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Abstract. The theory of scale relativity extends Einstein’s prin-
ciple of relativity to scale transformations of resolutions. It
is based on the giving up of the axiom of differentiability of
the space-time continuum. The new framework generalizes the
standard theory and includes it as a special case. Three conse-
quences arise from this withdrawal: (i) The geometry of space-
time must be fractal, i.e., explicitly resolution-dependent. This
allows us to include resolutions in the definition of the state of the
reference system, and to require scale-covariance of the equa-
tions of physics under scale transformations. (ii) The geodesics
of the non-differentiable space-time are themselves fractal and
in infinite number. This divergence strongly suggests we un-
dertake a statistical, non-deterministic description. (iii) Time
reversibility is broken at the infinitesimal level. This can be
described in terms of a two-valuedness of the time derivative,
which we account by using complex numbers. We finally com-
bine these three effects by constructing a new tool, the scale-
covariant derivative, which transforms classical mechanics into
a generalized, quantum-like mechanics.

Scale relativity was initially developed in order to re-found
quantum mechanics on first principles (while its present foun-
dation is axiomatic). However, the scale-relativistic approach
is expected to apply not only at small scales, but also at very
large space- and time-scales, although with a different interpre-
tation. Indeed, we find that the scale symmetry must be broken
at two (relative) scales, so that the scale axis is divided in three
domains: (i) the quantum, scale-dependent microphysical do-
main, (ii) the classical, intermediate, scale-independent domain,
(iii) but also the macroscopic, cosmological domain which be-
comes scale-dependent again and may then be described on very
large time-scales (beyond a predictability horizon) in terms of
a non-deterministic, statistical, quantum-like theory. In the new
framework, we definitively give up the hope to predict indi-
vidual trajectories on very large time scales. This leads us to
describing their virtual families in terms of complex probabil-
ity amplitudes, which are solutions of generalized Schrodinger
equations. The squared modulus of these probability amplitudes
yields probability densities, whose peaks are interpreted as a
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tendency for the system to make structures. Since the quantiza-
tions in quantum mechanics appear as a direct consequence of
the limiting conditions and of the shape of the input field, the
theory thus naturally provides self-organization of the system it
describes, in connection with its environment.

In the present first paper of this series, we first recall the
structure of the scale-relativity theory, then we apply our scale-
covariant procedure to various equations of classical physics that
are relevant to astrophysical processes, including the equation
of motion of a particle in a gravitational field (Newtonian and
Einsteinian), in an electromagnetic field, the Euler and Navier-
Stokes equations, the rotational motion of solids, dissipative
systems, and first hints on field equations themselves. In all
these cases, we obtain new generalized Schrodinger equations
which allow quantized solutions. In scale-relativity therefore,
the underlying fractal geometry of space-time plays the role of a
universal structuring “field”. In subsequent papers of this series,
we shall derive the solutions of our equations, then show that
several new theoretical predictions can be made, and that they
can be successfully checked by an analysis of the observational
data.
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1. Introduction

The theory of scale relativity (Nottale 1993a) is founded on
the realization that the whole of present physics relies on the
implicit assumption of differentiability of the space-time con-
tinuum. Giving up the a priori hypothesis of the differentiability
of coordinates has important physical consequences: one can in-
deed demonstrate (Nottale 1993a, 1994a, 1995a) that a continu-
ous but nondifferentiable space-time is necessarily fractal. Here
the word fractal (Mandelbrot 1975, 1983) is taken in a general
meaning, as defining a set, object or space that shows structures
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at all scales. More precisely, one can demonstrate that a con-
tinuous but nondifferentiable function is explicitly resolution-
dependent, and that its length % tends to infinity when the
resolution interval tends to zero, i.e. 4 = £ (€)c—o — oo (see
Appendix A). This theorem naturally leads to the proposal that
the concept of fractal space-time (Nottale 1981; Nottale and
Schneider 1984; Ord 1983; Nottale 1989, 1993a; El Naschie
1992) is the geometric tool adapted to the research of such a
new description based on non-differentiability.

It is important to be by now more specific about the pre-
cise meaning of the withdrawal of the axiom of differentiabil-
ity. That does not mean that we a priori assume that the co-
ordinates are not differentiable with certainty, but instead that
we consider a generalized framework including all continuous
functions, those which are differentiable and those which are
not. Thus this framework includes the usual differentiable func-
tions, but as very particular and rare cases. It is an extension of
the usual framework, so that the new theory is expected, not to
contradict, but instead to generalize the standard theory, since
standard differentiable physics will be automatically included
in it as a special case. An historical example of such an exten-
sion is the passage to curved spacetimes in general relativity,
which amounts to giving up the previous implicit assumption
of flatness of Euclidean geometry, and which anyway includes
flat spacetimes in its description.

Since a nondifferentiable, fractal space-time is explicitly
resolution-dependent, the same is a priori true of all physical
quantities that one can define in its framework. (Once again, this
means that we shall formally introduce such a scale-dependence
as a generalization, but that the new description will also include
the usual scale-independence as a special case, in a way simi-
lar to the relations between statics and kinematics: statics is a
special, degenerate case of the laws of motion). We thus need
to complete the standard laws of physics (which are essentially
laws of motion and displacement in classical physics) by laws of
scale, intended to describe the new resolution dependence. We
have suggested (Nottale 1989, 1992, 1993a) that the principle of
relativity of Galileo and Einstein, that is known since Descartes
and Huygens to be a constructive principle for motion laws, can
be extended to constrain also these new scale laws.

Namely, we generalize Einstein’s (1916) formulation of the
principle of relativity, by requiring that the laws of nature be
valid in any reference system, whatever its state. Up to now, this
principle has been applied to changes of state of the coordinate
system that concerned the origin, the axes orientation, and the
motion (measured in terms of velocity, acceleration, ...) .

In scale relativity, the space-time resolutions are not only a
characteristic of the measurement apparatus, but acquire a uni-
versal status. They are considered as essential variables, inherent
to the physical description. We define them as characterizing the
“state of scale” of the reference system, in the same way as the
velocity characterizes its state of motion. The principle of scale
relativity consists of applying the principle of relativity to such
a scale-state. Then we set a principle of scale-covariance, re-
quiring that the equations of physics keep their simplest form
under resolution transformations (dilations and contractions).
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The domains of application of this theory are typically the
asymptotic domains of physics, small length-scales and small
time-scales Az — 0, At — 0 (microphysics), large length-
scales Az — oo (cos mology), but also large time-scales At —
oo. The present series of papers particularly addresses this last
domain.

Initially, the theory of scale relativity was mainly an attempt
at refounding quantum mechanics on first principles (Nottale
1993a). We have demonstrated that the main axioms of quan-
tum mechanics can be recovered as consequences of the prin-
ciple of scale relativity, and that the behavior of the quantum
world can be understood as the various manifestations of the
non-differentiability and fractality of space-time at small scales
(Nottale 1993a, 1994a,b, 1995c, 1996a). Moreover, the theory
allows one to generalize standard quantum mechanics. Indeed,
we have shown that the usual laws of scale (power law, self-
similar, constant fractal dimension) have the status of “Galilean”
scale laws, while a full implementation of the principle of scale
relativity suggests that they could be medium scale approxi-
mations of more general laws which take a Lorentzian form
(Nottale 1992, 1993a). In such a “special scale relativity” the-
ory, the Planck length- and time-scale becomes a minimal, im-
passable scale, invariant under dilations and contractions, which
replaces the zero point (since owning all its physical properties)
and plays for scales the same role as played by the velocity
of light for motion (see Appendix B). In this new framework,
several still unsolved problems of fundamental physics find sim-
ple and natural solutions: new light is brought on the nature of
the Grand Unification scale, on the origin of the electron scale
and of the electroweak scale, on the scale-hierarchy problem,
and on the values of coupling constants (Nottale 1993a, 1994a,
1996a); moreover, our scale-relativistic interpretation of gauge
invariance allowed us to give new insights on the nature of the
electric charge, then to predict new mass-charge relations for
elementary particles (Nottale 1994a,b, 1996a).

The same approach has been applied to the cosmological
domain, leading to similar conclusions. Namely, new special
scale-relativistic dilation laws can be constructed, in terms of
which there exists a maximal length-scale of resolution, impass-
able and invariant under dilations. Such a scale can be identified
with the scale IL of the cosmological constant (A = L. 1t
would own all the physical properties of the infinite. Its exis-
tence also solves several fundamental problems in cosmology,
including the problem of the vacuum energy density, the value of
the cosmological constant, the value of the index of the galaxy-
galaxy correlation function and the transition scale to uniformity
(Nottale 1993a, 1995d, 1996a).

In the present series of papers, we shall not consider the
consequences of this new interpretation of the cosmological
constant, which mainly apply to the domain of very large scales
(z 2 1) . This case has already been briefly considered in (Not-
tale 1993a Chap. 7, 1995d) and will be the subject of a par-
ticularly devoted, more detailed work (Nottale 1997). We shall
instead specialize our study here to the typical scales where
structures are observed, which remain small compared with the
size of the Universe, but yet are of cosmological interest. For
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such scales, Galilean scale laws (i.e., standard self-similar laws
with constant fractal dimension) remain a good approximation
of the more general scale-relativistic laws.

We are mainly concerned here with the physical description
of systems when they are considered on very large time-scales.
As we shall see, this question is directly related to the problem
of chaos. It is indeed now widely known that most classical
equations describing the evolution of natural systems, when in-
tegrated on sufficiently large times, have solutions that show
a chaotic behavior. The consequence of strong chaos is that, at
time-scales very large compared with the “chaos time”, At > 7
(the inverse Lyapunov exponent), i.e., beyond the horizon of pre-
dictability, there is a complete loss of information about individ-
ual trajectories. Basing ourselves on the existence of such pre-
dictability horizons, we have suggested (Nottale 1993a, Chap.
7) that the universal emergence of chaos in natural systems was
the signature of new physics on very large time scales, and that
chaotic systems could be described beyond the horizon by a
new, quantum-like, non-deterministic theory, since the classical
equations become unusable for At > 7.

But we shall suggest in the present paper an even more pro-
found connection between chaos and scale relativity. After all,
chaos has been discovered (Poincaré 1892) as a general, em-
pirical property of the solutions of most classical equations of
physics and chemistry, when applied to natural systems in all
their complexity. But this does not mean that we really under-
stand its origin. On the contrary, it is rather paradoxical that
deterministic equations, built in the framework of a causal way
of thinking (one gives oneself initial conditions in position and
velocity, then the evolution of the system is predicted in a to-
tally deterministic way), finally lead to a complete loss of pre-
dictability of individual trajectories. Our first proposal (Nottale
1993a,b) has therefore been (following the above reasoning)
to jump to a non-deterministic description, that would act as a
large-time scale approximation. We suggest in the present paper
to reverse the argument, and to take into account the particular
chaos that takes its origin in the underlying, non-differentiable
and fractal character of space-time, since, as we shall see, it is
expected to become manifest not only at small scales but also
at very large length-scales and time-scales. The advantages of
this viewpoint reversal are important:

(i) The breaking of the reflection invariance(dt — —dt), which
is one of the principal new effect of nondifferentiability (see
Sect. 3.1.3), find its complete justification only when acting at
the space-time level, not only that of fractal trajectories in a
smooth space-time.

(i1) The chaotic behavior of classical equations could now be un-
derstood (or at least related to a first principle approach): these
equations would actually be incomplete versions of more gen-
eral equations, that would be classical and deterministic at small
scales, but would become quantum-like and non-deterministic
at large-time scales (see Sect. 3).

(iii) The additional conclusion in the scale-relativistic frame-
work is that the new structuring behavior may be universal.
We shall see from a comparison with observational data (Paper
IIT) that the observed structures show indeed universal proper-

869

ties, since we find that identical structuring laws are observed
at scales which range from the Solar System scale to the cos-
mological scales, and since these laws are written in terms of
a unique new fundamental constant (Nottale 1996b,c; Nottale,
Schumacher and Gay 1997).

In the present paper, we shall first be more specific about
our motivations for constructing such a new theory (Sect. 2),
then we shall describe our general method (Sect. 3), and apply
it to the fundamental equations used in several domains of fun-
damental physics having astrophysical implications (Sect. 4).
Additional informations, in particular about the general frame-
work of which the present developments are a subset, are given
in Appendices A and B. Paper II will be specially devoted to
the application of our theory to gravitational structures, and Pa-
per 111 to a first comparison of our theoretical predictions with
observational data.

