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1.  INTRODUCTION

In his conference given at the St Louis congress in 1904, Henri Poincaré wrote [1]:
"Comme les astres proprement dits, [les atomes] s'attirent ou se repoussent et cette
attraction (...) ne dépend que de la distance. La loi suivant laquelle cette force varie en
fonction de la distance n'est peut-être pas la loi de Newton, mais c'est une loi
analogue; au lieu de l'exposant –2, nous avons probablement un exposant différent,
et c'est de ce changement d'exposant que sort toute la diversité des phénomènes
physiques. (...)  Telle est la conception primitive dans toute sa pureté. (...)
Néanmoins, il est arrivé un jour où la conception des forces centrales n'a plus paru
suffisante. Que fit-on alors ? On renonça à pénétrer dans le détail dans la structure de
l'Univers, (...) et l'on se contenta de prendre pour guides certains principes généraux:
(...) [conservation de l'énergie et de la masse, principe de Carnot, égalité de l'action
et de la réaction, principe de relativité et principe de moindre action]. L'application de
ces cinq ou six principes généraux aux différents phénomènes physiques suffit pour
nous en apprendre ce que nous pouvons raisonnablement espérer en connaître1."

1 "As for stellar bodies, atoms are attracted or repelled to each other and this attraction
(...) depends only on the distance. The law, according to  which this force varies as a
function of distance, is perhaps different from Newton's law, but is analogous to it;
instead of the exponent –2, we probably have a different exponent, and it is from the
change of the exponent that emerges all the diversity of physical phenomena. (...)  Such
is the primordial conception in all its purity. (...) Nevertheless, a day came when the
concept of central forces did not appear sufficient anymore. What was done then? The
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This quotation from Poincaré anticipates in a remarkable way some of the
questions that are posed to us nowadays, nearly one century later, concerning scale
invariance (and beyond), even though we are now concerned with understanding scale
laws in more complex systems than those considered at that time. Indeed the
simplest scale invariant equations have power-law solutions, and during some time a
large part of the research on this subject was devoted to the calculation of the
numerical values of the exponents. But we now know that we must go beyond such
an approach, even if it has been a necessary step, and look for the fundamental
principles that may allow us to really understand "where the physics is".

This is precisely the aim of the theory of scale relativity. As we shall see, we
attempt to construct and generalize scale laws by using first principles, namely the
principles of relativity and of covariance once extended to scale transformations
[2,3], and the stationary action principle. Namely, we generalize Einstein's
formulation of the principle of relativity, by requiring that the laws of nature be
valid in any reference system, whatever its state. Up to now, this principle has been
applied to changes of state of the coordinate system that concerned the origin, the
axes orientation, and the motion (measured in terms of velocity, acceleration, ...).

In scale relativity, we assume that the space-time resolutions are not only a
characteristic of the measurement apparatus, but acquire a universal status. They are
considered as essential, intrinsic variables, inherent to the physical description. We
define them as characterizing the "state of scale" of the reference system, in the same
way as the velocity characterizes its state of motion, and we work in an extended
phase space including coordinates, velocities and resolutions. The theory of scale
relativity consists of applying the principle of relativity to such a scale-state. Its
mathematical translation is scale-covariance [2,3], requiring that the equations of
physics keep their simplest form under resolution transformations (dilations and
contractions). The use of scale covariance for constraining scale laws has also more
recently been proposed by Pocheau [4] in the context of turbulence.

The domains of application of this theory are typically the asymptotic domains
of physics, small length-scales and small time-scales ∆x, ∆t → 0 (microphysics),
but also large length and time-scales ∆x, ∆t → ∞ (cosmology).

