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Relativistic gravity
In general relativity (1915), space-time is a
four-dimensional Lorentzian manifold, where gravitational
interaction is described by the metric gµν .

Einstein equations

Rµν −
1

2
Rgµν = 8πTµν

They form a set of 10 second-order non-linear PDEs, with
very few (astro-)physically relevant exact solutions
(Schwarzschild, Oppenheimer-Snyder, Kerr, . . . ).
⇒approximate solutions:
e.g. linearizing around the flat (Minkowski) solution in
vacuum gµν = ηµν + hµν :

�

(
hµν −

1

2
hηµν

)
= −16πTµν .
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Gravitational waves
Astrophysical sources

Using the linearized Einstein equations:

at first order h ∼ Q̈ (mass quadrupole momentum of

the source), or further from the source h ∼ G

c4

E(`≥2)

r
.

the total gravitational power of a source is

L ∼ G

c5
s2ω6M2R4.

. . . introducing the Schwarzschild radius RS =
2GM

c2
and

ω = v/r:
L ∼ c5

G
s2

(
RS

R

)2 (v
c

)6

⇒non-spherical, relativistic compact objects:

binary neutron stars or black holes,

supernovae and neutron star oscillations.
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Gravitational waves
Detectors

The effect of a wave on
two tests-masses is the
variation of their
distance ∆l/l ∼ h,
measured by a LASER
beam.

LIGO: USA, Louisiana LIGO: USA, Washington

VIRGO: France/Italy (Pisa)
Arms of these Michelson-type interfe-
rometers are 3 km (VIRGO) and 4 km
(LIGO) long . . . almost perfect vacuum.
They are acquiring data since 2005,
with a very complex data analysis
⇒need for accurate wave patterns:
perturbative and numerical
approaches.
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A brief history of

numerical relativity
1966 : May & White, Calculations of General-Relativistic

Collapse
1975 : Butterworth & Ipser, Rapidly rotating fluid bodies in

general relativity
1976 : Smarr, Čadež, DeWitt & Eppley, Collision of two black

holes
1985 : Stark & Piran, Gravitational-Wave Emission from

Rotating Gravitational Collapse
1993 : Abrahams & Evans, Vacuum axisymmetric gravitational

collapse
1999 : Shibata, Fully general relativistic simulation of

coalescing binary neutron stars
2005 : Pretorius, Evolution of Binary Black-Hole Spacetimes
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1976 : Smarr, Čadež, DeWitt & Eppley, Collision of two black

holes
1985 : Stark & Piran, Gravitational-Wave Emission from

Rotating Gravitational Collapse
1993 : Abrahams & Evans, Vacuum axisymmetric gravitational

collapse
1999 : Shibata, Fully general relativistic simulation of

coalescing binary neutron stars
2005 : Pretorius, Evolution of Binary Black-Hole Spacetimes



A brief history of

numerical relativity
1966 : May & White, Calculations of General-Relativistic

Collapse
1975 : Butterworth & Ipser, Rapidly rotating fluid bodies in

general relativity
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Formulations of Einstein equations



Four-dimensional approach
Classic approach in analytic studies: harmonic coordinate
condition, the coordinates {xµ}µ=0...3 verify

�xµ = 0.

⇒nice form of Einstein equations, with �gαβ = Sαβ,
⇒existence and uniqueness proofs in some cases.
However, the gauge can be pathological (e.g. in presence of
matter): necessity of some generalization for numerical
implementation.

�xµ = Hµ,

with an arbitrary source. Generalized Harmonic gauge
Choice of Hµ ⇐⇒ choice of gauge

arbitrary function,
evolution toward harmonic gauge ∂tHµ = −κ(t)Hµ,
prescription from 3+1 formulations (see later).

first successful simulation of binary black hole evolution
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3+1 formalism
Decomposition of spacetime and of Einstein equations

Evolution equations:
∂Kij

∂t
−LβKij =

−DiDjN +NRij − 2NKikK
k
j +

N [KKij + 4π((S − E)γij − 2Sij)]

Kij =
1

2N

(
∂γij

∂t
+Diβj +Djβi

)
.

Constraint equations:

R+K2 −KijK
ij = 16πE,

DjK
ij −DiK = 8πJ i.

gµν dx
µ dxν = −N2 dt2 + γij (dxi + βidt) (dxj + βjdt)
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Constrained / free

formulations
As in electromagnetism, if the constraints are satisfied
initially, they remain so for a solution of the evolution
equations.

free evolution
start with initial data verifying the constraints,

solve only the 6 evolution equations,

recover a solution of all Einstein equations.