2. Motivation
2.1. Chaotic systems beyond their horizon of predictability

Consider a strongly chaotic system, i.e., the gap between any
couple of trajectories diverges exponentially with time. Let us
place ourselves in the reference frame of one trajectory, that we
describe as uniform motion on the z axis:

r=0, y=0, z=at. (1)

The second trajectory is then described by the equations:
x = bxg(1+e'/T), y=Syo(1+e'7), 2= at+62(1+e"7),2)

where we have assumed a single Lyapunov exponent 1/7 for
simplicity of the argument. Let us eliminate the time between
these equations. We obtain:

1o T

= x’
Y 0xg

3

2o
 + aT In(

z =
6%0

5220 1).
As schematized in Fig. 1, this means that the relative motion of
one trajectory with respect to another one, when looked at with a
very long time resolution (i.e., At > 7, right diagram in Fig. 1),
becomes non-differentiable at the origin, with different back-
ward and forward slopes. Moreover, the final direction of the
trajectory in space is given by the initial “uncertainty vector”
€ = (8o, 6yYo, 0z0). Then chaos achieves a kind of amplification
of the initial uncertainty. But the orientation of the uncertainty
vector € being completely uncontrolable (it can take its origin
at the quantum scale itself), the second trajectory can emerge
with any orientation with respect to the first. If we now start
from a continuum of different values 6z, the breaking point in
the slope (Fig. 1) occurs anywhere, and the various trajectories
become describable by non-differentiable, fractal paths.

In the end, beyond the horizon of predictability, the informa-
tion about the behavior of the trajectory at ¢ < 0 is completely
lost; this strongly suggests that we switch to a statistical descrip-
tion. Indeed, assume that we are looking at the evolution of the
system during a very large time scale (of the order of the age
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Fig. 1. Schematic representation of the relative evolution in space of
two initially nearby chaotic trajectories seen at three different time
scales, 7, 10 7 and 100 7 (from Nottale, 1993a).

of the Universe) with a time-resolution =~ 107. Each successive
event can be considered as totally independent of its preceding
one, because of this information loss. Such an independence of
the various events leads to describing the trajectories in terms
of a Markov process. In other words, even if the basic equations
remain deterministic, it is not the case of their solutions. We can
then wonder whether the classical equations remain adapted to
the physical description on very large time scales, and we are led
to suggesting the alternative starting point of inherently statisti-
cal systems. Moreover, we shall see that a description in terms
of classical probabilities seems to be incomplete, and that, at
time resolutions larger than the horizon, we need a quantum-
like description in terms of probability amplitudes.

One must keep in mind that such a large time-scale descrip-
tion would be no longer valid at small time-scales, since when
going back to At < 7 (left diagram in Fig. 1), differentiability
is recovered. This is in accordance with the scale-relativistic
framework, in which physics, including its fundamental equa-
tions and their interpretation, is now explicitly scale-dependent.
In particular, the physical laws can be subjected to a kind of
phase transition around some symmetry breaking scales, as we
shall see in what follows.

2.2. Giving up differentiability of space-time

There is a fundamental reason for jumping to a non-
deterministic, scale-relativistic physical description at small and
large scales. Since more than three centuries, physics relies on
the assumption that space-time coordinates are a priori differen-
tiable. However, it was demonstrated by Feynman (see Feynman
& Hibbs 1965) that the typical paths of quantum mechanical
particles are continuous but non-differentiable. Now, one of the
most powerful avenue for reaching a genuine understanding of
the laws of nature has been to construct them, not from setting
additional hypotheses, but on the contrary by attempting to give
up some of them, i.e., by going to increased generality. From
that point of view, of which Einstein was a firm supporter, the
laws and structures of nature are simply the most general laws
and structures that are physically possible. It culminated in the
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principle of “general” relativity and in Einstein’s explanation
of the nature of gravitation as the various manifestations of the
Riemannian geometry of space-time (i.e., of the giving up of
flatness).

However, in the light of the above remark, Einstein’s prin-
ciple of relativity is not yet fully general, since it applies to
coordinate transformations that are continuous and at least two
times differentiable. The aim of the theory of scale-relativity is
to look for the laws and structures that would be the manifesta-
tions of still more general transformations, namely, continuous
ones (that can be differentiable or not). In such a construction
the standard theory will automatically be recovered as a special
case, since differentiable spaces are a particular subset of the
set of all continuous spaces.

In that quest, the first step consists of realizing that a con-
tinuous but non-differentiable space-time is necessarily frac-
tal, i.e., explicitly resolution-dependent (see Appendix A). This
leads us to introduce new intrinsic scale variables in the very
definition of physical quantities (among which the coordinates
themselves), but also to construct the differential equations (in
the “scale space”) that would describe this new dependence.
In other words, the search for the laws of a non-differentiable
physics can be brought back to the search of a completion of the
laws of motion by new laws of scale and laws of motion/scale
coupling.

The remaining of the present section (completed by Ap-
pendix B) is aimed at giving to the reader a hint of the general
structure of the scale-relativity theory. We shall see that, since
the new scale equations are themselves constrained by the prin-
ciple of relativity, the new concepts fit well established struc-
tures. Namely, the so-called symplectic structure of most phys-
ical theories (including thermodynamics, see Peterson 1979),
i.e., the Poisson bracket / Euler-Lagrange / Hamilton formu-
lation, can be also used to construct scale laws. Under such a
viewpoint, scale invariance is recovered as corresponding to the
“free” case (the equivalent of what inertia is for motion laws).

2.3. Scale invariance and Galilean scale relativity

Scaling laws have already been discovered and studied at length
in several domains of science. A power-law scale dependence is
frequently encountered in a lot of natural systems, it is described
geometrically in terms of fractals (Mandelbrot 1975, 1983), and
algebrically in terms of the renormalization group (Wilson 1975,
1979). As we shall see now, such simple scale-invariant laws can
be identified with a “Galilean” version of scale-relativistic laws.
In most present use and applications of fractals, the fractal
dimension D is defined from the variation with resolution of
the main fractal variable (e.g., the length £ of a fractal curve
which plays here the role of a fractal curvilinear coordinate, the
area of a fractal surface, etc...). Namely, if D is the topological
dimension (D7 = 1 for a curve, 2 for a surface, etc...), the scale
dimension 6 = D — Dy is defined, following Mandelbrot, as:

dln %

" din(\/e) )
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When § is constant, we obtain a power-law resolution depen-
dence £ = %y()\/e)®. The Galilean structure of the group of
scale transformation that corresponds to this law can be verified
in a straightforward manner from the fact that it transforms in a
scale transformation ¢ — € as

PACO A €
In <% =In “% +8(e)In o 5)
5(e) = b(e). (6)

This transformation has exactly the structure of the Galileo
group, as confirmed by the law of composition of dilations
€ — € — €”, which writes

Inp” =Inp+1Inp/, (7)

with p=¢€'/e, p' =€’/ and p" = €' /e.

2.4. Lagrangian approach to scale laws

We are then naturally led, in the scale-relativistic approach, to
reverse the definition and the meaning of variables. The scale di-
mension § becomes, in general, an essential, fundamental vari-
able, that remains now constant only in very particular situa-
tions (namely, in the case of scale invariance, that corresponds
to “scale-freedom”). It plays for scale laws the same role as
played by time in motion laws. The resolution can now be de-
fined as a derived quantity in terms of the fractal coordinate and
of the scale dimension:

dln%

V=l/0=""

(®)
Our identification of standard fractal behavior as Galilean scale
laws can now be fully justified. We assume that, as in the case of
motion laws, scale laws can be constructed from a Lagrangian
approach. A scale Lagrange function L(In %,V ) is intro-
duced, from which a scale-action is constructed:

[
L(n %,V , 6)dé. )]
o1

S=

The action principle, applied on this action, yields a scale-
Euler-Lagrange equation that writes:

d oL Ol

dsov — oln¥%’ (10)

The simplest possible form for the Lagrange function is the
equivalent for scales of what inertia is for motion, i.e., L x V?
and OL/01n % = 0 (no scale “force”, see Appendix B). Note
that this form of the Lagrange function becomes fully justified,
as in the case of motion laws, once one jumps to special scale-
relativity (Nottale 1992) and then goes back to the Galilean limit
(see Appendix B). The Lagrange equation writes in this case:
dv

=0= V =cst.

s an
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The constancy of V' = In(\/€) means here that it is independent
of the scale-time 6. Then Eq. (8) can be integrated in terms of
the usual power law behavior, £ = %y(\/¢). This reversed
viewpoint has several advantages which allow a full implemen-
tation of the principle of scale relativity:

(i) The scale dimension takes its actual status of “scale-time”,
and the logarithm of resolution V its status of “scale-velocity”,
V =dlIn ¥ /dé. This is in accordance with its scale-relativistic
definition, in which it characterizes the state of scale of the
reference system, in the same way as the velocity v = dx/dt
characterizes its state of motion.

(ii) This leaves open the possibility of generalizing our for-
malism to the case of four independent space-time resolutions,
VH =1n(\/et) = dIn L+ /d6.

(iii) Scale laws more general than the simplest self-similar ones
can be derived from more general scale-Lagrangians (Appendix
B).

It is essentially Galilean scale relativity that we shall con-
sider in the present series of papers. Before developing it further,
we recall, however, that the Galilean law is only the simplest
case of scale laws that satisfy the principle of scale relativity.
We shall, in Appendix B, give some hints about its possible
generalizations, since they determine the general framework of
which Galilean scale relativity is only a subset.

2.5. Scale-symmetry breaking

An important point concerning the scale symmetry, which is
highly relevant to the present study is that, as is well-known from
the observed scale-independence of physics at our own scales,
and as we shall demonstrate in more detail in Sect. 3, the scale
dependence is a spontaneously broken symmetry (Nottale 1989,
1992, 1993a). Let us recall the simple theoretical argument that
leads to this result and to its related consequence that space-
time is expected to become fractal at small but also at large
space-time scales.

In the general framework of a continuous space-time (not
necessarily differentiable), we expect a general curvilinear co-
ordinate to be explicitly resolution-dependent (Appendix A),
i.e. £ = £(¢). We assume that this new scale dependence is
itself solution of a differential equation in the scale space. The
simplest scale differential equation one can write is a first order
equation where the scale variation of 4" depends on .4 only,
d% /dIne = B(£). The function S(%) is a priori unknown
but, always taking the simplest case, we may consider a pertur-
bative approach and take its Taylor expansion. We obtain the
equation:

d

=a+b% +cL? + (12)
dlne
Disregarding for the moment the quadratic term, this equation
is solved in terms of a standard power law of power 6 = —b,

broken at some scale A, as illustrated in Fig. 2 () appears as a
constant of integration):

) ) A
=% +(6)5]. (13)
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Depending on the sign of 9, this solution represents either a
small-scale fractal behavior (in which the scale variable is a
resolution), broken at larger scales, or a large-scale fractal be-
havior (in which the scale variable ¢ would now represent a
changing window for a fixed resolution \), broken at smaller
scales.

The symmetry between the microscopic and the macro-
scopic domains can be even more directly seen from the prop-
erties of Eq. (12). Let us indeed transform the two variables %
and € by inversion, i.e. £ — £ =1/% ande — €' = 1/,
we find that Eq. (12) becomes:

s’

Jl /=c+b§§/’+a(Z”/2+...
ne

(14)
This is exactly the same equation up to the exchange of the con-
stants a and c. In other words, Eq. (12) is covariant (i.e. form
invariant) under the inversion transformation, which transforms
the small scales into the large ones and reciprocally, but also the
upper symmetry breaking scale into a lower one. Hence the in-
version symmetry, which is clearly not achieved in nature at the
level of the observed structures, may nevertheless be an exact
symmetry at the level of the fundamental laws. This is con-
firmed by directly looking at the solutions of Eq. (12) keeping
now the quadratic term, since they may include two transitions
separating the scale space into 3 domains.

