Formulations of Einstein EQUATIONS AND NUMERICAL SOLUTIONS

Jérôme Novak (Jerome.Novakeobspm.fr)
Laboratoire Univers et Théories (LUTH)
CNRS / Observatoire de Paris / Université Paris-Diderot

based on collaboration with
Silvano Bonazzola, Philippe Grandclément, Éric Gourgoulhon \& Nicolas Vasset

Institut de Physique Théorique, CEA Saclay, November, $25^{\text {th }} 2009$

Plan

(1) Introduction

Plan

(1) Introduction

(2) Formulations of Einstein equations

Plan

(1) Introduction

(2) Formulations of Einstein equations
(3) Spectral methods for numerical Relativity

Plan

(1) Introduction
(2) Formulations of Einstein equations
(3) Spectral methods for numerical RELATIVITY
(4) Numerical simulation of Black holes

Relativistic gravity

In general relativity (1915), space-time is a four-dimensional Lorentzian manifold, where gravitational interaction is described by the metric $g_{\mu \nu}$.

Relativistic gravity

In general relativity (1915), space-time is a four-dimensional Lorentzian manifold, where gravitational interaction is described by the metric $g_{\mu \nu}$.

EINSTEIN EQUATIONS

$$
R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}=8 \pi T_{\mu \nu}
$$

Relativistic gravity

In general relativity (1915), space-time is a four-dimensional Lorentzian manifold, where gravitational interaction is described by the metric $g_{\mu \nu}$.

EInstein equations

$$
R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}=8 \pi T_{\mu \nu}
$$

They form a set of 10 second-order non-linear PDEs, with very few (astro-)physically relevant exact solutions (Schwarzschild, Oppenheimer-Snyder, Kerr, ...).

Relativistic gravity

In general relativity (1915), space-time is a four-dimensional Lorentzian manifold, where gravitational interaction is described by the metric $g_{\mu \nu}$.

EInstein EQUATIONS

$$
R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}=8 \pi T_{\mu \nu}
$$

They form a set of 10 second-order non-linear PDEs, with very few (astro-)physically relevant exact solutions (Schwarzschild, Oppenheimer-Snyder, Kerr, ...).
\Rightarrow approximate solutions:
e.g. linearizing around the flat (Minkowski) solution in vacuum $g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}$:

$$
\square\left(h_{\mu \nu}-\frac{1}{2} h \eta_{\mu \nu}\right)=-16 \pi T_{\mu \nu}
$$

Gravitational waves

Astrophysical sources

Using the linearized Einstein equations:

- at first order $h \sim \ddot{Q}$ (mass quadrupole momentum of the source), or further from the source $h \sim \frac{G}{c^{4}} \frac{E^{(\ell \geq 2)}}{r}$.
- the total gravitational power of a source is

$$
L \sim \frac{G}{c^{5}} s^{2} \omega^{6} M^{2} R^{4}
$$

Gravitational waves

Astrophysical sources

Using the linearized Einstein equations:

- at first order $h \sim \ddot{Q}$ (mass quadrupole momentum of the source), or further from the source $h \sim \frac{G}{c^{4}} \frac{E^{(\ell \geq 2)}}{r}$.
- the total gravitational power of a source is

$$
L \sim \frac{G}{c^{5}} s^{2} \omega^{6} M^{2} R^{4}
$$

\ldots introducing the Schwarzschild radius $R_{S}=\frac{2 G M}{c^{2}}$ and $\omega=v / r:$

$$
L \sim \frac{c^{5}}{G} s^{2}\left(\frac{R_{S}}{R}\right)^{2}\left(\frac{v}{c}\right)^{6}
$$

Gravitational waves

Astrophysical sources

Using the linearized Einstein equations:

- at first order $h \sim \ddot{Q}$ (mass quadrupole momentum of the source), or further from the source $h \sim \frac{G}{c^{4}} \frac{E^{(\ell \geq 2)}}{r}$.
- the total gravitational power of a source is

$$
L \sim \frac{G}{c^{5}} s^{2} \omega^{6} M^{2} R^{4}
$$

\ldots introducing the Schwarzschild radius $R_{S}=\frac{2 G M}{c^{2}}$ and $\omega=v / r:$

$$
L \sim \frac{c^{5}}{G} s^{2}\left(\frac{R_{S}}{R}\right)^{2}\left(\frac{v}{c}\right)^{6}
$$

\Rightarrow non-spherical, relativistic compact objects:

- binary neutron stars or black holes,
- supernovae and neutron star oscillations.

Gravitational waves

Detectors

The effect of a wave on two tests-masses is the variation of their distance $\Delta l / l \sim h$, measured by a LASER beam.