⇒apparition of constraint violating modes from round-off
errors. Considered cures:

Using of constraint damping terms and adapted gauges
(many groups).
Solving the constraints at every time-step
(efficient elliptic solver?).
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Fully-constrained

formulation in Dirac gauge

Proposed by Bonazzola, Gourgoulhon, Grandclément & JN
(2004): Define the conformal metric (carrying the
dynamical degrees of freedom)

γ̃ij = Ψ4γij with Ψ =

(
det γij
det fij

)1/12

,

choose the generalized Dirac gauge

∇(f)
j γ̃ij = 0,

Then, one solves 4 constraint equations + 4 gauge equations
(elliptic) at each time-step. Only 2 evolution equations.



Fully-constrained

formulation
Properties of the hyperbolic part

The hyperbolic part is obtained combining the evolution
equations:

∂Kij

∂t
−LβKij = Sij and Kij =

1

2N

(
∂γij

∂t
+ . . .

)
,

to obtain a wave-type equation for γ̃ij.
This system of evolution equations has been studied by
Cordero-Carrión et al. (2008):

the choice of Dirac gauge implies that the system is
strongly hyperbolic

can write it as conservation laws

no incoming characteristic in the case of black hole
excision technique
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Elliptic part
Uniqueness issue

From the 4 constraints and the choice of time-slicing
(gauge), an elliptic system of 5 non-linear equations can be
formed

Elliptic part of Einstein equations, to be solved at
every time-step
When setting γ̃ij = f ij, the system reduces to the
Conformal-Flatness Condition (CFC).

Because of non-linear terms, the
elliptic system may not converge
⇒the case appears for dynamical,
very compact matter and GW
configurations (before appearance
of the black hole).
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A solution to the

uniqueness issue
Considering local uniqueness theorems for non-linear
elliptic PDEs, it is possible to address the problem:
⇒introducing auxiliary variables, to solve directly for the
momentum constraints (Cordero-Carrión et al. (2009))

2nd fundamental form is rescaled by
the conformal factor Aij = Ψ10Kij,
and decomposed into transverse
and longitudinal parts ⇒solving for
each part:

longitudinal ⇐⇒ momentum
constraint,

transverse ⇐⇒ zero (CFC) or
evolution.
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Summary of Einstein

equations
constrained scheme

evolution

∂Aij

∂t
= ∇k∇kγ̃

ij + . . .

∂γ̃ij

∂t
= 2NΨ−6Aij + . . .

with

det γ̃ij = 1,

∇(f)
j γ̃ij = 0.

constraints

∇jA
ij = 8πΨ10Si,

∆Ψ = −2πΨ−1E

−Ψ−7A
ijAij
8

,

∆NΨ = 2πNΨ−1 + . . .

with
lim
r→∞

γ̃ij = f ij, lim
r→∞

Ψ = lim
r→∞

N = 1.



Spectral methods

for numerical relativity



Simplified picture
(see also Grandclément & JN 2009)

How to deal with functions on a computer?
⇒a computer can manage only integers
In order to represent a function φ(x) (e.g. interpolate), one
can use:

a finite set of its values {φi}i=0...N on a grid {xi}i=0...N ,
a finite set of its coefficients in a functional basis
φ(x) '

∑N
i=0 ciΨi(x).

In order to manipulate a function (e.g. derive), each
approach leads to:

finite differences schemes

φ′(xi) '
φ(xi+1)− φ(xi)

xi+1 − xi
spectral methods

φ′(x) '
N∑
i=0

ciΨ
′
i(x)
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Convergence of Fourier

series
φ(x) =

√
1.5 + cos(x) + sin7 x

φ(x) '
N∑
i=0

aiΨi(x) with Ψ2k = cos(kx), Ψ2k+1 = sin(kx)
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Use of orthogonal polynomials

The solutions (λi, ui)i∈N of a singular Sturm-Liouville
problem on the interval x ∈ [−1, 1]:

− (pu′)
′
+ qu = λwu,

with p > 0, C1, p(±1) = 0

are orthogonal with respect to the measure w:

(ui, uj) =

∫ 1

−1

ui(x)uj(x)w(x)dx = 0 for m 6= n,

form a spectral basis such that, if f(x) is smooth (C∞)

f(x) '
N∑
i=0

ciui(x)

converges faster than any power of N (usually as e−N).

Gauss quadrature to compute the integrals giving the ci’s.
Chebyshev, Legendre and, more generally any type of
Jacobi polynomial enters this category.
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Method of weighted residuals

General form of an ODE of unknown u(x):

∀x ∈ [a, b], Lu(x) = s(x), and Bu(x)|x=a,b = 0,

The approximate solution is sought in the form

ū(x) =
N∑
i=0

ciΨi(x).

The {Ψi}i=0...N are called trial functions: they belong to a
finite-dimension sub-space of some Hilbert space H[a,b].
ū is said to be a numerical solution if:

Bū = 0 for x = a, b,
Rū = Lū− s is “small”.