The symmetry breaking is also an experimental fact. The
scale symmetry is indeed broken at small scales by the mass of
elementary particles, i.e., by the emergence of their de Broglie
length:
>\dB =h/mv, (15)
and at large length-scales by the emergence of static structures
(galaxies, groups, cluster cores) of typical sizes

1 G
Ay & m

~ 16
3< 2>’ (16)

beyond which the general scale dependence shows itself in
particular by the expansion of the Universe but also by the
fractal-like observed distribution of structures in the Universe.
The effect of these two symmetry breakings is to separate the
scale space into three domains (see Figs. 2 and 5), a micro-
physical quantum domain (scale-dependent), a classical do-
main (scale-independent), and a “cosmological” domain (scale-
dependent again). Remark that the existence of the classical,
scale-independent domain does not disprove the universality of
the principle of scale relativity, since this intermediate domain
actually plays for scale laws the same role as statics plays for
motion laws: namely, it corresponds to a degeneration of the
scale laws. It is easy to include the symmetry breaking in our
description, by accounting for the fact that the origin of a frac-
tal coordinate is arbitrary. As we shall see in more detail in
what follows, the spontaneous symmetry breaking is the result
of translation invariance, i.e., of the coexistence of scale laws
and of motion/displacement laws (see Sect. 3.1.1 and Fig. 3).
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Fig. 2. Typical behavior of the solutions to the simplest linear scale
differential equation (see Sect. 3.1.1). One obtains an asymptotic frac-
tal (power-law resolution-dependent) behavior at either large or small
scales, and a transition to scale-independence toward the classical do-
main (intermediate scales). The transitions are given by the Comp-
ton-de Broglie scale in the microscopic case and by the typical static
radius of objects (galaxy radii, cluster cores) in the macroscopic case.
Note that the microscopic and macroscopic plots actually correspond to
two different kinds of experiments: in the microscopic case, the “win-
dow” X is kept constant while the “resolution” € is changed, leading to
an increase toward small scales, £ = %(\/€)®; in the macroscopic
case, the fractal behavior shows itself by increasing the window e for
a fixed resolution A, this leading to an increase toward large scales,
L = Lole/ NP,

Simply replacing the fractal coordinate % by .4 — % in
the pure scale-invariant law £ = %,(\/€)°, we recover the
broken law

A
=% +(6)5], 17

which becomes scale-independent for € > A when § > 0, and
for e < A when 6 > 0. We then expect the three domains
and the two transitions of Figs. 2 and 5 (see Sect. 3 for more
detail). Note that in these figures, the scale dimension is an
effective scale dimension 6. Which includes the transition in its
definition, i.e. (A\/e)% = 1+ (\/e)°.

3. Theoretical framework
3.1. Description of a non-differentiable and fractal space-time

Giving up differentiability of the space-time coordinates has
three main consequences: (i) the explicit scale-dependence of
physical quantities on space-time resolutions, that implies the
construction of new fundamental laws of scale; (ii) the multi-
plication to infinity of the number of geodesics, that suggests
jumping to a statistical and probabilistic description; (iii) the
breaking of the time symmetry (dt < —dt) at the level of the
space-time geometry, that implies a “two-valuedness” of veloc-
ities which we represent in terms of a complex and non-classical
new physics. The aim of the present section is to explain in more
detail how the giving up of differentiability leads us to introduce
such new structures.
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3.1.1. New scale laws

Strictly, the nondifferentiability of the coordinates means that
the velocity V' = dX/dt is no longer defined. However, as re-
called in the introduction, the combination of continuity and
nondifferentiability implies an explicit scale-dependence of the
various physical quantities (Nottale 1993a, 1994a). Therefore
the basis of our method consists in replacing the classical
velocity by a function that depends explicitly on resolution,
V' = V(e). Only V(0) is now undefined, while V (¢) is now de-
fined for any non-zero e. Consider indeed the usual expression
for the velocity:

dX . X@+d)— X(@)
= lim .

18
dt  dt—0 dt (18)

In the nondifferentiable case, the limit is undefined. This means
that, when dt tends to zero, either the ratio dX/dt tends to
infinity, or it fluctuates without reaching any limit. The solution
proposed in scale relativity to this problem is very simple. We
replace the differential dt¢ by a scale variable ¢t, and we consider
now 6.X /6t as an explicit function of this variable:

Xt+6t)—X@)
ot

Here V (¢, 6t) is a “fractal function” (see Nottale, 1993a, chap.
3.8). It is defined modulo some equivalence relation .72 which
expresses that the variable 6t has the physical meaning of a
resolution: f(¢,6t) = g(t,6t) mod .2 < Vét,Vt, |f(¢, 6t) —
g(t, 6t)| < e(6t), where €(6t) is the resolution in f and g which
corresponds to the resolution §t in ¢ (e.g., in the case of a constant
fractal dimension D, € ~ 6t'/P. This means that we no longer
work with the limit ¢ — 0, which is anyway devoid of ob-
servable physical meaning (since an infinite energy-momentum
would be needed to reach it, according to quantum mechanics),
and that we replace this limit by a description of the various
structures which appear during the zoom process toward the
smaller scales. Our tool can be thought of as the theoretical
equivalent of what are wavelets in fractal and multifractal data
analysis (see e.g. Arneodo et al. 1988, Argoul et al. 1989, Farge
et al. 1996).

The advantage of our method is now that, for a given value
of the resolution 6t, differentiability in ¢ is recovered. The
non-differentiability of a fractal function f(¢,4t) means that
0f(t,0)/0t does not exist. But f (¢, 6t)/ Ot exists for any given
value of the resolution 6¢, which allows us to recover a dif-
ferential calculus even when dealing with non-differentiability.
However, one should be cautious about the fact that the physi-
cal description and the mathematical description are no longer
always coincident. Indeed, once 6t given, one can write a mathe-
matical differential equation involving terms like O f (¢, 6t)/Ot.
In such an equation, one can make 0t — 0 and then use the
standard mathematical methods to solve for it and determine
f(t, 6t). But it must be understood that this is a purely mathe-
matical intermediate description with no physical counterpart,
since for the real system under consideration, the very consid-
eration of an interval dt < t changes the function f (such a

Vit bt) = mod .72. (19)
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behavior is experimentally well-known in quantum systems).
As a consequence of this analysis, there is a particular subspace
of description where the physics and the mathematics coincide,
namely, when making the particular choice dt = 6t. We shall
work in what follows with such an identification of the time
differential and of the new time resolution variable.

A consequence of the new description is that the current
equations of physics are now incomplete, since they do not de-
scribe the variation of the various physical quantities in scale
transformations 6t — &t’. The scale-dependence of the velocity
suggests that we complete the standard equations of physics by
new differential equations of scale.

In order to work out such a completion, let us apply to the
velocity and to the differential element (now interpreted as a
resolution) the reasoning already touched upon in Sect. 2. The
simplest possible equation that one can write for the variation
of the velocity V' (¢, dt) in terms of the new scale variable dt is:

ov

omar = V)

(20
i.e., a first order, renormalization-group-like differential equa-
tion, written in terms of the dilatation operator
D =0/0(ndt), (21)
in which the infinitesimal scale-dependence of V' is determined
by the “field” V itself. The S-function here is a priori unknown,
but we can use the fact that V' < 1 (in motion-relativistic units)
to expand it in terms of a Taylor expansion. We obtain:

=a+bV +O(V?), (22)

oV
Olndt
where a and b are “constants” (independent of dt but possibly
dependent on space-time coordinates). Setting b = (1/D) — 1,
we obtain the solution of this equation under the form:
7\1-1/D

V=v+v7%=v[1+g(dt) 1, 23)
where v is a mean velocity and 77" a fractal fluctuation that is
explicitly scale-dependent, and where 7 and ¢ are chosen such
that < ¢ >=0and < (% >=1.

We recognize here the combination of a typical fractal be-
havior with fractal dimension D, and of a breaking of the scale
symmetry at scale 7, that plays the role of an upper fractal /
nonfractal scale transition (since V' ~ v when dt > 7 and
V =~ 7/ when dt < 7). As announced in Sect. 2, the sym-
metry breaking is not added artificially here to the scale laws,
but is obtained as a natural consequence of the scale-relativistic
approach, in terms of solutions to Eq. (22). It is now clear from
Eq. (23) (see also Fig. 3) that the symmetry breaking comes
from a confrontation of the motion behavior (as described by
the v component of V') with the scale behavior (as described
by the 77" component of V'). Their relative sizes determine the
scale of the transition (Fig. 3).

Concerning the value of the fractal dimension, recall that
D = 2 plays the role of a critical dimension in the whole theory,
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Fig. 3. The quantum-microscopic to classical transition is understood in
the scale-relativistic approach as a spontaneous symmetry breaking: the
“classical” term dz = v dt becomes dominant beyond some upper scale
while the “fractal” term d€ dt'/? (here of critical fractal dimension 2)
is dominant toward the small scale in absolute value, though it vanishes
in the mean. Note that in the cosmological-macroscopic case which
is the subject of the present paper, there is an additional transition to
classical laws toward the small scales, while the upper classical domain
is sent to infinity (since 7 = 79/ < v >2, with < v >=0).

(see Nottale 1993a and refs. therein, Nottale 1995a). In this
case we find in the asymptotic scaling domain that 7~
(dt/ )72, in agreement with Feynman and Hibbs (1965).

Let us finally write the expression for the elementary dis-
placement derived from the above value of the velocity. We shall
now consider the two inverse cases identified in Sect. 2.5, i.e.
not only the case where the scaling domain is at small scales
(standard quantum mechanics) but also the case where it lies at
large scales, which is the relevant situation in the present paper.
In both cases, the elementary displacement d.X in the scaling
domain can be written under the sum of two terms,

dX =dz+d¢, (24)
with
dr =v dt, (25)

dg = ¢y~ Pagh/P, (26)
where 7 is a constant. The comparison with Eq. (23) allows to
show that the transition scale is therefore 7 = 7y/v?> (Nottale
1994a) when D = 2. In the scaling regime (dt < 7) both terms
are relevant, since d¢ vanishes in the mean, i.e. < d¢ >= 0,
but < d¢? >'/2> da (left of Fig. 3): we shall see in what fol-
lows that the fluctuation, in spite of its vanishing in the mean,
plays nevertheless an essential role in the laws of average mo-
tion. When applied to atomic and elementary particle physics
(microscopic case), we find that the fluctuation becomes domi-
nated at larger scales (dt > 7) by the classical term dX = dx,
and the system becomes classical beyond the de Broglie scale 7
(since 79 is the Compton scale in this case). When applied to the
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Fig. 4. Relation between differential elements on a fractal function.
While the average, “classical” variation 6z =< 6 X > is of the same
order as the abscissa differential 6¢, the fluctuation is far larger and
depends on the fractal dimension D as: d§ 5t/ P,

macroscopic case, the situation is different, since: (i) there is a
new transition to classical behavior below some smaller scale
7/, in accordance with the solutions of Eq. (12); (ii) the upper
transition scale 7 is expected to be pushed to infinity, since the
theory will be preferentiably applied to bound systems such that
the classical average velocity < v >= 0 (hydrogen atom-like
systems), while it will a priori be irrelevant for free systems.

Equations (24-25-26) can be used to recover a fundamental,
well-known formula relating the space-resolution and the time-
resolution in the asymptotic domain 6t < 7 on a fractal curve
(see Fig. 4)
6¢/ NP = (@6t/7), 27
in which the length scale A and the time-scale 7 are naturally
introduced for dimensional reasons.

In the present series of paper, only the above simplest scale-
laws with fractal dimension D = 2 will be developed. How-
ever, as recalled in Sect. 2 and Appendix B, these laws can
be identified with “Galilean” approximations of more general
scale-relativistic laws in which the fractal dimension becomes
itself variable with scale (Nottale 1992, 1993a, 1995d). Such
special scale-relativistic laws are expected to apply toward the
very small and very large scales (see Appendix B).

3.1.2. Infinity of geodesics

The above description applies to an individual fractal trajec-
tory. However, we are not interested here in the description of
fractal trajectories in a space that would remain Euclidean or
Riemannian, but in the description of a fractal space and of its
geodesics. The trajectories are then fractal as a consequence of
the fractality of space itself. This problem is analogous to the
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jump from flat to curved space-time in Einstein’s general rela-
tivity. One can work in a curvilinear coordinate system in flat
space-time, and this introduces a GR-like metric element, but
this apparent new structure is trivial and can be cancelled by
coming back to a Cartesian coordinate system; on the contrary
the curvature of space-time itself implies structures (described
e.g. by the curvature invariants) that are new and irreducible
to the flat case, since no coordinate system can be found where
they would be cancelled (except locally). The same is true when
jumping, as we attempt here, from a differentiable (Riemannian)
manifold to a nondifferentiable (non Riemannian) manifold. We
expect the appearance of new structures that would be also new
and irreducible to the old theory. Two of these new geometric
properties will be now described (but it is clear that this is only
a minimal description, and that several other features will have
to be introduced for a general description of nondifferentiable
spacetimes).

