finds that Mercury ranks n = 3, so that the very first result of the theory has
been to predict the existence of two additional probable zones for planetary orbits
[8, 23], at 0.043 AU (n = 1) and 0.17 AU (n = 2), for the solar system but also
for extrasolar planetary systems. At the time of the prediction, no exoplanet was
yet known. As we shall see, this prediction has now received strong support from
the discovery of exoplanets and from structures in the very inner solar system. The
same is true of the outer solar system beyond Pluto, which can now be checked
using the Kuiper belt objects.

SI

J

S

U

N

P

m V T M Hun C H
Hil

1

4

9

16

25

36

rank n
101 2 3 4 5 6 7 8 9

a^
1/

2 
 (o

bs
er

ve
d)

a (A
U

)

7 49

1

2

3

4

5

6

SE

N

Figure 3: Comparison of the observed semi-major axes of planets in the inner and outer solar system
with the predicted values, an/GM = (n/w)2, with w = 144 km/s in the inner solar system and w = 144/5
km/s in the outer system. “SI” stands for the peak of the inner solar system (which corresponds to n = 1
in the outer system), and “SE” for the peak of the outer system (Jupiter at n = 2). Additional peaks
are predicted beyond Pluto (see the Kuiper belt section hereafter) and before Mercury (see the section
“Intramercurial structures”).

4.1.3 Satellites and rings

It has been shown by Hermann et al. [25] that the various systems of rings and
satellites around the outer giant planets also come under the same n2 law in a
statistically significant way. Moreover the planet radii themselves belong to the
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sequence (as we shall see, the same is true of the Sun in the very inner solar system).
Such a result is indeed expected, since a generalized Schrödinger equation can also
be applied to the problem of the formation of the central bodies, and that matching
conditions on the probability amplitude should be written between the interior and
exterior solutions (similar to the Cauchy conditions in general relativity).

In a subsequent study, Antoine [26] has solved the Schödinger equation in the
case of cylindrical 2D symmetry, and he has compared the solutions to the observed
main density peaks of Saturn rings. In this case the energy becomes quantized
as En = E0/(n + 1/2)2. The remarkable result is that the ring peaks agree with
such a law with the same value w0 = 144 km/s as in the inner solar system: one
finds values of n = 6.45, 7.57, 8.51, 9.46 and 13.43, all of them close to n+ 1/2 as
expected. The probability to obtain such a result by chance is smaller than 10−3.

4.1.4 Mass distribution of planets

The above theoretical approach provides a model for the mass distribution of matter
in the solar planetary system [23, 24]. Indeed, as well the observed distribution of
the whole system as that of the inner system (which stands globally as the first
orbital of the outer one) agree with the predicted law of probability density. We
can therefore use the hierarchical model described above to predict the masses of
the planets (in units of Jupiter mass, as in runaway models). The result is given in
Fig. 4. The distributions of the mass of planets in the inner and outer solar system
are in good agreement with such a model. Only the mass of Neptune is much higher
than expected. But even this discrepancy is easily explained by the existence of a
larger system in which the mass peak of the whole planetary system (i.e. Jupiter)
ranks n = 1, and in which Neptune ranks n = 2 (dashed line in Fig. 4; see also
Fig. 3).

Remark finally that this model will certainly help solving another problem en-
countered by standard models of planetary formation. The accretion time of plan-
etesimals, though acceptable for earth-like planets, becomes too large for giant plan-
ets. In our framework, the initial distribution of planetesimals is no longer flat, but
already peaked at about the final value of the planet positions, which should shorten
the accretion process.

4.1.5 Intramercurial structures

Solar radius Preferential distances in the very inner solar system are expected
for semi-major axes of 0.043 and 0.17 AU, which correspond to the n = 1 and n = 2
probability peaks based on the constant w0 = 144 km/s. More generally one can
consider substructures based on a multiple of this constant, w1 = 432 = 3 × 144
km/s. Indeed, the Sun radius is in precise agreement with the peak of the fundamen-
tal level of this sequence: namely, one finds n� = 0.99 with R� = 0.00465 AU, that
corresponds to a Keplerian velocity of 437.1 km/s. Such a result is not unexpected
in the scale-relativity approach. Indeed, the fundamental equation of stellar struc-
ture is the Euler equation, which can also be transformed in a Schrödinger equation
[10], yielding preferential values for star radii. Matching conditions between the
probability amplitude that describes the interior matter distribution (the Sun) and
the exterior solution (the Solar System) are expected to involve a matching of the
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Figure 4: Comparison between the observed and theoretically predicted planet masses in the inner and
outer solar system. IS stands for the inner solar system as a whole (2 Earth masses), C and H for Ceres
and Hygeia, which are the two main mass peaks in the asteroid belt.

positions of the probability peaks. This theoretical question will be developed in a
forthcoming work, while data analysis has already demonstrated that known star
radii show pronounced probability peaks, in particular for values corresponding to
Keplerian velocities of 432 km/s [82].

Circumsolar dust. We therefore predict, on the basis of a constant w = 432
km/s, probability density peaks lying at 4.09R�, 9.2R�, 16.32R�, etc.. This can
be checked by studying the density distribution of interplanetary dust.

We have indeed recalled in [24] that the possible existence of intramercurial
bodies is limited by dynamical constraints (such as the presence of Mercury) and
thermodynamical constraints (sublimation). As a consequence asteroids can be
found only in the zone 0.1-0.25 AU, but the inner zone 0.005-0.1 AU can yet be
checked using the distribution of interplanetary dust particles in the ecliptic plane
(originating from comets and asteroids) that produce the F-corona.

Since 1966, there has been several claims of detection during solar eclipses of IR
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thermal emission peaks from possible circumsolar dust rings (Peterson [27], Mac-
Queen [28], Koutchmy [29], Mizutani et al [30], Lena et al [31]. These structures have
been systematically observed at the same distance of the Sun during five eclipses
between 1966 and 1983. McQueen finds two radiance peaks at 4.1R�, which is
equivalent to a Kepler velocity v = 216 km/s and at 9.2R� = 0.043 AU, which
corresponds very precisely to a Kepler velocity v = 144 km/s (see Fig. 5). i.e., to
the predicted background level of the inner Solar System and of extrasolar planetary
systems at the same scale (see herebelow).

Figure 5: IR-dust density observed during the solar eclipse of January 1967 (adapted from MacQueen
[28]). Two density peaks were observed at exactly the predicted distances 4.09R�, and 9.20R� = 0.043
AU, which correspond respectively to Keplerian velocities of 432/2 and 432/3 = 144 km/s.

However, more sensitive observations during the 1991 solar eclipse [32, 33] did
not confirm these detections. While Lamy et al. [32] conclude that the previous
detections were in error, Hodapp et al. [33] argue that the earliest observations
were credible and therefore that the observed structures were transient features,
perhaps due to the injection of dust into near-solar space by a Sun-grazing comet.
This last interpretation is quite in agreement with the scale-relativity approach.
Indeed, the dynamics of the dust particles that are at the origin of the solar F-
corona is determined by the Sun gravity, the Poynting-Robertson and corpuscular
pressure drag, the radiation pressure force and the effect of sublimation [34]. The
combination of these effects leads to chaotic motion with a small predictability time
horizon, and would therefore come under the gravitational-Schrödinger equation.
The dust injected in the circumsolar space would thus accumulate during a finite
time into the predicted high probability zones, and finally spiral toward the Sun
due to the Poynting-Robertson drag.

Therefore a possible independent test of the theory could consist of new real time
IR observations during a forthcoming eclipse taking place just after the passage of
large size sungrazer(s).