Initially, the theory of scale relativity was mainly an attempt at refounding
quantum mechanics on first principles [2,3]. We have demonstrated that the main
axioms of quantum mechanics can be recovered as consequences of the principle of
scale relativity, and that the quantum behavior can be recovered as the various
manifestations of the non-differentiability and fractality of space-time at small scales
[3,5,6]. Moreover, the theory allows to generalize standard quantum mechanics.
Indeed, we have shown that the usual laws of scale (power law, self-similar, constant

goal of unravelling the details of the structure of the Universe was abandonned and
replaced by certain general principles acting as guiding lines: (...) [conservation of
energy and mass, Carnot's principle, equality between action and reaction, relativity
principle and least action principle]. The application of these five or six general
principles to the different physical phenomena is enough to teach us what we can
reasonably hope to know."
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fractal dimension) have the status of "Galilean" scale laws, while a full
implementation of the principle of scale relativity suggests that they could be
medium scale approximations of more general laws which take a Lorentzian form
[7]. In such a "special scale relativity" theory, the Planck length- and time-scale
becomes a minimal, impassable scale, invariant under dilations and contractions,
which replaces the zero point (since owning all its physical properties) and plays for
scales the same role as played by the velocity of light for motion. A similar
proposal can be made at large scales: the scale of the cosmological constant can be
reinterpreted as a maximal, impassable length-scale, invariant under dilations [3,6,9].
In this new framework, several still unsolved problems of fundamental physics may
find simple and natural solutions: new light is brought on the nature of the Grand
Unification scale, on the origin of the electron scale and of the electroweak scale, on
the scale-hierarchy problem, and on the values of coupling constants [3,6,7];
moreover, one can construct a scale-relativistic interpretation of gauge invariance
that yields new insights on the nature of the electric charge, and allows  to predict
new mass-charge relations for elementary particles [6,8].

2. TOWARD A NONDIFFERENTIABLE SPACE-TIME

Since more than three century, physics relies on the implicit assumption that space-
time coordinates are a priori differentiable. However, it was demonstrated by
Feynman [10] that the typical paths of quantum mechanical particles are continuous
but non-differentiable. Now, one of the most powerful avenue for reaching a genuine
understanding of the laws of nature has been to construct them, not from setting
additional hypotheses, but on the contrary by attempting to give up some of them,
i.e., by going to increased generality. An example of such an approach is Einstein's
explanation of the nature of gravitation as the various manifestations of the
Riemannian, i.e. non-flat geometry of space-time. 

However, in the light of the above remark, Einstein's principle of relativity is
not yet fully general, since it applies to transformations that are continuous and at
least two times differentiable. The aim of the theory of scale-relativity is to look for
the laws and structures that would be the manifestations of still more general
transformations, namely, continuous ones (that can be differentiable or not). In such
a construction the standard theory will be recovered as a special case, since
differentiable spaces are a particular subset of the set of all continuous spaces.

In that quest, the first step consists of realizing that a continuous but non-
differentiable space-time is necessarily fractal. More precisely, one can demonstrate
[3,5,11] that a continuous but nondifferentiable function is explicitly resolution-
dependent, and that its length L tends to infinity when the resolution interval tends
to zero, i.e. L = L(ε)ε→0 → ∞. This theorem naturally leads to the proposal that the
concept of fractal space-time, [12,13,3] is the geometric tool adapted to the research
of such a new description based on non-differentiability. This leads to introduce new
intrinsic scale variables in the very definition of physical quantities (among which
the coordinates themselves), but also to construct the differential equations (in the
"scale space") that would describe this new dependence.
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We shall see that, since the new scale equations are themselves constrained by
the principle of relativity, the new concepts fit well established structures. Namely,
the so-called symplectic structure of most physical theories, i.e., the Poisson
bracket / Euler-Lagrange / Hamilton formulation, can be also used to construct scale
laws. Under such a viewpoint, scale invariance is recovered as corresponding to the
"free" case (the equivalent of what inertia is for motion laws).

3. SCALE INVARIANCE AND SCALE RELATIVITY

Scaling laws have been discovered and studied at length in several domains of
science. A power-law scale dependence is encountered in a lot of natural systems. It
can be described geometrically in terms of fractals [14,15], and algebrically in terms
of the renormalization group [16,17]. As we shall see now, such simple scale-
invariant laws can be identified with a "Galilean" version of scale-relativistic laws.