One of the geometric consequences that is specific of the
nondifferentiability and of the subsequent fractal character of
space itself (not only of the trajectories), is that there will be an
infinity of fractal geodesics that relate any couple of points in
a fractal space (Nottale 1989, 1993a). The above description of
an individual fractal trajectory is thus insufficient to account for
the properties of motion in a fractal space. This is an important
point, since, as recalled in the introduction, our aim here is to
recover a physical description of motion and scale laws, even
in the microscopic case, by using only the geometric concepts
and methods of general relativity (once generalized, using new
tools, to the nondifferentiable case). These basic concepts are
the geometry of space-time and its geodesics, so that we have
suggested (Nottale 1989) that the description of a quantum me-
chanical particle (including its property of wave-corpuscle du-
ality) could be reduced to the various geometric properties of
the ensemble of fractal geodesics of the fractal space-time that
correspond to a given state of this “particle” (defined here as a
geometric property of a subset of all geodesics). In such an inter-
pretation, we do not have to endow the “particle” with internal
properties such as mass, spin or charge, since the “particle” is
identified with the geodesics themselves (not with a point mass
which would follow them), and since these “internal” properties
can be defined as geometric properties of the fractal geodesics
themselves. As a consequence, any measurement is interpreted
as a sorting out of the geodesics, namely, after a measurement,
only the subset of geodesics which share the geometrical prop-
erty corresponding to the measurement result is remaining (for
example, if the “particle” has been observed at a given position
with a given resolution, this means that the geodesics which
pass through this domain have been selected).

This new interpretation of what are “particles” ensures the
validity of the Born axiom and of the Von Neumann axiom (re-
duction of wave function) of quantum mechanics. This is con-
firmed by recent numerical simulations by Hermann (1997),
that have indeed shown that one can obtain solutions to the
Schrodinger equation without using it, directly from the elemen-
tary process introduced in scale relativity. Moreover, a many-
particle simulation of quantum mechanics has been performed
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by Ord (1996a,b) in the fractal space-time framework. He finds,
in agreement with our own results, that the Schrédinger equation
may describe ensembles of classical particles moving on fractal
random walk trajectories, so that it has a straighforward micro-
scopic model which is not, however, appropriate for standard
quantum mechanics.

This point is also a key to understanding the differences
between the microscopic and macroscopic descriptions, which
implies a fundamental difference of interpretation of the final
quantum-like equations and of their solutions. The two main
differences are the following:

(i) In microphysics, we identify the particle to the geodesics
themselves, while in macrophysics there is a macroscopic object
that follows the geodesic. Elementary particles thus become a
purely geometric and extended concept. This allows to recover
quantum mechanical properties like indiscernability, identity
and non locality in the microphysical domain, but not in the
macrophysical one.

(i1) In microphysics we assume that non-differentiability is un-
broken toward the smaller scales, i.e. that there is no underlying
classical theory, or in other words that the quantum theory is
complete (in the sense of no hidden parameter), so that the Bell
inequalities can be violated. On the contrary, we know by con-
struction that our quantum-like macroscopic theory is subjected
to a kind of “phase transition” that transforms it to a classical
theory at smaller scales. Non-differentiability is only a large
scale approximation, so that our macroscopic theory is a hidden
parameter theory, that is therefore not expected to violate Bell’s
inequalities.

The infinity of geodesics leads us to jump to a statistical
description, i.e., we shall in what follows consider averages on
the set of geodesics, not on an a priori defined probability den-
sity as in stochastic theories. Namely, two kinds of averaging
processes are relevant in our description:

(i) Each geodesic can be smoothed out with time-resolution
larger than 7 (which plays the role of a fractal / nonfractal tran-
sition). At scales larger than 7, the fluctuation d¢ becomes far
smaller than the mean dz, making each trajectory no longer
fractal (line in Fig. 4).

(i) One can subsequently take the average of the velocity on
the infinite set of these “classical” geodesics that pass through
a given point.

In what follows, the decomposition of dX in terms of a
mean, < dX >=dx = v dt, and a fluctuation respective to the
mean, d€ (such that < d¢ >= 0by definition) will be made using
both averaging processes. Since all geodesics are assumed to
share the same statistical fractal geometric properties, the form
of Egs. (25-27), is conserved. We stress once again the fact that
the various expectations are taken in our theory on the set of
geodesics, not on a previously given probability density. The
probability density will be introduced as the density of the fluid
of geodesics, ensuring by construction the Born interpretation
of the theory.

We also recall again that, in the particular domain of applica-
tion with which we are concerned in the present series of papers
(macroscopic large scale systems), two particular features are
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relevant: (i) a lower transition scale must be introduced, as re-
called above and as predicted from Eq. (12); (ii) the average
classical velocity must be zero, implying an infinite upper frac-
tal / nonfractal transition (see the discussion in Sect. 5). Remark,
however, (see Sects. 3.1.3 and 3.2) that we will be led to intro-
duce two average velocities, a forward one v, and a backward
one v_, in terms of which the classical average velocity writes
V' = (v + v_)/2. Therefore its vanishing does not mean the
vanishing of v, and v_ individually.

3.1.3. Differential time symmetry breaking

The nondifferentiable nature of space-time implies an even more
dramatic consequence, namely, a breaking of local time reflec-
tion invariance. Remark that such a discrete symmetry breaking
can not be derived from only the fractal or nondifferentiable na-
ture of trajectories, since it is a consequence of the irreducible
nondifferentiable nature of space-time itself.

Consider indeed again the definition of the derivative of a
given function with respect to time:

df _ o fEedh — ) _
1m =

_ L fO = fa—dy
dt dt—0 dt '

dt—0 dt (28)

The two definitions are equivalent in the differentiable case. One
passes from one to the other by the transformation dt — —dt
(local time reflection invariance), which is therefore an implicit
discrete symmetry of differentiable physics. In the nondiffer-
entiable situation considered here, both definitions fail, since
the limits are no longer defined. The scale-relativistic method
solves this problem in the following way.

We have attributed to the differential element dt the new
meaning of a variable, identified with a time-resolution, dt = §t
as recalled hereabove (“substitution principle”). The passage to
the limit is now devoid of physical meaning (since quantum me-
chanics itself tells us that an infinite momentum and an infinite
energy would be necessary to make explicit measurements at
zero resolution interval). In our new framework, the physics of
the problem is contained in the behavior of the function during
the “zoom” operation on 6¢. The two functions f| and f’ are
now defined as explicit functions of ¢ and of dt:

ity = T IO 9)
Fdn =T ift —a) (30)

When applied to the space variable, we get for each geodesic two
velocities that are fractal functions of resolution, V. [xz(?), t, dt]
and V_[x(%),t,dt]. In order to go back to the classical do-
main, we first smooth out each geodesic with balls of radius
larger than 7: this defines two classical velocity fields now in-
dependent of resolution, V. [z(t),t,dt > 7] = V,[z(t),t] and
V_[z(t),t,dt > 7] = V_[xz(t),t]; then we take the average
on the whole set of geodesics. We get two mean velocities
vilx(t),t] and v_[z(t), t], but after this double averaging pro-
cess, there is no reason for these two velocities to be equal,
contrarily to what happens in the classical, differentiable case.
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In summary, while the concept of velocity was classically a
one-valued concept, we must introduce, if space-time is nondif-
ferentiable, two velocities instead of one even when going back
to the classical domain. Such a two-valuedness of the velocity
vector is a new, specific consequence of nondifferentiability that
has no classical counterpart (in the sense of differential physics),
since it finds its origin in a breaking of the discrete symmetry
(dt — —dt). This symmetry was considered self-evident up to
now in physics, so that it has not been analysed on the same
footing as the other well-known symmetries. It is actually inde-
pendent from the time reflection symmetry T, even though it is
clear that the breaking of this “dt symmetry” implies a breaking
of the T symmetry at this level of the description.

Now we have no way to favor v, rather than v_ . Both choices
are equally qualified for the description of the laws of nature.
The only solution to this problem is to consider both the forward
(dt > 0) and backward (dt < 0) processes together. The number
of degrees of freedom is doubled with respect to the classical,
differentiable description (6 velocity components instead of 3).

A simple and natural way to account for this doubling of
the needed information consists in using complex numbers and
the complex product. As we shall recall hereafter, this is the
origin of the complex nature of the wave function in quantum
mechanics, since the wave function can be identified with the
exponential of the complex action that is naturally introduced in
such a theory. One can indeed demonstrate (Nottale 1997) that
the choice of complex numbers to represent the two-valuedness
of the velocity is not an arbitrary choice, since it achieves a
covariant description of the new mechanics: namely, it ensures
the Euler-Lagrange equations to keep their classical form and
allows one not to introduce additional terms in the Schrodinger
equation. Note also that the new complex process, as a whole,
recovers the fundamental property of microscopic reversibility.

3.2. Scale-covariant derivative

Finally, we can describe (in the scaling domain) the elementary
displacement d X for both processes as the sum of a mean, <
dx+ >= vy dt, and a fluctuation about this mean, dé+ which
is then by definition of zero average, < dé1 >=0, i.e.:

dX,(@) =v, dt +d&(t); dX_(t) =v_ dt +dE_(1). (€20)
Consider first the average displacements. The fundamental ir-
reversibility of the description is now apparent in the fact that
the average backward and forward velocities are in general dif-
ferent. So mean forward and backward derivatives, d, /dt and
d_ /dt are defined. Once applied to the position vector z, they
yield the forward and backward mean velocities, Z; z(t) = vy
and Cfi; z(t)=v_.
Concerning the fluctuations, the generalization of the fractal
behavior (Eq. 26) to three dimensions writes
< dé4; dfij >=R2Y 6ij dt, (32)

& standing for a fundamental parameter that characterizes the
new scale law at this simple level of description (see Sect. 4.6
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for a first generalization). The d{(t)’s are of mean zero and mu-
tually independent. If one assumes them to be also Gaussian,
our process becomes a standard Wiener process. But such an as-
sumption is not necessary in our theory, since only the property
(Eq. (32)) will be used in the calculations.

Our main tool now consists of recovering local time re-
versibility in terms of a new complex process (Nottale 1993a):
we combine the forward and backward derivatives in terms of
a complex derivative operator

d (dy+d_)—i(dy —d)
= 33
dt 2 dt ’ 33
which, when applied to the position vector, yields a complex

velocity
VptU— U —U_
—1

) ) (34)

.o d .
7 —dtac(t)—V—zU—

The real part V of the complex velocity 7" generalizes the
classical velocity, while its imaginary part, U, is a new quantity
arising from non-differentiability (since at the classical limit,
vy =v_, so that U = 0).

Equation (32) now allows us to get a general expression for
the complex time derivative d /dt. Consider a function f(x(t), ).
Contrarily to what happens in the differentiable case, its total
derivative with respect to time contains finite terms up to higher
order (Einstein 1905). In the special case of fractal dimension
2, only the second order intervenes. Indeed its total differential
writes

of

1 9*f
8tdt+Vf.dX+

df = 2 Ox;0x

dX,dX;. (35)
J

Classically the term dX;dX; /dt is infinitesimal, but here its
average reduces to < d§; d€; > /dt, so that the last term of Eq.
(35) will amount to a Laplacian thanks to Eq. (32). Then

dif/dt= (8/8t+viVi£ZA)f (36)
By inserting these expressions in Eq. (33), we finally obtain the

expression for the complex time derivative operator (Nottale
1993a):

d 0 )
= /8 _ ‘C/r .
g o + Z7V —iIA

(37
The passage from classical (differentiable) mechanics to the
new nondifferentiable mechanics can now be implemented by
a unique prescription: Replace the standard time derivative
d/dt by the new complex operator d/dt. In other words, this
means that d/dt plays the role of a scale-covariant deriva-
tive (in analogy with Einstein’s general relativity where the ba-
sic tool consists of replacing 9; A* by the covariant derivative
DjAk = 63Ak + F;flAl)
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3.3. Scale-covariant mechanics

Let us now give the main steps by which one may general-
ize classical mechanics using this scale-covariance. We assume
that any mechanical system can be characterized by a Lagrange
function % (z, 7, t), from which an action .7 is defined:

t _
S = Lz, 7", t)dt.

t

(38)

Our Lagrange function and action are a priori complex and are
obtained from the classical Lagrange function L(zx,dx/dt,t)
and classical action S precisely from applying the above pre-
scriptiond/dt — d /dt. The action principle (which is no longer
a “least-action principle”, since we are now in a complex plane,
but remains a “stationary-action principle”), applied on this new
action with both ends of the above integral fixed, leads to gen-
eralized Euler-Lagrange equations (Nottale 1993a)

dosr 0%

dt 07"~ Ox;’ (39)

which are exactly the equations one would have obtained from
applying the scale-covariant derivative (d/dt — d/dt) to
the classical Euler-Lagrange equations themselves: this result
demonstrates the self-consistency of the approach and vindi-
cates the use of complex numbers. Other fundamental results
of classical mechanics are also generalized in the same way. In
particular, assuming homogeneity of space in the mean leads
to defining a generalized complex momentum and a complex
energy given by

vz
P = 0L

L= S ()_/
07" & =97 A

(40
If one now considers the action as a functional of the upper
limit of integration in Eq. (38), the variation of the action from
a trajectory to another nearby trajectory, when combined with
Eq. (39), yields a generalization of other well -known relations
of classical mechanics:

P =NV, & =-05/0t. 41
We shall now apply the scale-relativistic approach to various do-
mains of physics which are particularly relevant to astrophysical
problems.