Vulcanoid belt. An attempt to test for the prediction of the theory according to
which one or several objects (most probably an asteroid belt) could exist at 0.17AU
(n = 2 for the inner solar system) from the Sun has been recently performed by
Schumacher and Gay [35].
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They have tried to detect vulcanoids by analysing the SOHO/LASCO images
using automatic detection. Their conclusion [35] is that it is very difficult to detect
such objects even if they do exist, because of the high level of noise that remains after
cleaning the images for the solar corona. Their result is that there is no object of
diameter larger than 60 km around ≈ 0.17 AU. This lets open plenty of possibilities,
in particular the most probable one, i.e. an asteroid belt made of objects of size
smaller than 10 km. Indeed, the prediction of the scale-relativistic planetary model
formation (see above) is that a total mass of 10−4 Earth mass is expected in this
zone. It is probable that such a small total mass has not been able to accrete so
that the matter remains discretized in terms of planetesimals. Moreover, recent
numerical simulations [36] have shown that there should exist a stable zone between
0.1 and 0.2 AU, and, moreover, that some of the known Earth-crossing asteroids
could well come from this zone.

In situ detection could be possible in the future using e.g. the Solar Orbiter
spacecraft, which will reach a distance to the Sun of 0.21 AU. Another sugges-
tion consists of searching for the possible perturbations that such an asteroid belt
would induce on the motion of the Aten and Apollo Earth-crossing asteroids, in
particular on those which enter the very inner solar system. Six such objects
are presently known having perihelion distances smaller than 0.17 (see http://cfa-
www.harvard.edu/cfa/ps/mpc.html), among which 1995 CR, of perihelion q = 0.119
and inclination i = 4.0 degree, and 2000 BD19 of perihelion q = 0.092, inclination
i = 25.7 degree, which crosses the ecliptic at the expected belt distance of 0.174
AU.

4.1.6 Sungrazer comets

Figure 6: Distribution of the perihelions of sungrazer comets and comparison to the scale-relativity
prediction (integer values of l), according to Ref. [37].

Parabolic comets can be used to check deeper intramercurial structures [37].
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The sungrazers, in particular those recently observed by the SOHO satellite, enter
in the very inner solar system. The eccentricity of these objects is very close to e = 1
because of their quasi-parabolic orbits. Therefore their perihelion distance become a
direct indicator of angular momentum. The scale-relativity approach predicts that it
should show probability density peaks for perihelion values ql = (GM/w2) l(l+1)/2.
The value of w for these objects corresponds to yet a new sub-level of hierarchy,
since their velocity may reach 600 km/s. Indeed, as shown in Fig. 6, the perihelion
distribution of sungrazers with q < 0.015 AU agrees very closely and in a statistically
highly significant way with the predicted theoretical values, for w = 1296 = 9× 144
km/s.

4.1.7 Trans-Neptunian structures: Kuiper belt

As recalled above, new predictions have been performed ten years ago in the gravi-
tational Schrödinger framework concerning the inner regions of planetary systems,
but also the outer regions beyond 40 AU [8]. Since, many small bodies have been
discovered in the so-called Kuiper belt. For the outer solar system, the w constant
is close to 29 km/s, i.e. 144/5 km/s, where n = 5 is the rank of the mass peak
in the inner solar system, given by the Earth position. This implies a quantiza-
tion of the semi major axis according to an = 1.1n2 AU. This law can be used to
predict the distribution of Kuiper belt components [24]. The distribution of the
outer solar system planets and of the recently discovered SKBOs (scattered Kuiper
belt objects) is given in Fig. 7, and compared to these predictions. A satisfactory
agreement is found, in particular concerning the expected trans-Plutonian peak at
55 AU. Moreover, most KBOs are found around 40 AU and they therefore agree
with the n = 6 predicted peak.
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Figure 7: Distribution of the semi-major axis of Scattered Kuiper Belt Objects, compared with the
theoretical predictions of probability density peaks for the outer solar system (arrows).
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4.1.8 Obliquities and inclinations of planets and satellites

The method of transformation of classical dynamics equations in Schrödinger equa-
tions under the information-loss conditions has also been applied to the equations
of the rotational motion of solids [38, 10]. The planetary and satellite obliquities
in the solar system are known to be most of the time chaotic and they therefore
come under the Schrödinger description. In the case of a free rotational motion, one
obtains an equation that can also be applied to their inclinations:

d2ψ

dθ2
+A2ψ = 0 (34)

Since θ can vary only between 0 and π, the expected probability density of angle
values is P (θ) = a cos2(nθ). Thus the probability peaks are predicted to be quan-
tized as: θk = kπ/n, where n is an integer. For the whole solar system, the observed
values of obliquities and inclinations agree in a significant way with the predicted
distribution associated to n = 7 (see [38] and Fig. 8). Note that the earth obliquity
itself (23◦27

′

) and several other bodies of the solar system fall close to the second
quantized value k = 1. The retrograde planets such as Venus, and those which are
almost heeled over their orbital plane, such as Uranus, are also accounted for in this
model.
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Figure 8: Distribution of the obliquities and inclinations of planets and satellites in the Solar System,
compared with the scale-relativity prediction (integer values of k).

4.1.9 Space debris around Earth

The predictions of the scale relativity theory are clearly consistent with the ob-
servation of many quantized gravitational systems. Now it could be interesting to
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have not only observational, but also experimental validations of the scale-relativity
proposal.

One could therefore suggest a gravitational experiment, consisting of sending
test particles in chaotic motion in a Keplerian gravitational potential. Actually
such an experiment has already been done, even though it was not in purpose.
Indeed, diffusing space debris in orbit around the Earth provides us with exactly
this kind of scientific experiment. A large class of these space debris have diffused
through collision process so that the information about their initial orbits is lost.
Thus, we can apply to these objects the Keplerian solutions allowed by the theory.

Starting from the best fit value of the fundamental gravitational velocity con-
stant for inner solar system planets and exoplanets (see below), w0 = 144.3 km/s,
and with the Earth mass of 5.977 × 1024 kg, we expect average orbiting distance
given by: < r >n = (GM/w2

0) (n2 + n/2) = 19.15 × (n2 + n/2) km. For n = 18,
we find the Earth radius with a remarkable precision: GM(n2 + n/2)/w2

0 = 6375
km, while the equatorial radius of the Earth is 6378.160 km (the difference between
levels amounting to about 700 km). This result, though it needs further theoreti-
cal analysis, is expected for the same reasons as the connection of the Sun radius
with the Solar System structures (see above section “Intramercurial structures”).
Thus the mean distance of the space debris are predicted to be given by the next
probability peaks at 718 km (n = 19), 1475 km (n = 20), 2269 km (n = 21), etc....

n= 19  (720 km) n= 20  (1475 km)n= 18 (earth radius)

altitude km

Figure 9: Density distribution of the recently observed nearest space debris (adapted from [39]). The-
oretically predicted peaks lie at altitudes of 720 km and 1475 km.

The available data (< 2000 km) [39] clearly shows two density peaks at 850
km and 1475 km (see Fig. 9). The second peak is in total accordance with the
prediction (however a more complete analysis is still needed to verify that it does
not correspond to a predetermined orbit). Concerning the first peak, it is necessary
to take into account the dynamical braking of the earth atmosphere. This braking
deviates particles to the Earth in a region up to about 700 km. Moreover, the
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observed distribution should also be corrected for spikes that correspond to identified
debris still orbiting about their original orbit. These corrections should be performed
before reaching a firm conclusion about this test of the theory.