In most present use and applications of fractals, the fractal dimension D is
defined, following Mandelbrot, from the variation with resolution ε of the main
fractal variable (e.g., the length L of a fractal curve –which plays here the role of a
fractal curvilinear coordinate–, the area of a fractal surface, etc...). Namely, the scale
dimension δ = D –DT  is defined as:

δ  = 
d lnL

d ln(λ/ε)
  , (1)

where DT is the topological dimension (D >DT  most of the time). When δ  is
constant, we obtain a power-law resolution dependence L = Lo (λ / ε)δ. Here the
scale λ appears for dimensional reasons, but it remains arbitrary because there is a
strict scale invariance. We shall see in Sec. 3.2 that it takes its full meaning once a
scale symmetry breaking is introduced. The Galilean structure of the group of scale
transformations that corresponds to this law can be verified in a straightforward
manner from the fact that it transforms in a scale transformation ε → ε'  as

ln  
L(ε')
Lo

  =   ln  
L(ε)
Lo

 + δ(ε)  ln 
ε
ε'

      ;   δ(ε')  =   δ(ε) (2)

The relativity of scales is now apparent from the fact that λ has disappeared from
this transformation. It has exactly the structure of the Galileo group, as confirmed
by the law of composition of dilations ε → ε' → ε", which writes

lnρ"  =  lnρ  + lnρ'  , (3)

where ρ = ε'/ε, ρ' = ε"/ε' and ρ" = ε"/ε are the three dilations

3.1 Least action principle for scale laws

We are then naturally led, in the scale-relativistic approach, to reverse the
definition and the meaning of variables. The scale dimension δ becomes, in general,
an essential, fundamental variable, that remains constant only in very particular
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situations (namely, in the case of scale invariance, that corresponds to "scale-
freedom"). It plays for scale laws the same role as played by time for motion laws
(at a given instant). The log-resolution is a measure of scale in the same way as
velocity is a measure of motion, and it is now defined as a derived quantity in terms
of the fractal coordinate lnL and of the scale dimension δ:

V  = ln(λ/ε)  =  
d lnL

dδ
  . (4)

Our identification of the standard fractal behavior as a Galilean scale-law can now
be fully justified. We assume that, as in the case of motion laws, scale laws can be
constructed from a Lagrangian approach. A scale Lagrange function L(lnL, V,δ ) is
introduced, from which a scale-action is constructed:

S  =  ∫
δ 2

δ1
  L(lnL, V, δ ) dδ  . (5)

The action principle, applied on this action, yields a scale-Euler-Lagrange equation:

d
dδ

   
∂L

∂V
   =    

∂L
∂lnL

   . (6)

The simplest possible form for the Lagrange function is the equivalent for scales of
what inertia is for motion, i.e., L ∝ V2 and ∂L / ∂lnL = 0 (no scale "force", see
Sec. 4.1). The Lagrange equation writes in this case:

dV
dδ

   =  0  ⇒   V  =  cst. (7)

The constancy of V = ln(λ/ε) means here that it is independent of the scale-time δ.
Then Eq. 4 can be integrated in terms of the usual power law behavior,
L = L0 (λ / ε)δ. This reversed viewpoint has several advantages:
(i) The scale dimension takes its actual status of "scale-time", and the logarithm of
resolution V its status of "scale-velocity", V = dlnL / dδ. This is in accordance with
its scale-relativistic definition, since it characterizes the state of scale of the reference
system, in the same way as the velocity v = dx/dt  characterizes its state of motion.
(ii) This leaves open the possibility of generalizing our formalism to the case of
four independent space-time resolutions, Vµ = ln(λµ / εµ) = dlnLµ / dδ.
(iii) Scale laws more general than the simplest self-similar ones can be derived from
more general scale-Lagrangians (see Sec. 4 below).

3.2 Scale-symmetry breaking

An important point concerning the scale symmetry, which is highly relevant to the
present study, is that, as is well-known from the observed scale-independence of
physics at our own scales, the scale dependence is a spontaneously broken symmetry
[2,3,7]. Let us recall the simple theoretical argument that leads to this result.