Defining a set of test functions {ξi}i=0...N and a scalar
product on H[a,b], R is small iff:

∀i = 0 . . . N, (ξi, R) = 0.

It is expected that limN→∞ ū = u, “true” solution of the ODE.
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The {Ψi}i=0...N are called trial functions: they belong to a
finite-dimension sub-space of some Hilbert space H[a,b].
ū is said to be a numerical solution if:
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It is expected that limN→∞ ū = u, “true” solution of the ODE.



Method of weighted residuals

General form of an ODE of unknown u(x):

∀x ∈ [a, b], Lu(x) = s(x), and Bu(x)|x=a,b = 0,

The approximate solution is sought in the form
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Rū = Lū− s is “small”.

Defining a set of test functions {ξi}i=0...N and a scalar
product on H[a,b], R is small iff:

∀i = 0 . . . N, (ξi, R) = 0.
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Various numerical methods
type of trial functions Ψ

finite-differences methods for local, overlapping polynomials
of low order,

finite-elements methods for local, smooth functions, which
are non-zero only on a sub-domain of [a, b],

spectral methods for global smooth functions on [a, b].

type of test functions ξ for spectral methods

tau method: ξi(x) = Ψi(x), but some of the test conditions
are replaced by the boundary conditions.

collocation method (pseudospectral): ξi(x) = δ(x− xi), at
collocation points. Some of the test conditions are replaced
by the boundary conditions.

Galerkin method: the test and trial functions are chosen
to fulfill the boundary conditions.
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Inversion of linear ODEs
Thanks to the well-known recurrence relations of Legendre
and Chebyshev polynomials, it is possible to express the
coefficients {bi}i=0...N of

Lu(x) =
N∑
i=0

bi

∣∣∣∣ Pi(x)
Ti(x)

, with u(x) =
N∑
i=0

ai

∣∣∣∣ Pi(x)
Ti(x)

.

If L = d/dx, x×, . . . , and u(x) is represented by the vector
{ai}i=0...N , L can be approximated by a matrix.

Resolution of a linear ODE

m

inversion of an (N + 1)× (N + 1) matrix

With non-trivial ODE kernels, one must add the boundary
conditions to the matrix to make it invertible!
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Some singular operators

u(x) 7→ u(x)

x
is a linear operator, inverse of u(x) 7→ xu(x).

Its action on the coefficients {ai}i=0...N representing the
N -order approximation to a function u(x) can be computed
as the product by a regular matrix.⇒The computation in
the coefficient space of u(x)/x, on the interval [−1, 1]
always gives a finite result (both with Chebyshev and
Legendre polynomials).
⇒The actual operator which is thus computed is

u(x) 7→ u(x)− u(0)

x
.

⇒Compute operators in spherical coordinates, with
coordinate singularities

e.g. ∆ =
∂2

∂r2
+

2

r

∂

∂r
+

1

r2
∆θϕ
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Time discretization
Formally, the representation (and manipulation) of f(t) is
the same as that of f(x).
⇒in principle, one should be able to represent a function
u(x, t) and solve time-dependent PDEs only using spectral
methods...but this is not the way it is done! Two works:

Ierley et al. (1992): study of the Korteweg de Vries
and Burger equations, Fourier in space and Chebyshev
in time ⇒time-stepping restriction.
Hennig and Ansorg (2008): study of non-linear (1+1)
wave equation, with conformal compactification in
Minkowski space-time. ⇒nice spectral convergence.

WHY?

poor a priori knowledge of the exact time interval,
too big matrices for full 3+1 operators (∼ 304 × 304),
finite-differences time-stepping errors can be quite
small.
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Explicit / implicit schemes
Let us look for the numerical solution of (L acts only on x):

∀t ≥ 0, ∀x ∈ [−1, 1],
∂u(x, t)

∂t
= Lu(x, t),

with good boundary conditions. Then, with δt the
time-step: ∀J ∈ N, uJ(x) = u(x, J × δt), it is possible to
discretize the PDE as

uJ+1(x) = uJ(x) + δt LuJ(x): explicit time scheme
(forward Euler); easy to implement, fast but limited by
the CFL condition.

uJ+1(x)− δt LuJ+1(x) = uJ(x): implicit time scheme
(backward Euler); one must solve an equation (ODE)
to get uJ+1, the matrix approximating it here is
I − δt L. Allows longer time-steps but slower and
limited to second-order schemes.
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Multi-domain approach
Multi-domain technique : several touching, or overlapping,
domains (intervals), each one mapped on [−1, 1].

boundary between two domains can be the place of a
discontinuity ⇒recover spectral convergence,
one can set a domain with more coefficients
(collocation points) in a region where much resolution
is needed ⇒fixed mesh refinement,
2D or 3D, allows to build a complex domain from
several simpler ones,

Depending on the PDE, matching conditions are imposed
at y = y0 ⇐⇒ boundary conditions in each domain.
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Depending on the PDE, matching conditions are imposed
at y = y0 ⇐⇒ boundary conditions in each domain.