4.2 Extrasolar Planetary system

4.2.1 Semi-major axis

One of us wrote in a colloquium about “Chaos and diffusion in Hamiltonian sys-
tems”, held in February 1994, i.e. more than one year before the discovery by Mayor
and Queloz [40] of the first exoplanet around a solar-type star [23]: “One of the dif-
ficulty of theories of the Solar System formation and structures is, up to now, its
uniqueness: we do not know whether an observed “law” is a peculiar configuration
of our own system, or whether it is shared by all planetary systems in the universe.
But we can expect such other systems to be discovered in the forthcoming years,
and new informations to be obtained about the very distant solar system (Kuiper’s
belt, Oort cometary cloud...). In this regard our theory is a falsifiable one, since it
makes definite predictions about such observations of the near future: observables
such as the distribution of eccentricities, mass, angular momentum, the preferred
positions of planets and asteroids, or possibly the ratio of distance of the largest
gazeous planet and the largest telluric one, are expected in our framework to be
universal structures shared by any planetary system.”

We have seen in the preceding section how the theoretical prediction made in
this text about the Kuiper belt (and other structures in the Solar System) is now
being successfully checked. Since now seven years, the discovery of more than 70
exoplanets allows us to put to the test the second prediction, i.e. the universality
of planetary structures.
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Figure 10: Distribution of the semi-major axis of 79 planets (inner solar system and exoplanets around
solar-like stars). Mercury, Venus, the Earth and Mars lie respectively at n = 3, 4, 5 and 6.

Concerning semi-major axes, the presently observed exoplanets fall in the dis-
tance range of the inner solar system. The n2 law of the inner solar system can

20



be tested by considering for each exolanet the variable 4.83
√
a/M , where a is the

planet semi-major axis (in AU), M the star mass (in solar mass unit) and w0 = 4.83
(i.e. 144 km/s in Earth velocity unit). The theoretical expectation is therefore that
this variable should cluster around integer values (without any free parameter and
performing no fit of the data). The result for the exoplanets known at the date of
writing of the present contribution is given in Fig. fig:exoplanet-a and nicely sup-
ports the prediction. The probability to obtain such an agreement between the data
and the theoretical prediction is 4 × 10−5 ([22, 20]).

A particularly remarkable result concerns the n = 1 and n = 2 orbitals at 144
and 72 km/s, where no large planet is present in our own system (as expected
from its mass distribution determined by the distance of Jupiter to the Sun), but
on which a large number of exoplanets have been found. The proximity of these
exoplanets (the so-called 51 Peg-like exoplanets) to their star is a puzzle for stan-
dard theories of formation, while it was predicted in advance in the scale-relativity
framework, moreover in a quantitative way, since these planets orbit preferentially
at a/M=0.043 and 0.17 AU/M�.

4.2.2 Eccentricity

The eccentricity distribution of the exoplanets can be studied with regard to the
general Keplerian eccentricity solution, e = k/n. The eccentricity distribution of
the global sample (combining all the exoplanets and the inner solar system bodies)
agrees with the predicted quantized distribution around integers k = n × e (see
Fig. 11). The associated probability level is 10−4 [20]. When combining the eccen-
tricity and semi-major axis distribution, the probability to find such a distribution
by chance becomes as low as 3 × 10−7.

The discovery of the large eccentricities of exoplanets is the second puzzle posed
to standard models of formation. On the contrary, this is an expected result in our
framework, since we predict the existence of orbits with eccentricities ranging from
e = 0 to e = 1 − 1/n.
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Figure 11: Distribution of the eccentricities of 79 planets (inner solar system and exoplanets around
solar-like stars). The theory predicts that the product of the eccentricity e by the quantity ñ =
4.83(a/M)1/2 should cluster around integers.
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4.2.3 Pulsar exoplanets

The first discovery of an extrasolar planetary system are the three planets found by
Wolszczan around the pulsar PSR B1257+12 [41]. Even though the star is not solar-
like, it deserves a special study [15, 42]. Indeed the planets probably result from an
accretion disk formed around the very compact star after the supernova explosion.
We can therefore expect that the purely gravitational formation process described by
the gravitational Schrödinger equation be valid with very few perturbations, so that
the theoretical predictions would become very precise. Moreover, the compacity of
the star suggests that planets be self-organized in terms of a smaller scale than the
inner solar system (i.e., of a multiple of w0 = 144 km/s.

Both expectations are supported by the data (see Fig. 12. Indeed, assuming
that the planets finally formed at mean distance of the orbitals, we expect the final
planets to orbit with periods given by Pn = (2πGM/w3) (n2 + n/2)3/2, where M is
the pulsar mass. Period ratios from this formula (with n = 5, 7 and 8 for the three
planets A, B and C) agree with the observed ratios with a remarkable precision
of some 10−4: one obtains (PA/PC)1/3 = 0.6366 while (P5/P8)

1/3 = 0.6359 and
(PB/PC)1/3 = 0.8783 while (P7/P8)

1/3 = 0.8787 [42]. Moreover, using the standard
pulsar mass M = 1.4±0.1 M�, one obtains for the coupling constant of this system
w = (2.96 ± 0.07) × 144 km/s (i.e. the Keplerian velocity at the Sun radius).
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Figure 12: Comparison between the observed periods of the three planets observed around the pulsar
PSR B1257+12 and the scale-relativity prediction. The agreement between the observed periods and the
predicted ones is so precise (the difference is less than 3 hours for periods of several months) that three
zooms by a factor of 10 are indicated.

These results have allowed to predict precisely the possible existence of other
periods, in particular short ones at 0.322 days (n = 1, 1.958 days n = 2 and 5.96
days (n = 3). In a recent work, Wolszczan et al. [43] have obtained timing data
for about 30 successive days. We have analyzed the residuals of these data after
substraction of the effects of the three planet (the dispersion of these residual being
still larger than the error bars), and we have found a marginal detection (at a
significance level of 2.7 σ) for a period P = 2.2 days, which is compatible with the
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n = 2 prediction. Such a preliminary result clearly needs confirmation using more
complete data.

4.3 Galactic structures

4.3.1 Star formation

The new approach allows to bring simple solutions to some still unsolved fundamen-
tal problems in the standard theory of star formation. This concerns in particular
the morphogenesis of the star forming zones. Indeed, one can as a first approx-
imation describe the interstellar medium from which a star forms in terms of an
average constant density, i.e., of a 3-D isotropic harmonic oscillator potential. The
solutions of the corresponding Schrödinger equation are given in Sect.3.2 and illus-
trated in Fig. 13. For an increasing energy, these solutions describe single objects
(n = 0), then binary structures (n = 1), then 3-chains and trapeze-like structures
(n = 2), 4-objects chains (n = 3), etc... Such morphologies are naturally unstable
and rapidly evolve just after their formation, since the potential is locally changed
by the structuration.

Now it is remarkable that zones of star formations such as O and B associations
are known to show in their central regions double structures (ex. the “butterfly”
in N159 of the Large Magellanic Cloud), chain-like morphologies (ex. NGC 7510),
trapeze-like morphologies (ex. the Orion trapeze), etc... (see Fig 14).

Another morphological specificity of star formation at a smaller scale is the
presence of disks associated with polar jets. As we have seen in the “Ejection
process” section and will be illustrated hereafter in the “Planetary Nebula” section
(see the cases (l = 2, m = 0) and (l = 4, m = 0), this is precisely the result
obtained when looking for the angular dependence of the solutions of the Schrödinger
equation, when assuming that the matter and the gas has been preferentially ejected
at angles given by the peaks of angular probability density. This vast subject can
be only touched upon in this review and will be developed in more detailed in a
forthcoming work.