In the general framework of a continuous space-time (not necessarily
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differentiable), we expect a generalized curvilinear coordinate to be explicitly
resolution-dependent, i.e. L = L(ε). We assume that this new scale dependence is
itself solution of a differential equation in the scale space. The simplest scale
differential equation one can write is a renormalization-group-like, first order
equation in which the scale variation of L depends on L only, i.e., dL / dlnε  = β(L).
The function β(L) is a priori unknown but, still taking the simplest case, we
consider a perturbative approach and we take its Taylor expansion. We obtain the
equation:

dL
dlnε 

  =  a + b L + c L2 + ... (8)

Disregarding for the moment the quadratic term, this equation is solved in terms of a
standard power law of power δ = –b, broken at some scale λ  (integration constant):

 L  =  L0 [ 1 + (λ
ε
)δ ] . (9)

Depending on the sign of δ, this solution represents either a small-scale fractal
behavior (in which the scale variable is a resolution), broken at larger scales, or a
large-scale fractal behavior (in which the scale variable ε would now represent a
changing window for a fixed resolution λ), broken at smaller scales.

The symmetry between the microscopic and the macroscopic cases can be seen
from the properties of Eq. 8. Let us indeed transform the two variables L and ε by
inversion, i.e. L → L' = 1/L and ε → ε' = 1/ε, we find that Eq. 8 becomes:

dL'
dlnε '

  =  c + b L' + a L' 2 + ... (10)

This is exactly the same equation up to the exchange of the constants a and c. In
other words, Eq. 8 is covariant (i.e. form invariant) under the inversion
transformation, which transforms the small scales into the large ones and
reciprocally, but also the upper symmetry breaking scale into a lower one. Hence
the inversion symmetry, which is clearly not achieved in nature at the level of the
observed structures, may nevertheless be an exact symmetry at the level of the
fundamental laws. This is confirmed by directly looking at the solutions of Eq. 8
while keeping now the quadratic term. We get a scaling behavior which is broken
toward both the small and large scales, in accordance with most real fractal systems:

 L   =  L0  [ 1 + (λ1 / ε)δ ] / [ 1 + (λ2 / ε)δ ]  . (11)

There is another way to obtain the scale symmetry breaking, that allows to
elucidate its origin. Consider a pure scale-invariant law for a "fractal coordinate" L =
L0 (λ / ε)δ.  We expect it to be also translation-invariant, i.e. L can be replaced by
L – L1. We then recover the broken law

L = L0 [1 + (λ'/ε)δ ] , (12)
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where λ' = λ (L0/L1)1/δ. This law becomes scale-independent for ε >>λ ' when
δ > 0, and for ε <<λ' when δ < 0. This means that the scale symmetry breaking
results from the effect on the scale symmetry of the translation symmetry.

3.3 Special scale-relativity

It is well known that the Galileo group of motion is only a degeneration of the
more general Lorentz group. The same is true for scale laws. Indeed, if one looks for
the general linear scale laws that come under the principle of scale relativity, one
finds that they have the structure of the Lorentz group [32,7]. Namely, it has been
shown by Levy-Leblond [32] that the Lorentz group can be obtained from requiring
linearity, group law and reflection invariance (the 4-dimensional Euclidean solution
is easily excluded since unphysical). More recently, we have demonstrated [7] that in
two dimensions, only three axioms were needed (linearity, internal composition law
and reflection invariance). Therefore, we have suggested to replace the Galilean laws
of dilation lnρ" = lnρ + lnρ' by the more general Lorentzian law:

lnρ" = 
lnρ + lnρ '

1 + lnρ  lnρ ’ / C 2   . (13)

 This expression is yet incomplete, since under this form the scale relativity
symmetry remains unbroken. Such a law corresponds, at the present epoch, only to
the null mass limit. It is expected to apply in a universal way during the very first
instants of the universe.

In Eq. 13, there appears a universal, purely numerical constant C = lnK , where
K  plays the role of a maximal possible dilation. However, the effect of the
spontaneous scale symmetry breaking which arises at some scale λ0 is to yield a
new law in which the invariant is no longer a dilation K, but becomes a length-time
scale Λ. In other words, there appears in the theory a fundamental scale that plays
the role of an unpassable resolution, invariant under dilations [7]. Such a scale of
length and time is an horizon for scale laws, in a way similar  to the status of the
velocity of light for motion laws. The new law of composition of dilations and the
scale-dimension now write respectively (in the scale-dependent domains, i.e. only
below the transition scale in microphysics and beyond it in the cosmological case):

ln 
ε'
λ0

  =  
ln(ε/λ0) + lnρ  

1 + 
lnρ   ln(ε/λ0)

ln2(Λ/λ0)