4. Scale-covariant equations of physics

4.1. Generalized Newton-Schrodinger equation: particle in
scalar field

4.1.1. Lagrangian approach

Let us now specialize our study, and consider Newtonian me-
chanics, i.e., the general case when the structuring field is a
scalar field. The Lagrange function of a closed system, L =

Imv? — @, is generalized as £ (v, 7", 1) = imZ? — ®, where
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® denotes a scalar potential. The Euler-Lagrange equations keep
the form of Newton’s fundamental equation of dynamics

7" =-Vo, (42)

" at
which is now written in terms of complex variables and com-
plex operators. In the case when there is no external field, the
scale-covariance is explicit, since Eq. (42) takes the form of the
equation of inertial motion, d 7" /dt = 0. The complex momen-
tum & now reads:
S =m7’, (43)
so that from Eq. (41) we arrive at the conclusion that, in this
case, the complex velocity 7" is a gradient, namely the gradient
of the complex action:
7" =N /m. (44)

We may now introduce a complex wave function v which is
nothing but another expression for the complex action .,

b = /MY (45)
It is related to the complex velocity as follows:

7" = =21V (lny). (46)
From this equation and Eq. (43), we obtain:

P = =2imDNY, & =2imP /o, (47)

which is the correspondence principle of quantum mechanics
for momentum and energy, but here demonstrated and written
in terms of exact equations. We have now at our disposal all the
mathematical tools needed to write the fundamental equation of
dynamics (Eq. (42)) in terms of the new quantity 1. It takes the
form
. d

Zz@mdt(v Iny) =Vo. (48)
Standard calculations with differential operators (Nottale
1993a) transform this expression to:

d ) N
D =2 ) o =-Vo .
dt7 2JV{zatln¢+J W } Vo/m (49)
Integrating this equation finally yields
! § P
DN +iS o v— =0, (50)
ot 2m

up to an arbitrary phase factor a(¢) which may be set to zero
by a suitable choice of the phase of . In the very particular
case when & is inversely proportional to mass, & = h/2m,
we recover the standard form of Schrodinger’s equation:

h? )

oy A+l = B, (51)
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and this theory (assuming complete nondifferentiability) yields
quantum mechanics (Nottale 1993a).

It is remarkable that, in this approach, we have obtained the
Schrodinger equation without introducing a probability density
(since expectations are taken on the beam of virtual geodesics)
and without writing any Kolmogorov nor Fokker-Planck equa-
tion. In this regard our theory differs profoundly from Nelson’s
(1966, 1984) stochastic mechanics, in which one works with
a real Newton equation and with real backward and forward
Fokker-Planck equations; these equations are combined to yield
two real equations, which are finally identified with the real part
and the imaginary part of the complex Schrodinger equation. In
our theory, we use only one complex equation of dynamics from
the beginning of our calculation; as a consequence, the real and
imaginary parts of our Schrodinger equation is not a pasting of
two real equations, but instead involve combinations of terms
through the complex product, so that obtaining in this way a
Schrodinger equation was not a priori evident.

The statistical meaning of the wave function (Born postu-
late) can now be deduced from the very construction of the
theory. Even in the case of only one particle the virtual fam-
ily of geodesics is infinite (this remains true even in the zero
particle case, i.e. for the vacuum field). The particle is one ran-
dom geodesic of the family, and its probability to be found at a
given position must be proportional to the density of the fluid of
geodesics. This density can now be easily calculated from our
variables, since the imaginary part of Eq. (50) writes:

ol ot + divipy vy =0, (52)

where V' is the real part of the complex velocity, and has al-
ready been identified with the classical velocity (at the classical
limit). This equation is recognized as the equation of continu-
ity, implying that p = wa represents the fluid density which
is proportional to the density of probability, and then ensuring
the validity of Born’s postulate. The remarkable new feature
here that allows us to obtain such a result is that the equation of
continuity is not written as an additional a priori equation, but
is now a part of our generalized equation of dynamics.

4.1.2. Fractal potential and Energy equation

Let us reexpress the effect of the fractal fluctuation in terms of
an effective “force”. We shall separate the two effects of nondif-
ferentiability, namely, doubling of time derivative expressed in
terms of complex numbers, and fractalization, expressed by the
occurence of nonclassical second order terms in the total time
derivative, then treat them in a different way.

We are led in the following calculation by the well-known
way allowing to recover a Newtonian, force-like interpretation
of the equation of geodesics in Einstein’s general relativity
theory. Start with the covariant form of the geodesics equa-
tions, D2xH / ds* =0, develop the covariant derivative and ob-
tain d*z# /ds* + T# (dx” /ds)(dz? /ds) = 0, which generalizes
Newton’s equation, m d?z?/dt> = F* in terms of a “force”
—mfﬁp(dx”/ds)(dxp/ds).
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Once complex numbers are introduced (V' — Z7°), we write
the time derivative as a partially covariant derivative:

d 0
g 8t+7/ V.

The equation of a free particle still takes the form of Newton’s
equation of dynamics, but including now a right-hand member:

(53)

d_. .
7 =iYANY". (54

dt

This right-hand member can be identified with a complex “frac-

tal force” divided by m, so that:

T =imT AT (55)

In our scale-relativistic, fractal-space-time approach, this
“force” is assumed to come from the very structure of space-
time. When applied to the microphysical domain, we can require
it to be universal, independent of the mass of the particle. Then
2m< must be a universal constant:

2m = h. (56)

This result provides us with a new definition of 7, and implies
that A = 22 /¢ must be the Compton length of the particle:

A= .
mc

(57
Once the Compton length obtained, it is easy to get the de
Broglie length, that arises from it through a Lorentz transform
(see Nottale 1994 for more detail).

The force (Eq. (55)) derives from a complex “fractal poten-
tial”:

bp = —i2mZ divZ = —2mZ*Alnp. (58)

The introduction of this potential allows us to derive the
Schrodinger equation in a very fast way, by the Hamilton-Jacobi
approach (see Pissondes 1996 for a more detailed development
of this approach in the scale-relativistic framework). Such a
derivation explains the standard quantum mechanical “deriva-
tion” via the correspondence principle. We simply write the
expression for the total energy, including the fractal potential
plus a possible external potential ®,
177 2
& = + o+ P, (59)
2m

then we replace &, %’ and ¢p by their expressions (47) and
(58). This yields (with 2mZ = h)

L0 (—ihVIny): K2
h_ Iny= — Alnyp+®
ot ny im0 vre,
which is nothing but the standard Schrédinger equation, now
obtained in a direct way rather than integrated from the Lagrange
equation, i.e.

n 9

A +ih — ®=0.

2m Y 8t1/} v

2m (60)

(61)

879

4.1.3. Quantization of Newtonian gravitation

A preferential domain of application of our new framework is
gravitation. Indeed, gravitation is already understood, in Ein-
stein’s theory, as the various manifestations of the geometry of
space-time at classical scales. Now our proposal may be sum-
marized by the statement that space-time is not only Riemannian
but becomes also fractal at very large scales. The various man-
ifestation of the fractal geometry of space-time could therefore
be attributed to new effects of gravitation (this becomes a matter
of definition).

We shall give herebelow our system of equation for the mo-
tion of particles in a Newtonian gravitational field. Paper II of
the present series will be devoted to the study of some of its
solutions.

As a first step toward writing a general equation of struc-
ture formation by a gravitational potential, we shall consider
the special case of an “external” gravitational field that can be
considered as unaffected by the evolution of the structure con-
sidered. Such a situation corresponds to a structuring field that
can be considered as global with respect to the structures that it
will contribute to form. Typical examples of such a case are the
two-body problem, i.e., test particles in the potential of a cen-
tral more massive body (e.g., planetary systems, binary systems
in terms of reduced mass), and cosmology (particles embed-
ded into a background with uniform density). For this type of
problem, the equations of evolution are the classical Poisson
equation and the Schrédinger-Newton equation:

Ad = —47Gp, (62)
SapricV 2 oy 63)
ot 2m

Here the mass density p is assumed to remain undisturbed what-
ever the evolution of the test-particles described in Eq. (63), so
that the potential ® can be found from Eq. (62) and inserted
in Eq. (63). Solving for these equations will yield a probability
density Py = |¢|*(z,t) for the test particles subjected to the
potential ®.

Since this probability density is that of all the possible posi-
tions of the test-particle, as described by the density of its virtual
trajectories (of which the actual trajectory is one particular ran-
dom achievement), it will be interpreted as a tendency for the
system to make structures (Nottale 1996b; Nottale, Schumacher
& Gay 1997). To get an understanding of its meaning, one should
keep in mind that the above theory holds only at very large time
scales, and that at ordinary time scales the classical theory and
its predictions must still be used. Such structures may therefore
be achieved (and observed) in several different ways.

(1) If there is only one test particle (for example, one planet
in the Kepler potential of a star, see Nottale 1996b; Nottale,
Schumacher and Gay 1997), the structure will be achieved in
a statistical way. While in the standard theory all positions of
a planet around a star are equiprobable, some positions, which
correspond to the peaks of the probability density distribution,
will now be more probable. This effect can be tested by a statis-
tical analysis of several different systems (this can be compared
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to a photon by photon Young hole experiment).

(i1) A second way by which the structures can be achieved is
when there is a large ensemble of test particles. In this case
we expect them to fill the “orbitals” defined by the probability
amplitude, i.e. the theory is able to give a basis for morphogen-
esis. (This case can be compared with a classical Young hole
experiment involving a large number of particles). This would
be the case for planetesimals at the beginning of the formation
of planetary systems, or for asteroid belts in the present epoch.
(But one must care that the shape of the observed distribution
is also partly determined by the “small” time scale chaos due to
the effect of the other bodies, e.g. Kirkwood gaps in the asteroid
belts.)

(iii) Once matter is distributed in the orbitals as described by
the shape of the PDF, the standard gravitational evolution may
go on through accretion and/or collapse, yielding one or several
compact bodies in each of the peaks of the orbital. (For example,
this allows us to explain the formation of double stars, and more
generally of chain and trapeze configurations in zones of star
and galaxy formation, as corresponding to the various modes of
the quantum 3-dimensionnal isotropic oscillator, which is solu-
tion of our Schrédinger-like equation for constant density, see
Nottale 1996a).

A detailed treatment of the gravitational case, including an
analysis of the main solutions to Egs. (62)-(63), will be the
subject of paper II of this series.

A more general situation can be considered, when the grav-
itational potential is precisely due to the particles whose evo-
lution is looked for. In this case, the particles can no longer
be considered as test-particles. When the particles have equal
mass, the mass density in the Poisson equation is proportional
to the probability density given by our generalized Schrodinger
equation. The equations of evolution of such a system write:

oy @

? 7 =

DN +1T ot 2m¢, (64)
AD = —47Gpoly|, (65)
T =D (x,t, |, 6x,6...). (66)

(See below a still more general fluid-like approach and our quan-
tization of the Euler and Navier-Stokes equations). This is now
a “looped”, highly non-linear system with feedback. While in
microphysical standard quantum mechanics & is constrained
to be 1i/2m (but see Nottale 1996a for a possible special scale-
relativistic generalization to high energy particles), the situation
is far more complicated in the macrophysical case. To be fully
general, we may also consider the case when the parameter &
becomes a “field”, itself dependent on position, time, resolution-
scale (as implied by a fractal dimension different from 2, and
possibly on the local value of the probability density [see Not-
tale 1994, 1995, for a first treatment of the case of a variable
coefficient &]. In this regard, the theory remains incomplete,
since the problem of constructing the equation for this new field
remains essentially open.

The field equation and the particle trajectory equation are no
longer independent from each other. The gravitational potential
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and the probability density are now present in both equations.
They can therefore be combined in terms of a unique fourth-
order equation for the probability distribution of matter in the
Universe, in which the potential ® has now disappeared:

DN +iT OOt
(0

These various systems of equations are too much complicated
to be solved in general, so that only simplified situations will
be considered when looking for analytical solutions, in Paper II
of this series. However, the universal properties of gravitation
allows one to reach a general statement about the behavior of
these equations and their solutions. The always attractive char-
acter of the gravitational potential (except when considering the
contribution of a cosmological constant, see Paper II) implies
that it acts as a potential well, so that the energy of systems
described by Eqs. (64)-(65)-(66) will always be quantized. This
equation is then expected to yield definite structures in posi-
tion and velocity, which are given by the probability densities
constructed from its solutions. We therefore suggest that it may
stand out as a general equation for the formation and evolution
of gravitational structures.