4.3.2 Binary stars

A crucial test of the theory consists of verifying that it applies to pure two-body sys-
tems. The formation of binary stars remains a puzzle for the standard theory, while
more than 60 % of the stars of our Galaxy are double. Conversely, in the new ap-
proach the formation of a double system is obtained very easily, since it corresponds
to the solution n = 1 of the gravitational Schrödinger equation in an harmonic oscil-
lator potential, i.e., a uniform density background (while the fundamental solution
n = 0 represents a single spherically symmetric system): see Figs. 13 and 14.

After its formation, the binary system will evolve according to its local Kepler
potential. The binary Keplerian problem is solved, in terms of reduced coordinates,
by the same equations as single objects in a central potential. This solution brings
informations about the inter-velocities and the inter-distances between stars. The
observed velocity is expected to be quantized as vn = w/n with w equal to 144
km/s or a multiple or submultiple (depending on the scale of the binary star).

As an example of application, eclipsing binaries are an interesting case of close-
by systems, for which we therefore expect the gravitational constant to be a multiple
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n=0 n=1

n=2 n=2
(2,0,0) (1,1,0)

Figure 13: The three first modes of the 3-dimensional harmonic oscillator potential, that correspond
to the gravitational potential of a background of constant density (the mode n = 2 decays into two
sub-modes). In the scale-relativity approach, the geodesics equation can be integrated in terms of a
Schrödinger equation, so that structures are formed even in a medium of strictly constant density. De-
pending on the value of the energy, discretized stationary solutions are found, that describe the formation
of one object (n = 0), two objects (n = 1), etc... We have simulated these solutions by distributing points
according to the probability density. The mode n = 1 corresponds to the formation of binary objects
(stars, galaxies, clusters of galaxies...).

Figure 14: Examples of morphologies of star clusters. Up left: the globular cluster M13; up right: the
“butterfly” nebula in M59 [44]; down left: the chain cluster NGC 7510; down right: the trapeze in Orion
nebula.
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of 144 km/s. It has indeed been found [45, 47] that the average velocity of the 1048
eclipsing binaries in the Brancewicz and Dvorak catalog of eclipsing binaries [46] is
w = 289.4± 3.0 = 2× (144.7± 1.5) km/s (see Fig. 15). Moreover, a good fit of their
interdistance distribution is given by the probability distribution of the fundamental
Kepler orbital; similar results are obtained using several other catalogs of binary
stars [47].
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Figure 15: Distribution of the intervelocity between binary stars in the Brancewicz catalog of eclipsing
binaries. The average velocity is 2 × (144.7± 1.5) km/s.

4.3.3 High-velocity clouds

High-velocity clouds (HVCs) are neutral gas clouds with anomalous observed ve-
locities. They are grouped in large structures named complexes. In a recent paper,
Woerden et al. [48] have obtained more precise values for the distances of HVCs
in complex A (chain A) and confirmed their positions in the halo. A particular
structure of such typical clouds has been observed by Pietz et al. [49] in the com-
plex C. Velocity bridges have been identified, that seem to be in accordance with
the expected Keplerian velocity distribution (144/n km.s−1). We give two examples
of this effect in Fig. 16, which shows the mass density toward the line of sight in
function of the radial velocity (the zero velocity is associated to the HI gas in the
Galactic disk). Large bridges at 144 km.s−1 with sub-structures near ±20 km.s−1,
±24 km.s−1, ±36 km.s−1 and −48 km.s−1 are clearly apparent in these diagrams.
This distribution can be considered as a signature of a Keplerian interaction between
the molecular clouds in the Galactic halo and the Galactic disc.
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Figure 16: Internal structures of HVCs in complex C (centered on b = 54◦.6 and l = 92◦.4). Details
reveal a Keplerian distribution in 144/n km.s−1. (Adapted from ref. [49]).

4.3.4 Proper motion near the Galactic center

The study of the velocity distribution of stars near galaxy centers could reveal
to be particularly interesting in the context of testing the theory. Indeed there
is increasing evidence that galaxies like our’s host in their center compact masses
(possibly black holes) of several 106 M�, based on observation of Keplerian velocity-
distance relations. Therefore this could allow one to put the Keplerian quantization
law to the test for large values of the velocities, then for large values of the coupling
constant w, which should ultimately reach c (i.e. αg = 1). We give here a first
preliminary example of such a work using observations by Eckart and Genzel [50]
of the proper motions of 39 stars located between 0.04 and 0.4 pc from the Galactic
center. They find that these observations supports the presence of a central mass
of 2.5 ± 0.4 × 106 M�. Though the velocities do not yet reach high values and the
error bars are large (≈ 60 km/s), the observed distribution of velocity components,
given in Fig. 17, is compatible with a w/n quantization matching with the 144 km/s
sequence.
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Figure 17: Distribution of the absolute values of stellar velocity components near the galactic center
from the data of [50]. The diagram mixes the Right Ascension and Declination components of velocity
derived from proper motion, with radial components derived from spectral shift (for a fraction of the
sample). The main probability peak lies at 72=144/2 km/s.

4.4 Planetary Nebulae

Planetary nebulae, despite their misleading names, are a general stage of evolution
of low mass stars. They result from the ionization by the radiation of the central
star of previously ejected outer envelopes.

The standard theory to explain the formation of planetary nebulae (PNe) is the
interacting stellar wind (ISW) model. The simple cases of spherical and elliptical
PNe are easily understood by this model, but many far more complicated mor-
phologies have now been discovered, in particular thanks to high resolution Space
Telescope images. Despite many attempts using numerical simulations made with a
large number of initial conditions and accounting for several physical effects (mag-
netic fields, companion star perturbation, collimated outflows, ...), no coherent and
simple understanding of these shapes has yet emerged.

Our approach to this problem is a scale-relativistic generalization of the ISW
model [51]. Namely, we account for the chaotic motion of the ejected material
and we simply replace the standard equation of dynamics used in the model by
the generalized one (written in terms of the covariant derivative). It becomes a
Schrödinger equation having well-defined angular solutions ψ(θ, φ). Their squared
modulus P = |ψ2| is identified with a probability distribution that presents maxima
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and minima (see Figure below): this means that we automatically find, by this
method, that the star has a tendency to eject matter along certain angle values that
are far more probable than others. Therefore we are able to predict the existence
of discretized possible morphologies, in correspondence with quantized values of the
square angular momentum L2 and of its projection Lz.

This approach is not contradictory with the standard ones: on the contrary, for
each PN with a given morphology, it will remain needed to understand why specific
values of L2 and Lz is achieved. But the new point here is that the variability of
shapes and their non-spherical symmetry (while the field is spherically symmetric)
may now be simply understood in terms of states of a fundamental conservative
quantity, the angular momentum.

Moreover, observations indicate that the propagation velocity is nearly constant
(this result is already used in numerous simulations [52], [53]). This means that
the PNe shells have an effective free Galilean motion. Therefore we can apply to
the problem of their structuration the theoretical approach developed in the third
section for a constant potential.

4.4.1 Elementary morphologies

The global shaping is now understood as a consequence of the geometry of geodesics,
whose distribution is described by the generalized Schrödinger equation (30). Its
solutions, ψnlm(r, θ, φ) = Rnl(r).Y

m
l (θ, φ) have two separable parts: the radial part

(32) gives us information about matter density along the structure and the angular
part imposes global shape specificity. The visualization of the 3D probability distri-
bution of spherical harmonics gives a first result on the angular and matter density
repartition for PNe (see figure below):

The model can also take into account perturbative terms, such as second order
terms in the velocity power series expansion, external influences, the magnetic con-
tribution in the ejection process, etc... Many hydrodynamic simulations neglect the
magnetic force [53, 54], though PNe are expected to have strong magnetic fields such
as the red giant stars and the white dwarfs [55]. The easiest description consists of
introducing a poloidal field. With this particular geometry, the flow of ionized par-
ticles (because of the UV star radiation) should be deviated in the same direction,
i.e. toward the axis of symmetry. Moreover, for particular (l,m) values, bipolar
structures naturally emerge. In these singular objects, a self-gravitating force ap-
pears. This force acts like the magnetic field and induces a constriction along the
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axis of symmetry of the PNe. So, the angular distribution has to be corrected to
account for the perturbations introduced.