   ;   δ(ε)  =  
1

√1 −  ln2(λ 0 /ε )  /  ln2 (λ 0 /Λ )

  .    (14)

A fractal curvilinear coordinate becomes now scale-dependent in a covariant way,
namely L  = L 0 [1 + (λ 0 /ε)δ(ε)]. One of the main new feature of special scale
relativity with respect to the previous scale-invariant approach is that the scale-
dimension δ, which was constant, is now explicitly varying with scale, and it even
diverges when resolution tends to the new invariant scales. In the microphysical
domain, the invariant length-scale is naturally identified with the Planck scale,
ΛP = (hG/c3)1/2, that now becomes impassable and plays the physical role that was
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previously devoted to the zero point [3,7]. The same is true in the cosmological
domain, with once again an inversion of the scale laws. We have identified the
invariant maximal scale with the scale of the cosmological constant, L = Λ–1/2. The
consequences of this new interpretation have been studied in [3,6,9]. We have found
from various estimates of the cosmological constant that the value of K = L / ΛP
is about 5 x 1060 [3,6]. Moreover, from the identification of the cosmological
constant with the gravitational self-energy density of vacuum fluctuations [33], we
have been able to propose an explanation for the Eddington-Dirac large number
coincidence, which can be now written as K ≈ (mP / m)3, where m is a typical
elementary particle mass [6,9].

Special scale-relativistic laws have also recently been considered by Dubrulle [18]
and Dubrulle and Graner [19] for the description of turbulence, with a different
interpretation of the variables and a different choice for the required symmetries.
Namely, since we are interested here in the internal fractal structure of space-time
trajectories, the fractal dimension is unique while there are four space-time
resolutions, so that we are naturally led to consider the couple (lnL, δ) as the
variables to transform and the resolution lnε as the parameter of the transformation.
On the contrary, Dubrulle and Graner are interested in the set of exponents that
characterize the various moments of a statistical distribution in turbulence, so that
the role of δ  and lnε is reversed in their approach. This reversal also led them not to
use the axiom of reflection invariance, but to keep that of the existence of a
symmetric element. In this case, the solution is a generalization of the Lorentz
group defined by two constants instead of one [19].

It is also noticeable that recent developments in string theories have reached
conclusions that are extraordinarily similar to those of scale relativity. One finds that
there is a smallest circle in string theory (whose radius is about the Planck length),
and that strings are characterized by duality symmetries. Therefore it has recently
been argued by Castro [20] that scale relativity is the right framework in which the
newly discovered string structures will take their full physical meaning.

4. GENERALIZED SCALE LAWS

4.1 Scale "dynamics"

The whole of our previous discussion indicates to us that the scale invariant
behavior corresponds to freedom in the framework of a scale physics. However, in
the same way as there exists forces in nature that imply departure from inertial,
rectilinear uniform motion, we expect most natural fractal systems to also present
distorsions in their scale behavior respectively to pure scale invariance. This means
taking non-linearity in scale into account. Such distorsions may be, as a first step,
attributed to the effect of a scale "dynamics", i.e. to a "scale-field". (Caution: this is
only an analog of "dynamics" which acts on the scale axis, on the internal structures
of a given point at this level of description, not in space-time. See Sec. 4.3 below
for first hints about the effects of coupling with space-time displacements). In this
case the Lagrange scale-equation takes the form of Newton's equation of dynamics:
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F  =  µ   
d2lnL
dδ 2

   , (15)

where µ is a "scale-mass", which measures how the system resists to the "scale-
force", and where Γ = d2lnL / dδ 2 = d ln(λ/ε) / dδ  is the 'scale-acceleration'.