Mappings and multi-D
In two spatial dimensions, the usual
technique is to write a function as:

f : Ω̂ = [−1, 1]× [−1, 1]→ R

f(x, y) =
Nx∑
i=0

Ny∑
j=0

cijPi(x)Pj(y)

Π
ΩΩ

The domain Ω̂ is then mapped to the real physical domain,
trough some mapping Π : (x, y) 7→ (X,Y ) ∈ Ω.
⇒When computing derivatives, the Jacobian of Π is used.

compactification
A very convenient mapping in spherical coordinates is

x ∈ [−1, 1] 7→ r =
1

α(x− 1)
,

to impose boundary condition for r →∞ at x = 1.
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Example:
3D Poisson equation, with non-compact support

To solve ∆φ(r, θ, ϕ) = s(r, θ, ϕ), with s extending to infinity.

Nucleus
r = αξ, 0 ≤ ξ ≤ 1

T
2i

(ξ) for l even

T
2i+1

(ξ) for l odd

Compactified domain

r =   1

β(ξ − 1)
, 0 ≤ ξ ≤ 1

T_i(ξ)

setup two domains in the radial
direction: one to deal with the
singularity at r = 0, the other
with a compactified mapping.

In each domain decompose the
angular part of both fields onto
spherical harmonics:

φ(ξ, θ, ϕ) '
`max∑
`=0

m=∑̀
m=−`

φ`m(ξ)Y m
` (θ, ϕ),

∀(`,m) solve the ODE:
d2φ`m

dξ2
+

2
ξ

dφ`m
dξ
− `(`+ 1)φ`m

ξ2
= s`m(ξ),

match between domains, with regularity conditions at
r = 0, and boundary conditions at r →∞.
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Numerical simulation of black holes



Puncture methods
. . . it is not yet clear how and why they work. Hannam et al. (2007)

black holes are described in the initial data in
coordinates that do not reach the physical singularity,

⇒ the coordinates follow a wormhole through another
copy of the asymptotically flat exterior spacetime,
this is compactified so that infinity is represented by a
single point, called “puncture”.

γij = Ψ4γ̃ij with Ψ ∼ 1

r
, use of φ = log Ψ or χ = Ψ−4.

BUT
During the evolution the time-slice loses contact with the
second asymptotically flat end, and finishes on a cylinder of
finite radius.

Ψ(t = 0) = O
(

1

r

)
evolves into Ψ(t > 0) = O

(
1√
r

)
.

Use of the shift vector βi to generate motion.
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Excision techniques
apparent horizons as a boundary

Remove a neighborhood of the central singularity from
computational domain;

Replace it with boundary conditions on this newly obtained
boundary (usually, a sphere),

Until now, imposition of apparent horizon / isolated horizon
properties: zero expansion of outgoing light rays.

⇒New views on the concept of black hole,
following works by Hayward, Ashtekar and
Krishnan:

Quasi-local approach, making the
black hole a causal object;

For hydrodynamic, electromagnetic
and gravitational waves (Dirac
gauge): no incoming characteristics.



Excision technique
Kerr solution from boundary conditions

Can one recover a Kerr black hole only from boundary
conditions and Einstein equations?
⇒Many computations with CFC, but there is no time
slicing in which (the spatial part of) Kerr solution can be
conformally flat (Garat & Price 2000).
Vasset, JN & Jaramillo (2009) recover full Kerr solution

constant value (N), zero expansion on the horizon (ψ);

rotation state for βθ, βφ and isolated horizon for βr;

NO condition for γ̃ij;

+ asymptotic flatness and Einstein equations!

In particular, no symmetry requirement has been imposed
in the “bulk” (only on the horizon) ⇒illustration of the
rigidity theorem by Hawking & Ellis (1973).
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Summary - Perspectives
Many new results in numerical relativity,
The Fully-constrained Formulation is needed for
long-term evolutions, particularly in the cases of
gravitational collapse,
This formulation is now well-studied and stable.

Many of the numerical features presented here are available
in the lorene library: http://lorene.obspm.fr, publicly
available under GPL.
Future directions:

Implementation of FCF and excision methods in the
collapse code to simulate the formation of a black hole;
Use of excision techniques in the dynamical case

⇒most of groups are now heading toward more complex
physics: electromagnetic field, realistic equation of state for
matter, . . .

http://www.lorene.obspm.fr
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