4.4.2 Morphological results

We present a synthesis of the different shapes allowed by our model. Three categories
resume all the possibilities:
• Spherical and elliptic: The basic spherical shape is obtained for the specific value
of (l = m = 0). For the restriction of ([m = ±l]∀ l ≥ 1), PNe will evolve to an
equatorial disc. The tilting on the line of sight of this disc will induce a spherical
or an elliptical PN.

l=0 m=0 l=1 m=1

• Bipolar ejection: The general process upon which our whole description is based
is an ejection process. Therefore, it is not surprising to find solutions describing
bipolar jets ejection. For ([m = 0]∀ l ≥ 1), the density distribution is concentrated
on the axis of the objects.

l=1 m=0 l=2 m=0 l=3 m=0 l=4 m=0

• Bipolar shell: All the other solutions give bipolar shell structures. The empirical
relation (l − m) + 1 constrains the number of internal structures. For example,
(l = 6, m = 2) gives 5 structures (one disc and four shells). This brief presentation

l=6 m=5 l=6 m=4 l=6 m=3 l=6 m=2 l=6 m=1
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allows one to classify all the elementary shapes and gives a method for constraining
the structure with the couple (l,m).

4.4.3 Comparison and discussion

The following four examples (Fig. 18) show the direct comparison between structures
observed and predicted quantized shapes built with the Schrödinger model: we can
see that many exotic shapes are naturally obtained in this framework. Moreover,

Figure 18: Direct comparison between predicted quantized shapes and typical observed Planetary Neb-
ulae, plus the η Carinae.nebula (STScI images, adapted from http://ad.usno.navy.mil/pne/caption.html)

the general solutions could be used in many ejection/scattering cases other than
PNe. In Fig. 19, we compare the shapes of young star ejection states or SuperNovae
explosions with quantized solutions (also valid for inward motion). To conclude this
section, the Schrödinger approach brings a new conception in the general ejection
process in astrophysics. Our PNe shaping model treats in the same way all the
elementary shapes and is in accordance with many singular observations.
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Figure 19: Generalization of the theoretical description of ejection process. The left hand side represents
a young star ejection state, and the right hand side, a supernova explosion (adapted from STScI images).

4.5 Extragalactic structures

4.5.1 Rotation curves of spiral galaxies

The flat rotation curves observed in the outer regions of spiral galaxies is one of the
main dynamical effects which demonstrates the so-called “missing mass” problem.
Indeed, farther than the visible radius of galaxies, a very small quantity of matter is
detected by all the possible methods used (images at all wavelengths, gravitational
lensing, 21 cm radio observations, etc...). Therefore one expects the potential to be
a Kepler potential φ ∝ 1/r beyond this radius, and as a consequence one expects
the velocity to decrease as v ∝ r−1/2, while all available observations show that
the velocity remains nearly constant up to large distances for all spiral galaxies. In
order to explain this effect and other similar effects at all extragalactic scales (in
particular in clusters of galaxies, as first discovered by Zwicky in the years 1930), one
usually makes the hypothesis of the existence of huge quantities of missing, “dark”
matter that would be the dominant mass density constituent of the Universe. How-
ever, despite decades of very active research, this missing matter continues to escape
detection. Another suggestion was to modify Newton’s gravity (the MOND hypoth-
esis), but it has up to now not been possible to render such an ad-hoc hypothesis
consistent with general relativity nor with observations at different scales.

Moreover, the “dark matter” problem is deeply connected with the problem of
the formation of galaxies and of large scale structures of the Universe. Indeed, in
the standard approach to this problem, it would be impossible in its absence for the
very small z = 1000 fluctuations to grow toward today’s structures. However, as
recalled in Silk’s quotation at the beginning of this contribution, even in its presence
the theory of gravitational growth remains unsatisfactory.

The scale-relativity approach allows one to suggest an original solution to both
problems. Indeed, the fractal geometry of a non-differentiable space-time solves the
problem of formation at all scales (this is the subject of this whole contribution), and
it also implies the appearance of a new scalar potential (Eq. 18), which manifests the
fractality of space in the same way as Newton’s potential manifests its curvature.
We suggest that this new potential may explain the anomalous dynamical effects,
without needing any missing mass.
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This will be discussed in more detail in the joint paper [6]. Let us exemplify this
result here in the case of the flat rotation curves of spiral galaxies. The formation of
an isolated galaxy from a cosmological background of uniform density is obtained,
in its first steps, as the fundamental level solution n = 0 of the Schrödinger equation
with an harmonic oscillator potential (Eq. 28). Its subsequent evolution is expected
to be a solution of the Hartree equation (19): this will be the subject of forthcoming
works.

Once the galaxy is formed, let r0 be its outer radius, beyond which the amount
of visible matter becomes small. The potential energy at this point is given, in
terms of the visible mass M of the galaxy, by:

φ0 = −GMm

r0
= −mv2

0. (35)

Now the observational data tells us that the velocity in the exterior regions of the
galaxy keeps the constant value v0. From the virial theorem, we also know that
the potential energy is proportional to the kinetic energy, so that it also keeps a
constant value given by φ0 = −GMm/r0. Therefore r0 is the distance at which the
rotation curve begins to be flat and v0 is the corresponding constant velocity. In
the standard approach, this flat rotation curve is in contradiction with the visible
matter alone, from which one would expect to observe a variable Keplerian potential
energy φ = −GMm/r. This means that one observes an additional potential energy
given by:

Qobs = −GMm

r0

(
1 − r0

r

)
. (36)

Now the regions exterior to the galaxy are described, in the scale-relativity approach,
by a Schrödinger equation with a Kepler potential energy φ = −GMm/r, where
M is still the sole visible mass, since we assume here no dark matter. The radial
solution for the fundamental level is given by:

√
P = 2 e−r/rB , (37)

where rB = GM/w2
0 is the macroscopic Bohr radius of the galaxy.

It is now easy to compute the theoretically predicted form of the new potential
(Eq. 18), knowing that D = GM/2w0:

Qpred = −2mD2 ∆
√
P√
P

= −GMm

2rB

(
1 − 2rB

r

)
= −1

2
w2

0

(
1 − 2rB

r

)
. (38)

We therefore obtain, without any added hypothesis, the observed form (Eq. 36)
of the new potential term. Moreover the visible radius and the Bohr radius are
now related, since the identification of the observed and predicted expressions yield:
r0 = 2 rB . The constant velocity v0 of the flat rotation curve is also linked to the
fundamental gravitational constant w0 by the relation w0 =

√
2 v0. This prediction

is consistent with an analysis of the observed velocity distribution of spiral galaxies
from the Persic-Salucci catalog [56], as shown in Fig. 20 [57]. The peak velocity
is 142 ± 2 km/s, while the average velocity is found to be 156 ± 2 km/s, so that√

2 < v >= 220 ± 3 km/s: this value, which we shall also obtain in the study of
clusters of galaxies (see below) is within 1σ of 3/2 × 144.7 km/s.
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Figure 20: Distribution of the outermost observed velocities in spiral galaxies (flat rotation curves) from
the catalog of rotation curves for 967 spiral galaxies by Persic and Salucci [56]. The fitted continuous
curve is proportional to v2 exp
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)
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4.5.2 Compact groups

As remarked by Hickson [58], “compact groups of galaxies provide the best envi-
ronment for galaxy interactions to occur, so it is natural to study these systems in
order to better understand the interaction process and its effects”. “But the exis-
tence of such systems is a puzzle, as they are unstable to gravitational interactions
and mergers”. “A way out of this impasse is to assume that new compact groups
are constantly forming”. Finally Hickson reaches the conclusion, with now many
other specialists, that “in compact groups such as those illustrated [in the Atlas of
Compact Groups of Galaxies], we may be actually observing the process of galaxy
formation”.