4.1.1 Constant scale-force

Let us first consider the case of a constant scale-force. The potential is ϕ = F lnL,
and Eq. 15 writes

d2lnL
dδ 2

   = G   , (16)

where G = F /µ  = cst. It is easily integrated in terms of a parabolic solution:

V   =  V0 + G   δ     ;    lnL   =  lnL0  +  V0 δ  +  
1
2
 G   δ2 . (17)

However the physical meaning of this result is not clear under this form. This is due
to the fact that, while in the case of motion laws we search for the evolution of the
system with time, in the case of scale laws we search for the dependence of the
system on resolution, which is the directly measured observable. We find, after
redefinition of the integration constants:

δ  =  δ0  +  
1
G

  ln (
λ
ε

)     ;    ln 
L
L0

  =  
1

2G
  ln2(

λ
ε

)  . (18)

The scale dimension δ becomes a linear function of resolution (the same being then
true of the fractal dimension 1+δ), and the (logL, logε) relation is now parabolic
rather than linear as in the standard power-law case. There are several physical
situations where, after careful examination of the data, the power-law models were
clearly rejected since no constant slope could be defined in the (logL, logε) plane. In
the several cases where a clear curvature appears in this plane (e.g., turbulence, sand
piles, ...), the physics could come under such a "scale-dynamical" description. In
these cases it might be of the highest interest to identify and study the scale-force
responsible for the scale distorsion (i.e., for the deviation to standard scaling).

4.1.2 Harmonic oscillator

Another interesting case of scale-potential is that of a repulsive harmonic
oscillator, ϕ = – (lnL / δ)2 / 2. It is solved as

ln 
L
L0

  =  δ  √ln2(
λ
ε

)  – δ  – 2   . (19)

For ε <<λ  it gives the standard Galilean case L = L0 (λ / ε)δ, but its large-scale
behavior is particularly interesting, since it does not permit the existence of
resolutions larger than a scale λmax = λ  e1/δ

. Since the gauge symmetry group of
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QCD, SU(3), is the dynamical symmetry group of the 3-dimensional isotropic
harmonic oscillator, and since gauge invariance can be interpreted in scale relativity
as scale invariance on space-time resolutions (see Sec. 4.3), such a behavior could
provide a model of confinement in QCD [L.N., in preparation].

More generally, we shall be led to look for the general non-linear scale laws that
satisfy the principle of scale relativity. Such a generalized framework, in which scale
covariance can be fully implemented, implies working in a five-dimensional fractal
space-time (the scale dimension plays the role of the fifth variable). The
development of such a "general scale-relativity" lies outside the scope of the present
contribution and will be considered elsewhere.

4.2 Discrete scale invariance and log-periodic behavior

Another correction to pure scale invariance is potentially important, namely the log-
periodic correction to power laws that is provided, e.g., by complex exponents or
complex fractal dimensions [21]. Sornette et al. (see Sornette's contribution to this
school and refs. therein) have shown that such a behavior provides a very
satisfactory and possibly predictive model of some earth-quakes and market krachs.
This may be a first step toward a general description of the time evolution of crises.
Let us show how one can recover log-periodic corrections from requiring scale
covariance. Consider a scale-dependent "field" Φ(ε). The scale variable is identified
with the interval | t – tc |, where tc  is the date of crisis. Assume that Φ  satisfies a
renormalization-group first order differential equation,

dΦ
dlnε

 – D Φ   =  0 , (20)

whose solution is a power law Φ(ε) ∝ εD. Now looking for corrections to this law,
we remark that simply jumping to a complex exponent D  would lead to large log-
periodic fluctuations rather than to a controlable correction to the power-law. So let
us assume that the right-hand side of Eq. 20 actually differs from zero

dΦ
dlnε

  – D Φ = χ  . (21)

We can now apply the scale-covariance principle and require that the new function χ
be solution of an equation which keeps the same form as the initial equation

dχ
dlnε

  – D' χ = 0  . (22)

Setting D' = D + δ, we find that Φ  must be solution of a second-order equation

d
2
Φ

(dlnε)2  –  (2 D + δ)  
dΦ
dlnε

  + D (D +δ) Φ = 0  . (23)

It writes Φ(ε)  = a  εD ( 1 + b εδ ), and finally, the choice of an imaginary exponent
δ = iω  yields a solution whose real part includes a log-periodic correction:
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Φ(ε)  = a  εD  [ 1 + b cos(ω lnε) ]. (24)