2mA +47Gpo|Y|* = 0. (67)

4.2. Particle in vectorial field

Our theory can be tentatively generalized to the case when the
structuring field is vectorial, as, e.g., in the case of an electro-
magnetic field (Nottale 1994b, 1996a). Once again, it is easy
to make classical mechanics scale-covariant. The generalized
momentum and energy of a particle in a vectorial potential A
write:
P =P +qA, & =& +qd, (68)
which leads to introduce a A-covariant derivative (Nottale
1994b, 1996a, Nottale & Pissondes 1996; Pissondes 1996):
2midN =2miZN + qA. (69)
The resulting equations have the form of the Schrodinger equa-
tion in presence of an electromagnetic field (of vector potential
A and scalar potential ®):
. . q 2 o 0 q®
[ A +i [ — =0. 70
( “oma yy+i /(‘%w me (70)
Such an equation may be relevant for a large set of still unsolved
astrophysical problems where magnetic fields play an important

role (see e.g. Zeldovich et al. 1983). We shall consider its ap-
plication in subsequent papers of this series.

4.3. Particle in tensorial field: Einstein-Schrodinger geodesics
equation

The application of our theory to a particle in a gravitational
field plays a particular role in its development. Indeed, while
Newton’s description of gravitation remains in terms of field and
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potential, gravitation is identified in the more profound vision
of Einstein with the various manifestations of the Riemannian
nature of space-time. In this case, our problem corresponds no
longer to studying the effect of the fractal geometry of space-
time on a particle embedded in an outer field. As recalled above,
it now amounts to study the motion of a free particle in a space-
time whose geometry would be both fractal (at large scale) and
Riemannian (in the mean).

Let us use the general-relativistic and scale-relativistic co-
variances in order to write the geodesics equations in such a
space-time. Einstein’s covariant derivative writes:

D d
AP = 7 AP+ TH vV AP,
ds ds” Thve?

(71)
Using this covariant derivative, Einstein’s geodesics equations
are written in terms of the free particle equation of motion :

ot + T vYoP = 0.

D d
=0 = p (72)

ds S
This equation can now be made scale-covariant, by replacing
d/ds by d/ds at all levels of the construction. We define a
scale+Einstein-covariant derivative:

D

ds (73)

d
AF =AM+ TH 7V AP,
ds Ve
The scale-covariant derivative is given in the 4-dimensional rel-
ativistic case (see Nottale 1994b, 1996a; Nottale and Pissondes
1996; Pissondes 1996) by

d

A
— (g M y M
s (Z7H + 128 )0,

(74)
where Z'* = dz*/ds is a complex four-velocity. We could
then write the equation of motion of a particle in a Riemannian
+ fractal space-time in terms of the inertial, free particle equation
of motion:

ds7/ —0:>d87 +I), 777 =0. (75)
However, such an equation remains incomplete, as shown by
Pissondes (1997), in agreement with Dohrn and Guerra (1977).
A geodesics correction must be added to the usual parallel dis-
placement, that leads to add to Eq. (75) a term —i(\/2)RE 77,
now involving the Ricci tensor in the new geodesics equation.
Moreover, one must be cautious with the interpretation of this
equation. It is obtained by assuming that the two (Einstein and
scale) covariances do not interact one on each other. This can
be only a rough approximation. Indeed, in order to solve the
problem of the motion in a general, non flat fractal space-time
(which is nothing but the problem of finding a theory of quan-
tum gravity in our framework), one should strictly examine the
geometrical effects of curvature and fractality at the level of the
construction of the covariant derivatives, not only once they are
constructed. This problem reveals to be extraordinarily compli-
cated (Nottale 1997), and will not be considered further in the
present paper.
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A second problem with Eq. (75) concerns the interpretation
of the scale-covariant derivative in the motion-relativistic case.
It is obtained by assuming that not only space but space-time
is fractal, which implies that the trajectories of particles can go
backward in time. This is not a problem in microphysics: on the
contrary, it is even needed by the existence of virtual pairs of
particle-antiparticles, through Feynman’s interpretation of an-
tiparticles as particles going backward in time. (See Ord 1983;
Nottale 1989, 1993a for a development of the fractal approach
to this question). It is more difficult to make a similar interpreta-
tion in the macroscopic case, so that we shall only consider the
non(motion)-relativistic limit of Eq. (75) for comparison with
actual data (Paper III of this series). This is nothing but the above
generalized Newton’s equation of dynamics,

d_,.

dtG]/ +V®/m=0, (76)
that can be integrated in terms of the generalized Schrodinger
equation (Eq. 50).

4.4. Euler-Schrodinger equation

Our approach can be generalized to fluid mechanics in a straight-
forward way. Actually we have already partly adopted a fluid
description when introducing a velocity field v = v[x(?), t].
Applying scale-covariance, the Euler equation for a fluid in a
gravitational potential P,

d

v:(8/8t+v-V)U=—Vp—V<I>, an
dt p
will be transformed into the complex equation:
d_.

7 =-VP _yo. (78)
dt 0

In the general case Vp/p is not a gradient, and we cannot trans-
form this equation into a Schrodinger-like equation. However,
in the case of an incompressible fluid (p = cst), and more gener-
ally in the case of an isentropic fluid (including perfect fluids),
Vp/p is the gradient of the enthalpy by unit of mass w (see,
e.g., Landau & Lifchitz 1971)

vp =Vw.

(79)
In this approximation Eq. (78) becomes the Euler-Lagrange
equation constructed from the Lagrange function % (z, 7", t) =
ém?/ 2 — ® — w. Therefore it derives from a stationary action
principle working with the complex action . = [ £ dt. Our
whole previous formalism is now recovered. We introduce the
probability amplitude v (now defined for a unit mass):

S = =2iF In. (80)
In terms of 1), d 7" /dt is a gradient:

DN +iZ
jtv7/'= —2v 1/}1/ mw] . (@81)
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This equation can now be integrated, leading to a generalized
Schrodinger-like equation:

0 _w+(I>

g2 S
9y A1/)+z,./8t1/1 5

¥ =0. (82)

4.5. Navier-Schrodinger equation

A similar work can be performed with the Navier-Stokes equa-
tions, at least formally. Our scale-covariant generalized Navier-
Stokes equations write:

( i + TN — i TN = — Vpp N (83)

0
Itis quite remarkable that the viscosity term in the Navier-Stokes
equation plays a role similar to the coefficient &/ . This suggest
to us to combine them into a new complex parameter

I =T —iv. (84)
In terms of &, the complex Navier-Stokes equation recovers
the form of the complex Euler equation:

0 +v7'-vfi£zA)9/=pr

(815 p

(85)

Once again, in the incompressible or isentropic cases, this equa-
tion can be integrated to yield a Schrodinger-like equation:
72 -7 6 w
DN +iY [ p— _¢P=0. (86)
ot 2
This equation is also valid in the presence of a gravitational field

or in the presence of any field that is the gradient of a potential
®. It becomes:

0 _w+<I>

DN +iT a5

P =0. (87)
However, its interpretation is more difficult than in previous cal-
culations. Indeed the complex nature of 2 prevents the imag-
inary part of this equation to be an equation of continuity. We
shall no longer consider the viscous case in the present paper.
We intend to study this situation in more detail in forthcoming
works.

4.6. Motion of solids

The equation of the motion of a solid body can be given the form
of Euler-Lagrange equations, and therefore comes in a very easy
way under our theory. The role of the variables (x, v, t) is now
played by the rotational coordinates, (¢, {2,t) where ¢ denotes
three rotational Euler angles and 2 is the corresponding rota-
tional velocity. The Euler-Lagrange equation writes (Landau &
Lifchitz, 1969):

d oL _ oL

dt Q) 0¢’ (88)
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in terms of the Lagrange function L of the solid, that writes:

a0 U,
where [;;; is the tensor of inertia of the body and U a potential
term. We use throughout this section the tensorial notation where
a sum is meant on two repeated indices. The right-hand member
of Eq. (88) writes:

oL ou
== =K= x F,
96" "ap = K=2T
which identifies with the total torque, i.e., the sum of the mo-
ments of all forces acting on the body. In the left-hand member
one recognizes the angular momentum about the center of mass,

1
L= Vs (89)

(90)

oL
M= 91
20 oD
and we finally recover a rotational equation of dynamics:
d
M=K. 92
gt 92)

Let us consider the rotational motion of the solid at very large
time scales. We are in similar conditions as in the case of trans-
lational motion, but now the position angles have replaced the
coordinates. In our nondeterministic approach, we definitively
give up the hope to make strict predictions on the values of these
angles, and we now work in terms of probability amplitude for
these values. Once again, by this way we become able to pre-
dict (angular) structures, since all values of the angles will no
longer be equivalent, but instead some of them will be favored,
corresponding to peaks of probability density.

The angular velocity can be decomposed in terms of a back-
ward and forward mean, leading to define a mean complex an-
gular velocity Q) and a fluctuation such that < W;W,, >=
21,/ dt, where Zj;, is now a tensor. We then build a scale-
covariant derivative:

(;lt = gt + Q;C 81@ — Zfljk878k
The quantization of Eq. (92) is straighforward using this scale-
covariant derivative. It writes:

d ~
Q= —0,U.
PRl

We now introduce the wave function as another expression for
the action .¥”, ¢ = exp(i.¥"/.%), where .4 is a constant having
the dimension of an angular momentum. Provided this constant
is givenby .4 = 21, 7y, (this is a generalization of the previous
scalar relation .%6 = 2m <), Eq. (94) can be integrated in terms
of a generalized Schrodinger equation acting on the rotational
Euler angles:

93)

L, 94)

o o,
H( L3O+ o 10) = Ut = 0. (95)
An example of application of this equation to the Solar System
(quantization of the obliquities and inclinations of planets and
satellites) has been given in (Nottale 1996c).
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4.7. Dissipative systems: first hints

One can generalize the Euler-Lagrange equations to dissipative
systems thanks to the introduction of a dissipation function f
(see e.g. Landau & Lifchitz 1969):

dos o of

dt 077 ~ dx; 0% (96)

where f is linked to the energy dissipation by the equation f =
—d& /2dt. This becomes in the Newtonian case:

o7

d of .
7" = — — = — — oy
mdt 7 Vo 07" Vo Ej ki; Z;.

We shall only consider here briefly the simplified isotropic case:

f=kv, ©8)
and its complex generalization:

T =k7. ©9)
We obtain a new generalized equation (Nottale 1996a):
ngw+i,@881f —Z(fnz/)+iril/)lnw=0 (100)

which is still Schrodinger-like (and remains scale-invariant un-
der the transformation ¢ — p1), up to an arbitrary energy term),
since it corresponds to a perturbed Hamiltonian: H = Hy + V/,
with the operator V' such that Vi) = —i :fL 1 In ¢. The same prob-
lem has also been recently considered by Ahmed and Mousa
(1996), with equivalent results. The standard methods of pertur-
bation theory in quantum mechanics can then be used to look
for the solutions of this equation. This will be presented in a
forthcoming work.

4.8. Field equations

As is well-known, the profound unity of physics manifests it-
self by the fact that field equations can also be given the form of
Lagrange equations. The potentials play the role of the general-
ized coordinates, the fields play the role of the time-derivatives
of coordinates and the coordinates play the role of time:

z o D, (101)
dzr dd

PR (102)
t—x (103)

Namely, field equations take the same form as the equations of
motion of particles, once this substitution is made. For sim-
plicity of the argument we work with only one x variable
in what follows (the generalization to any dimension will be
given in a forthcoming work). One defines a Lagrange function
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£(®, F, z) then an action . from this Lagrange function. The
action principle leads to Euler-Lagrange equations that write:

d oY 0%

de OF ~ 9® - (104)

For example, the Lagrange equation constructed from s =
éFz — kp® is the Poisson field equation, d*®/dz* = —kp.
This well-known structure of present physical theories allows
us to apply our method to fields themselves. This leads to a
quantization of classical fields, but in a new way and with an in-
terpretation quite different from that of the second quantization
in standard quantum mechanics.