It is therefore remarkable in this context that the kind of morphologies displayed
in a systematic way by these compact groups is precisely chain and quadrilateral
structures quite similar to those encountered in star forming regions (see Fig. 21).
The basic solutions obtained from the gravitational Schrödinger equation for for-
mation from a background of constant matter density (i.e. harmonic oscillator
potential) once again explain these morphologies in a very simple way.

4.5.3 Galaxy pairs

In the same way as binary stars in our Galaxy, binary galaxies are very common
structures in the Universe. For example our own Local Group of galaxies (which
deserves a special study at the end of this paper) is organized around the pair of
giant spirals (Milky Way Galaxy / Andromeda nebula). This is easily understood in
our framework, since double structures are the lowest energy solution (beyond the
fundamental level that represents an isolated object) of the gravitational Schrödinger
equation with a harmonic oscillator potential.

Moreover, binary galaxies are one of the first extragalactic systems for which a
redshift quantization effect in terms of 144km/s and its submultiples has been dis-
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Figure 21: Galaxy grouping: (up left) the giant elliptical galaxy M87 in the center of the Virgo cluster
(photo AAT, D. Malin); (up right) the center of the Coma cluster; (down) two examples of typical
compact groups of galaxies : the triplet HCG 14 [59] and a trapeze structure in the quintet HCG 40 [60].

covered by Tifft [61]. However, this effect has been interpreted by Tifft and other
authors as an “anomalous redshift” of non-Doppler origin, whose existence would
therefore question the whole foundation of cosmology. But in such an interpreta-
tion, there should be a fundamental difference of behavior between motion deduced
from extragalactic redshifts and the motion of planets. The discovery [15, 9, 17],
motivated by the scale-relativity predictions, that the planets of our own Solar Sys-
tem and of extra-solar planetary systems do have velocities involved in the same
sequence vn = (144/n) km/s (namely, the velocities of Mercury, Venus, the Earth
and Mars are respectively ≈ 48, 36, 29 and 24 km/s) has definitively excluded the
anomalous redshift interpretation.

On the contrary, not only the extragalactic redshifts are therefore confirmed to be
of Doppler and cosmological origin, but the preferential velocity values take meaning
here as a mere manifestation of the formation of structures. In the same way as
there are well-established structures in the position space (galaxies, groups, clusters,
large scale structures), the velocity probability peaks are simply the manifestation
of structuration in the velocity space.

In a recent work, several methods of deprojection of the intervelocity (only the
radial component is observed) and of the interdistance of binary galaxies (only the
two transverse components are observed) have been developed [62]. The result
confirms the existence of probability peaks in the velocity space (see Fig. 22) and in
the position space (more precisely, in the interdistance to mass ratio distribution), in
agreement with the scale-relativity prediction for the Kepler potential of the pairs in
reduced coordinates. These peaks are correlated through Kepler’s third law, which
is a final demonstration of the Doppler origin of the redshift differences in galaxy
pairs.
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Figure 22: Deprojection of the intervelocity distribution of galaxy pairs [62] from the Schneider-Salpeter
catalog with precision redshifts [63]. The two main probability peaks are found to lie at 144 and 72 km/s.

4.5.4 Clusters of galaxies

The Coma cluster of galaxies is the first system in which probability peaks in the
redshift distribution have been discovered [64], in units of ≈ 216 km/s. Recall that
we have also identified such a value in our own Solar System, since it corresponds
to the Kepler velocity of infrared dust at 4.09 solar radius (see Fig. 5). We give in
Fig. 23 the result of an analysis using a discrete Fourier transform of more recent
accurate redshifts for three clusters, Coma, A576 and A2634. We recover the Tifft
result for Coma and confirm it with A 576 and A2634.

A detailed application of the scale-relativity theory to these structures is still to
be developed. Indeed, we deal here with a self-gravitating system that come un-
der the Schrödinger-Poisson coupled equations, or, equivalently, under the Hartree
equation (which is a fourth order equation). Moreover, a global description in terms
of a quantum-like statistical physics is also needed in this case. This will be the
subject of a forthcoming work.
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Figure 23: Histogram of the modulus of the discrete Fourier transform of radial velocities of galaxies in
three clusters, Coma (230 redshifts), A576 (221 redshifts) and A2634 (125 redshifts). A significant peak
around ≈ 216 = 3 × 72 km/s is found in every cases.
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4.5.5 Local Supercluster

The existence of a preferential value of ≈ 36 = 144/4 km/s for the intervelocity
of galaxies at the scale of the local supercluster was first suggested by Tifft and
Cocke [65]. Croasdale [66], then Guthrie and Napier [67] found some support for
this claim using spirals with accurately measured redshifts up to ≈ 1000 km/s. In a
more recent work [68], they have confirmed the effect with galaxies reaching ≈ 2600
km/s. We have performed a power spectrum analysis on their database (see Fig 24):
we indeed find a highly significant peak corresponding to a preferential intervelocity
of 37.5 km/s, and also a marginally significant one at 432 km/s.
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Figure 24: Power spectrum of the radial velocities of the 97 galaxies in the Guthrie-Napier sample
with accurately determined redshifts, corrected for the optimum solar vector (219 km/s, 96 degree, −11
degree). The total range of velocities is 2665 km/s. Significant peaks are obtained for v ≈ 36 km/s and
v ≈ 432 km/s.

Moreover, Guthrie and Napier remark that the phenomenon appears strongest
for the galaxies linked by group membership. We confirm this result by a specific
analysis of the group galaxies (Fig 25), which show peaks of their intervelocity
distribution at ≈ 144, 72, 36 km/s and possibly sub-levels (while 108 = 3×36 km/s
is absent), as expected for a local Kepler potential for which vn = w0/n. It is also
supported by the study by Jacob [69] and Lefranc [70] of other independent samples
of galaxies at the scale of the local supercluster, which have provided significant
peaks at 48 and 36 km/s.

All these properties can be readily explained in the scale-relativity framework.
Indeed, the potential to be inserted in the gravitational Schrödinger equation for
describing the structuration of these objects is, to the first order approximation,
a combination of a 3-D harmonic oscillator potential describing the density back-
ground at the scale of the local supercluster and of local Kepler potentials in the
grouping zones. The solution n = 1 of the harmonic oscillator leads one precisely
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Figure 25: Distribution of closest intervelocities of galaxies which are members of groups in the Guthrie-
Napier accurate redshift sample.

to expect the existence of a preferential intervelocity depending on the density and
on the gravitational coupling constant. Moreover, since these structures are under-
stood as the equivalent in velocity space of the well-known structures in position
space (galaxies, groups, clusters, etc...), we also expect their strengthening in groups
and the local replacement of a linear quantization law by an inverse law.