4.3 Scale-motion coupling and gauge invariance

The theory of scale relativity also allows us to get new insights about the physical
meaning of gauge invariance [8,6]. In the previous sections, only scale
transformations at a given point were considered. But we must also wonder about
what happens to the structures in scale of a scale-dependent object when it is
displaced. Consider anyone of these structures, lying at some (relative) resolution ε
(such that ε < λ, where λ is the fractal /nonfractal transition) for a given position of
the particle. Under a translation, the relativity of scales implies that the resolution at
which this given structure appears in the new position will a priori  be different
from the initial one. In other words, ε is now a function of the space-time
coordinates, ε = ε(x,t), and we expect the occurrence of dilatations of resolutions
induced by translations, which read:

e  
dε
ε

  = – Aµ dx µ , (25)

where a four-vector Aµ must be introduced since dx µ is itself a four-vector and dlnε
is a scalar (in the case of a global dilation). This behavior can be expressed in terms
of a new scale-covariant derivative:

e Dµ ln(λ/ε)  = e ∂µ ln(λ/ε)  +  Aµ  . (26)

However, if one wants the "field" Aµ  to be physical, it must be defined whatever the
initial scale from which we started. Starting from another scale ε' = ρε  (we consider
only Galilean scale-relativity here), we get  e  dε’ / ε’ = –A'µ dxµ, so that we obtain:

A’µ  =   Aµ   +  e  ∂µ lnρ   , (27)

which depends on the relative “state of scale”, V = lnρ = ln(ε/ε'). If one now
considers translation along two different coordinates (or, in an equivalent way,
displacement on a closed loop), one may write a commutator relation which defines
a tensor field Fµν  =  ∂µ Aν  – ∂ν Aµ . This field is, contrarily to Aµ, independent of
the initial scale. One recognizes in Fµν the analog of an electromagnetic field, in Aµ
that of an electromagnetic potential, in e that of the electric charge, and in Eq. 27
the property of gauge invariance which, in accordance with Weyl’s initial ideas
[22,23], recovers its initial status of scale invariance. However, Eq. 27 represents a
progress compared with these early attempts and with the status of gauge invariance
in today’s physics. Indeed the gauge function, which has, up to now, been
considered as arbitrary, is now identified with the logarithm of internal resolutions.

Another advantage with respect to Weyl's theory is that we are now allowed to
define four different and independent dilations along the four space-time resolutions
instead of only one global dilation. The above U(1) field is then expected to be
embedded into a larger field (in accordance with the electroweak theory) and the
charge e to be one element of a more complicated, "vectorial" charge [6,8].
Moreover, when combined with the Lorentzian structure of dilations of special scale
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relativity, our interpretation of gauge invariance yields new relations between the
charges and the masses of elementary particles [6,8].

5. DISCUSSION AND OPEN PROBLEMS

In the present contribution, we have mainly considered the question of pure scale
laws. We have shown how they can be constructed and generalized by using the
standard tools of classical physics (Euler-Lagrange equations / action principle), once
applied not only to displacements in space-time, but to displacements in the scale-
space. In this regard our tool can be thought of as the theoretical equivalent of what
are wavelets in fractal and multifractal data analysis (see e.g. [24,25]). It allows one
to construct conservation laws and invariant quantities through a "scale mechanics"
[3,7], quite analog to the case of motion.

There is another well-developed domain of application of scale relativity that we
did not mention here for lack of place, namely, the study of the induced effect of
scale laws on motion laws. These effects can be described in terms of a complex,
scale-covariant time derivative [3,5,6]. When written in terms of this new derivative,
the equations of classical mechanics take a quantum-like form [3,6,11,26,27]. This
new approach provides a new formulation of quantum mechanics [3], allows to
obtain solutions to the Schrödinger equation by numerical simulations without
using it [28; see also 29], and leads to new proposals concerning the formation and
evolution of gravitational structures at all scales [11,30,31].

Several problems remain open in the theory. Only the minimal effects of
nondifferentiability have been up to now taken into account. One of the main study
to be developed in the near future is special scale-relativity in the case of four
independent space-time resolutions. This can be carried out by working in a five-
dimensional fractal space-time, where the role of the fifth dimension is played by the
scale exponent. In the end, through a proper covariant representation, scale
transformations and space-time transformations could be treated on the same footing.
This would open the road toward a generalized theory of scale relativity, including
non-linear scale transformations and "scale-accelerations" in its description.
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