Here we consider a field potential ®(z,t) whose evolution
with time is known to be chaotic. On a very long time-scale, far
larger than its chaos time, it can be described in terms of a long-
term, differentiable mean < ®(z,t) > and a non-differentiable
fluctuation £5. We are once again led to the same quantum-like
method: we give up the possibility to strictly know the value
of the potential ® at any point or instant, but we introduce a
probability amplitude for it, ¥'(®), such that the probability of a
given value of ® is given by P(®) = (\IIT‘I/)@). The combined
effect of fractal fluctuations and passage to complex numbers
due to the breaking of the (dx < —dx) reflexion invariance
leads to defining a complex field .77, then a scale-covariant
derivative that writes:

d 0 0 H?
_ N _ i ]
dr Oz i i 092

9 (105)

Using this covariant derivative, Eq. (104) can be quantized. We
obtain:

d o 0¥
de 0.7 ~ 0® (106)

In the particular case of a scalar field considered above, this
equation can be integrated under the form of a generalized
Schrodinger equation for the probability amplitude of the po-
tential U(P):

07 9 1
72 O —
7% 8(1)2‘1/+Zg¢.8x\1’ = 2/<:p<I>\II (107)
1. d2d
= & . 1
2 da? (108)

A study of the solutions of this equation and its writing for any
number of dimensions will be presented in a forthcoming work.

5. Discussion and conclusion

One of the most important consequences of the quantum-like
nature of the world at large time and/or length-scales unveiled
by scale-relativity is the profound unity of structures that it im-
plies between very different scales. This unity is a consequence:
(1) of the universality of the structuring “force”, (i.e. of the frac-
tal geometry of space-time),

(ii) of that of physics, as manifested in the Lagrangian / Hamil-
tonian formalism, i.e., in the underlying symplectic structure of
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physics,
(iii) and of the recovered prevalence of the space-time descrip-
tion.

It was already apparent in standard quantum mechanics,
in the fact that several features of the solutions to a given
Schrodinger equation can be detailed before the precise form
of the potential is specified. The structures come in large part
from the quantum terms themselves (which we have interpreted
as a manifestation of the fractal space-time geometry) and from
the matching and limiting conditions for the wave function.

Now, as can be seen on the various generalized Schrodinger
equations written throughout the present paper, these quantum
terms are in common to all them. Moreover, these equations
describe different systems that must be matched together at dif-
ferent scales in the real world: the matching conditions will
then imply a unity and a continuity of the structures observed
at these different scales. This prediction has already been fairly
well verified for various gravitational potentials from the scale
of star radii (< 10° km) to extragalactic scales (= 100 Mpc)
(Nottale 1996a,b, Nottale, Schumacher & Gay 1996, Nottale,
Schumacher & Lefevre 1997). We shall in future work inves-
tigate whether it also applies to systems whose structure do
not depend on the gravitational field only, but also on magnetic
fields, pressure and dissipative terms (e.g., stellar interiors, stel-
lar atmospheres...).

Before concluding, we want to stress once again the differ-
ence between the application of our theory to standard quantum
mechanics (at small scales) and to very large time-scale phe-
nomena as studied in the present series of papers. In the case of
quantum mechanics (Nottale 1993a), our fundamental assump-
tion is that space-time itself is continuous but non-differentiable,
then fractal without any lower limit. The complete withdrawal
of the hypothesis of differentiability is necessary if we want the
theory not to be a hidden parameter one and to agree with Bell’s
theorem and the undeterminism of quantum paths. Moreover,
we also give up the concept of elementary particle as being
something which would own internal properties such as mass,
charge or spin, since we are able to recover these properties
from the geometric structures of fractal geodesics of the non-
differentiable space-time. Particles, with their wave-corpuscle
duality, are identified with the geodesics themselves (Nottale
1989, 1993a, 1996a), i.e., with the shortest lines of topologi-
cal dimension 1 (singularizing also the topological dimension
2 would lead to string theories, see Castro 1996).

On the contrary, in the application to chaos and fractal space
beyond the predictability horizon, we know from the beginning
(i) that non-differentiability is only a large time-scale approx-
imation (f > 7), and that when going back to small time-
resolution we recover differentiable, predictable classical tra-
jectories; and (ii) that the geodesics are indeed trajectories fol-
lowed by extended bodies. This motivates the use of some of the
quantum mechanical tools (probability amplitude, Schrodinger-
like equations) but not its whole interpretation, concerning in
particular measurement theory, in agreement with the recent
construction by Ord (1996a,b) of a microscopic model of the
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Schrodinger equation in the fractal space-time / random walk
framework.

Recall also that the application of the scale-relativity theory
to the macrophysical domain implies a different interpretation
of our construction respectively to the microphysical domain for
yet another reason. In the macroscopic case indeed, the transi-
tion to classical physics is toward the small scales, while no up-
per limit is expected to the scaling behavior at large scales. This
can be achieved provided our theory applies only to a “fully
quantum” system, i.e., a system for which the mean classical
velocity < V' > is zero (such as the hydrogen atom in micro-
physics). Indeed, the upper transition from quantum (fractal)
laws to classical (non fractal) laws is given by the equivalent de
Broglie length, A = 2%/ / < v >, which is sent to infinity when
<V >=0

The scale relativity theory shares some common features
with other approaches, even if it also differs from them on
essential points. A first related approach is Nelson’s (1966,
1985) stochastic mechanics, in which particles are described
in terms of a diffusion, Brownian-like process, but with a New-
tonian rather than Langevin dynamics. Nelson obtains a com-
plex Schrodinger equation as a combination of real equations,
namely a Newton equation of dynamics in which the form of
the acceleration is postulated, and two backward and forward
Fokker-Planck equations. (Note that this implies that Nelson’s
diffusion is not a standard diffusion process, since his back-
ward Fokker-Planck equation is a time-reversed forward Kol-
mogorov equation, which is therefore incompatible with the
standard backward Kolmogorov equation, see e.g. Welch 1970).
Nelson’s theory has been used by Albeverio et al. (1983) and
Blanchard (1984) to obtain models of the protoplanetary nebula.

Contrarily to such diffusion approaches and to standard
quantum mechanics itself, the scale-relativity theory is not sta-
tistical in its essence. In scale relativity, the fractal space-time
could be completely “determined”, so that the undeterminism
of trajectories is not set as a founding stone of the theory, but
as a consequence of the nondifferentiability of space-time. This
is clear from the fact that we do not use Fokker-Planck equa-
tions, but only the equation of dynamics, properly made scale-
covariant.

The implications of this difference between the two ap-
proches are very important. The diffusion approach is expected
to apply only in fluid-like or many-body environments. On the
contrary, the structuring “field” in our theory being the underly-
ing fractal geometry of space-time itself, we predict that there is
a universal tendency of nature to make structures, even for two-
body problems, and that these structures must be themselves
related together in a universal way. This prediction has been
already verified in a remarkable way for gravitational structures
(Nottale 1993a,b, 1995b, 1996a,b; Nottale, Schumacher & Gay
1997).

Recall also that it is now known that Nelson’s stochastic
mechanics is in contradiction with standard quantum mechanics
concerning multitime correlations (Grabert et al 1979, Wang &
Liang 1993). The source of the disagreement comes precisely
from the Brownian motion interpretation of Nelson’s theory,
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leading to the use of the Fokker-Planck equations, and from the
wave function reduction. Once again the fact that we do not use
the Fokker-Planck equations reveals itself as an essential fea-
tures of our theory, since it allows our theory not to come under
the Wang & Liang argument. Once we have jumped to the quan-
tum tool (i.e., when we pass from our representation in terms of
7" and . to the equivalent representation in terms of ) we
know by construction that the representation is complete, (i.e.
we recover the quantum equations without any additional con-
straint) so that the identity of predictions of standard quantum
mechanics and of scale relativity is ensured in the microphysical
domain (at energies where Galilean scale-laws hold). Another
related approach is that of Petrovsky and Prigogine (1996), who
attempt to extend classical dynamics by formulating it on the
statistical level. They also give up individual trajectories and
jump to a non-deterministic and irreversible description. The
difference with our own approach is that they keep classical
probabilities and irreversibility central to the theory without
invoking an explicit scale dependence. In contrast, in scale rela-
tivity, the description is fundamentally irreversible (in terms of
the elementary displacements on fractal geodesics), but this is
not an axiom so much as a consequence of giving up differen-
tiability. Moreover, we recover a reversible description in terms
of our complex representation (i.e., of the quantum mechani-
cal tool) which combines the forward and backward process: in
other words, irreversibility is at the origin of our complex for-
mulation, but it becomes hidden in the formalism, even though
it reappears through the wave function collapse.

Finally, an important point to emphasize once again is also
that, in scale-relativity, we really deal with a fractal space, not
only with fractal trajectories in a space that could remain flat
or curved. This is apparent in our trajectory equation, which is
written (in the absence of an external field) in terms of a scale-
covariant geodesics equation, which takes the form of the free,
Galilean equation of motion d 7" /dt = 0. This is the equation
for rectilinear uniform motion. It means that the particle goes
straight ahead in its proper coordinate system swept along in
the fractal space-time, and that its structure, which looks fractal
when seen from an exterior reference frame, comes from the
very fractal geometry of space-time itself.

In the papers of this series to follow, we shall enter in more
detail into our theoretical predictions by looking at the solutions
of our equations for different fields, with particular attention
given in paper Il on gravitational structures, then we shall com-
pare these predictions to observational data (paper III). We shall
see that the theory allows us to explain several misunderstood
facts concerning gravitational structures at all scales, it allows us
to make new predictions (see already Nottale 1996a,b,c, 1997,
Nottale et al 1997), and it also opens new domains of inves-
tigation, concerning in particular the open question of a more
complete description of the “field” of fractal fluctuations.
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Appendix A: continuity and nondifferentiability implies
scale-divergence

One can demonstrate (Nottale, 1993a, 1996a) that the length
of a continuous and nowhere differentiable curve is dependent
on resolution e, and, further, that %4 (¢) — oo when ¢ — 0,
i.e. that this curve is fractal (we used the word “fractal” in this
extended meaning throughout this paper). The scale divergence
of continuous and almost nowhere differentiable curves is a
direct consequence of Lebesgue’s theorem, which states that a
curve of finite length is almost everywhere differentiable.

Consider indeed a continuous but nondifferentiable function
f(x) between two points Ag{x, f(x¢)} and Ag{zq, f(zq)}in
the Euclidean plane. Since f is non-differentiable, there exists
a point A; of coordinates {z, f(z;)} with zyp < z; < zg,
such that A; is not on the segment AgAgq. Then the total length
L = L(AgA) + L(A1Aq) > Ly = L (A1Ag). We can
now iterate the argument and find two coordinates xg; andxi;
with 2o < 291 < z; and z; < 11 < o, such that %, =
L(AgAo) + L (Aot A) + L(A1AN) + L (A Ag) > L) >
£ By iteration we finally construct successive approximations
fo, f1, - fn of f(x) whose lengths %y, £, - - £, increase
monotonically when the “resolution” ¢ ~ (rq — xg) X 27"
tends to zero. In other words, continuity and nondifferentiability
implies a monotonous scale dependence of f on resolution e.
Now, Lebesgue’s theorem states that a curve of finite length is
almost everywhere differentiable (see e.g. Tricot 1993).

Therefore, if f is continuous and almost everywhere non-
differentiable, then ‘% (¢) — oo when the resolution € — 0;
namely f is not only scale-dependent, but even scale-divergent.
This theorem is also demonstrated in (Nottale 1993a, p.82) by
using non-standard analysis.

What about the reverse proposition: Is a continuous function
whose length is scale-divergent between any couple of points
(such that x 4 — x g finite), i.e., £ (¢) — oo when € — 0, non-
differentiable? The answer is as follows:

(1) If the length diverges as fast as a power law, i.e. £ (e) o
(\/e)?, or faster than a power law (e.g., exponential divergence
L (e) x exp(A/e), etc...), then the function is certainly nondif-
ferentiable. It is interesting to see that the standard (self-similar,
power-law) fractal behavior plays a critical role in this theorem:
it gives the limiting behavior beyond which non-differentiability
is ensured.

(i) In the intermediate domain of slower divergences (for ex-
ample, logarithmic divergence, £ () x In(\/e€), In(In(\/e)),
etc...), the function may be either differentiable or nondifferen-
tiable.