4.5.6 Very large scale structures

The morphology of superclusters of galaxies is, like stellar associations, ensembles of
star clusters and groups of galaxies, characterized by the existence of pairs, chains,
etc..., as expected from the solution of the Schrödinger equation in the cosmological
potential (i.e., harmonic oscillator in de Sitter coordinates) produced by a uniform
background matter density.

Redshift structures of the kind that scale-relativity is expected to predict, namely,
probability peaks for some specific values of redshift differences, have also been de-
tected on very large scales. Broadhurst et al. [71] have detected a pseudoperiodicity
in units of 12800 km/s in the distribution of galaxies in two opposite cones directed
toward the North and South Galactic poles. This effect has since that time been
confirmed in several redshift samples of galaxy and clusters of galaxies (see e.g.
[72]).

At even larger scales, the existence of preferred redshifts for quasars has been
pointed out by Burbidge and Burbidge [73] and subsequently confirmed by many
authors. One finds peaks for redshift differences such that ∆ ln(1 + z) = 0.206 [74].

The detailed understanding of such an effect needs an application of the scale-
relativity approach to the cosmological realm, since the corresponding length-scale
of the Broadhurst et al. effect is about 180 Mpc (using the recently measured
precise Hubble constant H0 = 70±7 km.s−1.Mpc−1), while the gigaparsec is almost
reached with the QSO effect. Such a study is too long to be undertaken here. Let
us only briefly note that we expect the gravitational coupling constants αg = w/c at
different scales to be interrelated, and, ultimately, we expect the w’s to be related
to the maximal velocity c (i.e., αg = 1).

The observed values of the large scale and small scale constants are consistent
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with such a matching. Indeed, the inverse coupling constant corresponding to w0 =
144.82 ± 0.01 km/s (see [22] for a suggested theoretical prediction of this value) is
α−1

g = 2070.10±0.15. Since 2070 = 2×32×5×23, it is remarkable that c/23 = 13034
km/s, which is compatible with the Broadhurst et al. periodicity, while the quasar
periodicity is close to c/5 = 0.2. Moreover, various multiples of w0 (by factors of
2, 3 and 9) which have been observed in several systems also belong to the same
sequence.

4.6 Local Group of galaxies

Let us conclude this contribution by a more detailed analysis of our Local Group
of galaxies. It is a particularly interesting system as concerns the application of the
gravitational Schrödinger equation, since it is essentially made of two giant spiral
galaxies (our Milky Way galaxy and M31) surrounded by their companions.

The analogy of its structure (shared with several other loose groups of spirals)
with old expanding stellar associations has been pointed out long ago by de Vau-
couleurs [75]. As we have seen in previous sections, the theory of scale relativity
allows one to understand the gravitational formations of such binary systems (and
of multiple ones) in terms of the first excited state (n = 1) which is solution of the
gravitational Schrödinger equation for a constant background density (harmonic
oscillator potential).

The use of the scale-relativity approach in this case is also supported by the
investigation of the motion of these galaxies in numerical simulations (see e.g. [76])
that has demonstrated the chaotic and violent past and future history of the Local
Group. Moreover the loose character of this group implies a velocity field which is
locally dominated by the gravitation of the two giant spirals, but which is expected
to rejoin the Hubble expansion field in its outer regions. The expected quantization
law is therefore rather complicated in this case, since it should correspond to a Ke-
pler potential near M31 and MW, then to a two-body potential in an intermediate
region, and finally to a harmonic oscillator potential at the scale of the local super-
cluster. A possible redshift quantization in the Local Group in units of 72 km/s has
already been detected [77].

Observations show that there is a net age difference between both dominant
galaxies and the rest of the dwarf galaxies in our Local Group [78]. One can also
assert that the gas is isotropic in each subgroup and is subjected to the simple
Keplerian potential of the dominant galaxies. Thus, we can use the Keplerian
solutions developed in the third section. All the solutions should be constrained in
order to agree with the initial system (spherical symmetry and isotropic subgroups).
The isotropic information is contained in the angular part of the equation ([79]).
Spherical harmonics, Y m̂

l (θ, φ), reveal an isotropic arrangement only for l = 0 and
m̂ = 0. Then the mean distance to the gravitational center is given by the formula
< r >n = (3GM/2w2

0)n2 (cf. Keplerian problem section). This equation assumes
a particular quantization law (in n2) for the galactic distances with regard to the
center of the dominant galaxies. The two dominant galaxies will therefore infer two
different laws in two different domains (in this first Keplerian stage). The constant
w0 can not be fixed beforehand : a first step then consists of considering the main
constant at 144 km.s−1 and the closest values (288 km.s−1, 72 km.s−1). The mass
M is the visible mass of the Milky Way. From the data of Bahcall [79], we take a
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representative mass of 7.2 × 1010M�. For M31, from the data used by Kent et al.
[81], it seems reasonable to take a visible mass value close to 13.2 × 1010M�.
For these two systems, we can estimate the laws of the Keplerian model allowed by
the scale-relativity approach. Various values of w0 are considered:

w0 72 km.s−1 144 km.s−1 288 km.s−1

3
2

GMMW

w2

0

89.2 kpc 22.3 kpc 5.57 kpc
3
2

GMM31

w2

0

164 kpc 40.1 kpc 10.25 kpc

Table 1: Theoretical characteristic distances for the Milky Way and M31 systems in function of w0.

Furthermore, it is necessary to treat the case of the remote galaxies and of
the NGC 3109 galaxies subgroup. From the theoretical point of view, this is an
interesting problem since, assuming a global coherence of the double system in
its outer regions described in terms of a global D value, it shares some common
features with the Schrödinger equation written for molecules like H+

2 (namely, a
test particle subjected to two attractive centers). One finds that the wave function,
solution of such a problem, is ψ = a1 ψ1(r1) + a2 ψ2(r2), where ψ1 and ψ2 are
solutions of the Schödinger equations written using this global D for each individual
Kepler potential. The global solution can be subsequently matched with the local
solutions. Unfortunately, the case of the Local Group (asymmetrical gravitational
double system) is more complicated because DMW 6= DM31 and ψMW 6= ψM31.
Nevertheless, the molecular solution has the advantage to supply a simple presence
probability, revealing the interference of the individual solutions: P = a2

1P2
1 +

a2
2P2

2 + 2a1a2

√
P1P2 cos(∆θ). Even if this solution can not be used as such in the

more complex macroscopic gravitational case, it will be interesting to look at the
configuration of the remote galaxies with regard to the laws that apply around M31
and Milky Way.

4.6.1 Structures in position space

The precision on the distances and the radial velocities in Mateo’s synthesis work
[78] is sufficient for using them directly in our study. By the knowledge of the sun
vector, we calculate the galactocentric distances d. To verify the existence of a law of
the form d = d0×n2, we shall analyze the distribution of the observable ñ =

√
d/d0.

We expect this distribution to exhibit probability peaks around integers values (n).

Milky Way subgroup The study of the data about the distances of the close-by
galaxies reveals a minimum for a characteristic distance d0 = 5.50 kpc. This result
is in very good agreement with the theoretical prediction of 5.57 kpc for w0 = 288
km.s−1. We therefore compute the values of ñ =

√
d/5.57, then the differences

between them and the nearest integer (δn = ñ−n). In the standard framework one
expects these differences to be uniformly distributed between −0.5 and +0.5, while,
in the present approach, one expects them to peak around zero.

The result, shown in the tables and histograms, clearly favors the gravitational
Schrödinger approach, despite the small number of objects.
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Sag LMC SMC Ursa Sculp Drac Sext Cari Forn Leo II Leo I Phoe

d 16 48 55 68 79 82 89 103 140 207 254 445

ñ =
√

d
5.50

1.70 2.95 3.16 3.51 3.79 3.86 4.02 4.32 5.02 6.13 6.79 8.99

δn = ñ − n -0.30 -0.05 0.16 -0.49 -0.21 -0.14 0.02 0.32 0.02 0.13 -0.21 -0.01

-0.4 -0.2 0 0.2 0.4

1

2

3

4

-0.4 -0.2 0 0.2 0.4

1

2

3

4

Table 2: Histograms of the difference between the variable ñ =
√
d/5.57 kpc and its nearest integer,

for the Milky Way companion galaxies. The right-hand side represents the MW subgroup, Leo I being
excluded due to the large uncertainty on its distance.

Andromeda subgroup The distance distribution of M31 companion galaxies
is also in good agreement with a quantized n2 distribution, for a value of d0 = 10.72
kpc. Once again, the Keplerian model developed for w0 = 288 km/s (that gives an
expected value d0 = 10.25 kpc) is close to the observed law in r = 10.72n2 kpc.

M32 N205 AI AIII N147 N185 M33 IC10 AII LGS3 IC1613 EGB

d 35 45 57 66 106 172 219 261 270 275 500 685

ñ 1.80 2.04 2.30 2.48 3.14 4.00 4.52 4.93 5.01 5.06 6.82 7.99

δn -0.20 0.04 0.30 0.48 0.14 0.00 -0.48 -0.07 0.01 0.06 -0.18 - 0.01

-0.4 -0.2 0 0.2 0.4

1

2

3

4

5

6

-0.4 -0.2 0 0.2 0.4

1

2

3

4

5

Table 3: Histograms of the difference between the variable ñ =
√
d/10.72 kpc and its nearest integer,

for M31 companion galaxies. The right-hand side represents the M31 subgroup without And II and
EGB0427+63 (large uncertainties).

Despite the small number of objects, the probability to obtain this distribution
by chance is (0.07).

Remote galaxies subgroup The configuration of the remote galaxies can also
be compared with the M31 quantization law and with the MW quantization law
(see the histograms).

The histograms show maxima close to zero as theoretically expected. The galaxy
distribution continues to agree with the quantization laws despite the larger distance
values and the intervention of both potentials. This opens the possibility that the
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Table 4: Histograms of the difference between the variable ñ =
√
d/d0 and its nearest integer n, for the

subgroup of remote galaxies.

global solution be a linear combination of the solutions found independently for
each subgroup (such as in a molecular case).

Final result for positions Combining all the gravitational sub-systems of the
Local Group, we can now draw a global histogram of the relative differences δn = ñ−
n. Since this analysis accumulates all the values tested by the proposed quantization
laws, some remote galaxies that agree with both M31 and MW laws are estimated
twice, and furthermore, there are some galaxies with large uncertainties. Therefore
we also consider a second limited sample: for the whole Local Group, we take 11
galaxies of the Milky Way subgroup and three galaxies of the NGC-3109 subgroup
subjected to the quantization law dn = 5.50n2 kpc. For M31 (dn = 10.72n2 kpc), we
consider only 10 elements of M31 subgroup and 7 remote galaxies (more significant
in M31 potential). The histograms obtained for these two samples differ significantly
from a uniform distribution and peak at zero as expected.
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Table 5: Histograms of the difference between the variable ñ =
√
d/d0 and its nearest integer n for all

galaxies in the Local Group. The right-hand side histogram is for the limited sample.

This behavior corresponds to a distribution of
√
d/d0 that shows probability

peaks for integer values. The probability to obtain such a distribution by chance
is estimated to be P = 2 × 10−5. This value corresponds to a statistical meaning
better than the 4σ level. This is supported by the limited sample, for which one
obtains a similar result, P = 5 × 10−5.

4.6.2 Structures in velocity space

The velocity field of the Local Group provides an interesting test of the theory.
We expect the velocity to be quantized according to the formula < v2 >= (w0/n)2

(cf. the section about Keplerian dynamical consequences). The study of the spatial
structures has teached us that the constant is w0 = 288 km/s for the Local Group.
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A correction by the solar vector is made to obtain galactocentric radial velocities.
We use the solar vector defined by Dehen and Binney [80].

A first step of the velocity distribution analysis consists of limiting ourselves
to the subset surrounding the Milky Way. We have found that in this case the
spatial distribution is given by the law r = 5.50n2 kpc. The corresponding radial
velocity law is given by < v2 >= (w0/n)2. The solutions in the position space and
velocity space are equivalent with regard to the Schrödinger equation. Therefore,
one associates to a given satellite energy a position and a velocity state given by
the same main quantum number n.

As an example, let us consider the first nearby galaxy (Sagittarius). The distance
of this galaxy is characterized by the main number n = 1.7. From this value we
predict a velocity v = ±(w0/1.7) ≈ ±168 km/s, which compares well with the
observed galactocentric velocity, 165 km/s. This example shows the new possibilities
offered by our model to interpret the peculiar galaxy velocities.

More generally, one obtains the distance-velocity relation around the MW galaxy
in terms of the fundamental constant 288 km/s:

v

288 km/s
= ±

√
5.50 kpc

r
. (39)

As one can see in Fig. 6, there is a satisfactory agreement of the data with the
model based on w = 2 × 144 km/s, except for the deviation of some individual
galaxies such as Leo I. The right hand side of the figure draws the same distance-
velocity diagram completed with the remote galaxies (the Andromeda subgroup
is not represented), and matched to the Hubble velocity field at large distances.
However, due to the uncertainties on the velocities (which are strongly dependent
on the choice of the solar vector) and the small number of objects, we find that
the present data in the Local Group does not allow to put to the test a velocity
quantization in terms of submultiples of 144 km/s.
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Table 6: Left hand side: distribution of the galaxy velocities in the MW subgroup in function of their
distances. The two curves represent the theoretical prediction from Kepler’s third law and a velocity
constant of 288 km/s. Right hand side: larger scale representation of the Local Group showing the
reconnection of the local Keplerian velocity field to the outer Hubble field.

This special study was motivated, despite the small number of objects, by the
fact that the Local Group is our own group of galaxies. We intend to extend this
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work in the future to other similar galaxy groups, which should allow to improve
the statistics.

5 Conclusion and prospect

We have attempted, in the present contribution, to give an as wide as possible view of
the possibilities opened by the scale relativity / gravitational Schrödinger approach
to the question of the formation and evolution of structures in the Universe.

Despite the fact that observational tests of the theoretical predictions have been
suggested from the scale of the Earth to large scale structures of the Universe, we
have not presented a fully exhaustive view of the present state of the subject. There
are indeed many other astrophysical systems which have not been quoted here, while
they come under the same kind of approach and have also began to be analyzed
with positive preliminary results: e.g., star radii [82], the asteroid belt [83], magnetic
axes of planets and satellites [84], the solar wind [84], etc...

Moreover, we think this contribution should mainly be considered as a working
basis, since each of the application domains considered here deserves a special and
detailed study. More generally we hope the scale-relativistic approach to be taken
as a general tool adapted to finding solutions to various problems of structuration,
including in sciences other than physics, particularly in biology [85, 86, 87, 88].
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[84] Galopeau P. and Nottale L. 2002 in preparation.

[85] Chaline, J., Nottale, L., Grou, P. C.R. Acad. Sci. Paris 1999; 328: 717.

[86] Nottale, L., Chaline, J., Grou, P. Les Arbres de l’Evolution. Paris: Hachette;
2000.

[87] Nottale, L., Chaline, J., Grou, P. , in Fractals in Biology and Medicine, Pro-
ceedings of Fractal 2000 Third International Symposium, Ed. G. Losa, Bir-
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