This can be demonstrated by looking at the way the length
increases and the slope changes under successive zooms of a
constant factor p. There are two ways by which the divergence
can occur: either by a regular increase of the length (due to
the regular appearance of new structures at all scales that con-
tinuously change the slope), or by the existence of jumps (in
this case, whatever the scale, there will always exist a smaller
scale at which the slope will change). The power law corre-
sponds to a continuous length increase, % (pe) = 1% (€), then
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to a continuous and regular change of slope when ¢ — O:
therefore the function is nondifferentiable in this case. Diver-
gences slower than power laws may correspond to a regular
length increase, but with a factor p which becomes itself scale-
dependent: % (pe) = (€)% () with u(e) — 0 when € — 0. In
this case, some functions can be differentiable, if they are such
that new structures indeed appear at all scales (and could then
be named “fractal” under the general definition initially given
by Mandelbrot 1975 to this word), but these structures become
smaller and smaller with decreasing scale, so that a slope can
finally be defined in the limit ¢ — 0. Some other functions di-
verging slower than power laws are not differentiable, e.g. if
there always exists a scale smaller than any given scale such
that an important change of slope occurs: in this case, the slope
limit may not exist in the end.

Appendix B: special and generalized scale-relativity
B.1. Special scale relativity

It is well known that the Galileo group of motion is only a
degeneration of the more general Lorentz group. The same is
true for scale laws. Indeed, if one looks for the general linear
scale laws that come under the principle of scale relativity, one
finds that they have the structure of the Lorentz group (Nottale
1992). Therefore, in special scale relativity, we have suggested
to substitute to the Galilean laws of dilation In p” =1n p + In p/’
the more general Lorentzian law (Nottale 1992, 1993a):

y _Inp+Inp/

Inplnp’*
14 el

Inp (BD)

This expression is yet uncomplete, since under this form the
scale relativity symmetry remains unbroken. Such a law cor-
responds, at the present epoch, only to the null mass limit. It
is expected to apply in a universal way during the very first
instants of the Universe. This law assumes that, at very high
energy, no static scale and no space or time unit can be defined,
so that only pure contractions and dilations have physical mean-
ing. The corresponding physics is a physics of pure numbers. In
Eq. (B1), there appears a universal, purely numerical constant
C = In K, which plays the role of a maximal possible dilation.
We have found that the value of K is about 5 x 109 (Not-
tale 1993a, 1995d, 1996a): its existence yields an explanation
to the Eddington-Dirac large number hypothesis, and connects
the cosmological constant to the Planck scale. A more detailed
study of these questions will be presented in a forthcoming work
(Nottale 1997).

However, the effect of the spontaneous scale symmetry
breaking which arises at some scale )g is to yield a new law
in which the invariant is no longer a dilation IK, but becomes a
length-time scale A. In other words, there appears in the theory
a fundamental scale that plays the role of an unpassable reso-
lution, invariant under dilations (Nottale 1992). Such a scale of
length and time is an horizon for scale laws, in a way similar
to the status of the velocity of light for motion laws. The new
law of composition of dilations and the scale-dimension now
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Fig. 5. Schematic representation of the three domains of the present
era, (quantum microscopic, classical and cosmological) in the case of
special scale-relativistic (Lorentzian) laws.The variation of the effective
fractal dimension (D = 1 + §) is given in terms of the logarithm of
resolution. It is constant and equal to the topological dimension in the
classical, scale-independent domain. It jumps fastly to D = 2 towards
small and large scales (Galilean regime), then it increases continuously
in the Lorentzian regime (Eq. (A.2.2). The (relative) transitions are
given by the Compton length at small scale and (presumably) by the
Emden radius at large scale.

write respectively (in the scale-dependent domains, i.e. only
below the transition scale in microphysics and beyond it in the
cosmological case):

€ In(e/Xo)+1Inp

Ao In pIn(e/No)
0 1+ In2(A/Xo)

In (B2)

1
\/1 _ w0/
In2(Ao/A)

A fractal curvilinear coordinate becomes now scale-dependent
in a covariant way, namely % = %, [1+(\o/€)°©]. One of the
main new feature of special scale relativity with respect to the
previous fractal or scale-invariant approaches is that the scale-
dimension ¢, which was previously constant, is now explicitly
varying with scale (see Fig. 5) and even diverges when reso-
lution tends to the new invariant scales. In the microphysical
domain, the invariant length-scale is naturally identified with
the Planck scale, Ap = (hG'/c)!/?, that now becomes impass-
able and plays the physical role that was previously devoted
to the zero point (Nottale 1992, 1993a). The same is true in
the cosmological domain, with once again an inversion of the
scale laws. We have identified the invariant maximal scale with
the scale of the cosmological constant, I, = A~ 12 The conse-
quences of this new interpretation of the cosmological constant
have been considered in (Nottale 1993a, 1995d, 1996a) and will
be developed further in a forthcoming work (Nottale 1997).

Note that special scale-relativistic laws (Nottale 1992) have
also recently been considered by Dubrulle (1994) and Dubrulle
and Graner (1996) for the description of turbulence, with a dif-
ferent interpretation of the variables.

It is also noticeable that recent developments in string theo-
ries (Witten 1996) have reached conclusions that are extraordi-
narily similar to those of scale relativity. One finds that there is a
smallest circle in string theory (whose radius is about the Planck
length), and that strings are characterized by duality symmetries.

6(e) = (B3)
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Two of these dualities are especially relevant to our approach,
since they make already part of it in a natural way. The first is
the quantum / classical duality, which we recover in terms of
our scale / motion duality. The second is a microscopic / macro-
scopic duality: it has been found that strings do not distinguish
small spacetime scales from large ones, relating them through
an inversion. But scale inversion is a transformation which is
naturally included in the scale-relativistic framework (see Sect.
2.5), since this is nothing but the symmetric element of the scale
group (V' = —V & In(\/€') = —In(\/e) < € = A\?/ein the
Galilean case). Therefore it has recently been claimed by Castro
(1996) that scale relativity is the right framework in which the
newly discovered string structures will take their full physical
meaning. The string duality between the small and large scales
adds a new argument to our main conclusion: namely, that the
laws of physics take again a quantum-like form at very large
spacetime scales.

B.2. From scale dynamics to general scale relativity

The whole of our previous discussion indicates to us that the
scale invariant behavior corresponds to freedom in the frame-
work of a scale physics. However, in the same way as there
exists forces in nature that imply departure from inertial, recti-
linear uniform motion, we expect most natural fractal systems
to also present distorsions in their scale behavior respectively to
pure scale invariance. Such distorsions may be, as a first step, at-
tributed to the effect of a scale “dynamics”, i.e. to “scale-forces”.
(Caution: this is only an analog of “dynamics” which acts on
the scale axis, on the internal structures of a given point at this
level of description, not in space-time. See Sect. B.3 for first
hints about the effects of coupling with space-time displace-
ments). In this case the Lagrange scale-equation takes the form
of Newton’s equation of dynamics:

P InY

=1 e (B4)

where p is a “scale-mass”, which measures the way the system
resists to the scale-force.

B.2.1. Constant scale-force

Let us first consider the case of a constant scale-force. Eq. (B4)
writes

P

B s =G,

(BS)

where G' = F'/ju = constant. It is easily integrated in terms of
the usual parabolic solution (where V' = In ’6\:

V=V, +G¢, (B6)

In % =1In %y + Voo + ;652. (B7)

However the physical meaning of this result is not clear under
this form. This is due to the fact that, while in the case of motion
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laws we search for the evolution of the system with time, in the
case of scale laws we search for the dependence of the system
on resolution, which is the directly measured observable. We
find, after redefinition of the integration constants:

1 A
6—(‘>‘0+Gln<€>7 (B8)
ln_Z/',/_ZG'IH (e) (B9)

The scale dimension ¢ becomes a linear function of resolution
(the same being then true of the fractal dimension 1+6), and the
(In £, In ¢) relation is now parabolic rather than linear as in the
standard power-law case. There are several physical situations
where, after careful examination of the data, the power-law mod-
els were clearly rejected since no constant slope could be defined
in the (In %, In €) plane. In the several cases where a clear cur-
vature appears in this plane (e.g., turbulence, sand piles,...), the
physics could come under such a “scale-dynamical” descrip-
tion. In these cases it might be of the highest interest to identify
and study the scale-force responsible for the scale distorsion
(i.e., for the deviation to standard scaling).

B.2.2. Harmonic oscillator

Another interesting case of scale-potential is that of a repulsive
harmonic oscillator. It is solved as

s (A 1
_ ¢ (M)-L
For e < A it gives the standard Galilean case % = %y(\/€),
but its large-scale behavior is particularly interesting, since it
does not permit the existence of resolutions larger than a scale
Amaz = Ae'/®. Such a behavior could provide a model of con-
finement in QCD (Nottale 1997).

More generally, we shall be led to look for the general non-
linear scale laws that satisfy the principle of scale relativity
(see also Dubrulle and Graner 1997). As remarked in (Nottale
1994b, 1996a), such a generalized framework implies working
in a five-dimensional fractal space-time. The development of
such a “general scale-relativity” lies outside the scope of the
present paper and will be considered elsewhere (Nottale 1997).

In % (B10)

B.3. Scale-motion coupling and gauge invariance

The theory of scale relativity also allows to get new insights
about the physical meaning of gauge invariance (Nottale 1994b,
1996a). In the previous scale laws, only scale transformations at
a given point were considered. But we must also wonder about
what happens to the structures in scale of a scale-dependent ob-
ject when it is displaced. Consider anyone of these structures,
lying at some (relative) resolution e (such that ¢ < A, where \
is the fractal/nonfractal transition) for a given position of the
particle. In a displacement of the object, the relativity of scales
implies that the resolution at which this given structure appears
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in the new position will a priori be different from the initial one.
In other words, € is now a function of the space-time coordi-
nates, € = €(x, t), and we expect the occurrence of dilatations
of resolutions induced by translations, which read:

d

€
e =—A,dx",
€

(B11)

where a four-vector A,, must be introduced since dz* is itself a
four-vector and dIn € a scalar (in the case of a global dilation).
This behavior can be expressed in terms of a new scale-covariant
derivative:

eD,In <A> =ed,In <>\> + A,
€ €

Howeyver, if one wants such a “field” A,L to be physical, it must
be defined whatever the initial scale from which we started.
Starting from another scale ¢’ = pe (we consider only Galilean
scale-relativity here, see Nottale 1994b, 1996a for the additional
implications of special scale-relativity), we get

(B12)

d !

e = — A da¥, (B13)
€

so that we obtain:

A;L =A, +ed,Inp, (B14)

which depends on the relative “state of scale”, V = lnp =
In(e/€’). However, if one now considers translation along two
different coordinates (or, in an equivalent way, displacement on
a closed loop), one may write a commutator relation:
e(0,D, — 0,D,)In(\/e) = (0,4, — 0, AL). (B15)
This relation defines a tensor field F,, = 0,4, — 0, A, which,
contrarily to A,,, is independent of the initial scale. One rec-
ognizes in F),,, the analog of an electromagnetic field, in 4,,,
that of an electromagnetic potential, in e that of the electric
charge, and in Eq. (B14) the property of gauge invariance which,
in accordance with Weyl’s initial ideas (Weyl 1918), recovers
its initial status of scale invariance. However, Eq. (B14) repre-
sents a progress compared with these early attempts and with
the status of gauge invariance in today’s physics. Indeed the
gauge function, which has, up to now, been considered as ar-
bitrary and devoid of physical meaning, is now identified with
the logarithm of internal resolutions. In WeyI’s theory, and in
its formulation by Dirac (1973), the metric element ds (and
consequently the length of any vector) is no longer invariant
and can vary from place to place in terms of some (arbitrary)
scale factor. Such a theory was excluded by experiment, namely
by the existence of universal and unvarying lengths such as
the electron Compton length (i.e., by the existence of parti-
cle masses). In scale relativity, we are naturally led to intro-
duce two “proper times”, the classical one ds which remains
invariant, and the fractal one d.¥”, which is scale-divergent and
can then vary from place to place (its variation amounting to a
scale transformation of resolution). In Galilean scale-relativity,
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the fractal dimension of geodesics is D = 2, so that the scale-
dependence of d.¥ writes d.¥” = do(\/¢). Therefore we have
0dS)/dS = —befe x A,bx", and we recover the basic
relation of the Weyl-Dirac theory, in the asymptotic high en-
ergy domain (e < A). Another advantage with respect to Weyl’s
theory is that we are now allowed to define four different and
independent dilations along the four space-time resolutions in-
stead of only one global dilation. The above U(1) field is then
expected to be embedded into a larger field, in agreement with
the electroweak theory, and the charge e to be one element of
a more complicated, “vectorial” charge (Nottale 1997). More-
over, when combined with the Lorentzian structure of dilations
of special scale relativity, our interpretation of gauge invariance
yields new relations between the charges and the masses of el-
ementary particles (Nottale 1994b, 1996a).
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