LIGO: USA, WAShington

VIRGO: France/Italy (Pisa)

Arms of these Michelson-type interferometers are 3 km (VIRGO) and 4 km (LIGO) long . . . almost perfect vacuum. They are acquiring data since 2005, with a very complex data analysis

Gravitational waves

Detectors

The effect of a wave on two tests-masses is the variation of their distance $\Delta l / l \sim h$, measured by a LASER beam.

LIGO: USA, WASHINGTON


```
VIRGO: France/Italy (PisA)
```


Arms of these Michelson-type interferometers are 3 km (VIRGO) and 4 km (LIGO) long . . . almost perfect vacuum.
They are acquiring data since 2005, with a very complex data analysis \Rightarrow need for accurate wave patterns: perturbative and numerical approaches.

A BRIEF History of NUMERICAL RELATIVITY

1966 : May \& White, Calculations of General-Relativistic Collapse

A BRIEF History of NUMERICAL RELATIVITY

1966 : May \& White, Calculations of General-Relativistic Collapse
1975 : Butterworth \& Ipser, Rapidly rotating fluid bodies in general relativity

A BRIEF History of NUMERICAL RELATIVITY

1966 : May \& White, Calculations of General-Relativistic Collapse
1975 : Butterworth \& Ipser, Rapidly rotating fluid bodies in general relativity
1976 : Smarr, Čadež, DeWitt \& Eppley, Collision of two black holes

A BRIEF History of NUMERICAL RELATIVITY

1966 : May \& White, Calculations of General-Relativistic Collapse
1975 : Butterworth \& Ipser, Rapidly rotating fluid bodies in general relativity
1976 : Smarr, Čadež, DeWitt \& Eppley, Collision of two black holes
1985 : Stark \& Piran, Gravitational-Wave Emission from Rotating Gravitational Collapse

A BRIEF history of NUMERICAL RELATIVITY

1966 : May \& White, Calculations of General-Relativistic Collapse
1975 : Butterworth \& Ipser, Rapidly rotating fluid bodies in general relativity
1976 : Smarr, Čadež, DeWitt \& Eppley, Collision of two black holes
1985 : Stark \& Piran, Gravitational-Wave Emission from Rotating Gravitational Collapse
1993 : Abrahams \& Evans, Vacuum axisymmetric gravitational collapse

A BRIEF history of NUMERICAL RELATIVITY

1966 : May \& White, Calculations of General-Relativistic Collapse
1975 : Butterworth \& Ipser, Rapidly rotating fluid bodies in general relativity
1976 : Smarr, Čadež, DeWitt \& Eppley, Collision of two black holes
1985 : Stark \& Piran, Gravitational-Wave Emission from Rotating Gravitational Collapse
1993 : Abrahams \& Evans, Vacuum axisymmetric gravitational collapse
1999 : Shibata, Fully general relativistic simulation of coalescing binary neutron stars

A BRIEF history of NUMERICAL RELATIVITY

1966 : May \& White, Calculations of General-Relativistic Collapse
1975 : Butterworth \& Ipser, Rapidly rotating fluid bodies in general relativity
1976 : Smarr, Čadež, DeWitt \& Eppley, Collision of two black holes
1985 : Stark \& Piran, Gravitational-Wave Emission from Rotating Gravitational Collapse
1993 : Abrahams \& Evans, Vacuum axisymmetric gravitational collapse
1999 : Shibata, Fully general relativistic simulation of coalescing binary neutron stars
2005 : Pretorius, Evolution of Binary Black-Hole Spacetimes

Formulations of Einstein equations

Four-dimensional Approach

Classic approach in analytic studies: harmonic coordinate condition, the coordinates $\left\{x^{\mu}\right\}_{\mu=0 \ldots 3}$ verify

$$
\square x^{\mu}=0
$$

Four-Dimensional Approach

Classic approach in analytic studies: harmonic coordinate condition, the coordinates $\left\{x^{\mu}\right\}_{\mu=0 \ldots 3}$ verify

$$
\square x^{\mu}=0 .
$$

\Rightarrow nice form of Einstein equations, with $\square g_{\alpha \beta}=S_{\alpha \beta}$, \Rightarrow existence and uniqueness proofs in some cases.
However, the gauge can be pathological (e.g. in presence of matter): necessity of some generalization for numerical implementation.

$$
\square x^{\mu}=H^{\mu},
$$

with an arbitrary source. Generalized Harmonic gauge

Four-Dimensional Approach

Classic approach in analytic studies: harmonic coordinate condition, the coordinates $\left\{x^{\mu}\right\}_{\mu=0 \ldots 3}$ verify

$$
\square x^{\mu}=0 .
$$

\Rightarrow nice form of Einstein equations, with $\square g_{\alpha \beta}=S_{\alpha \beta}$, \Rightarrow existence and uniqueness proofs in some cases.
However, the gauge can be pathological (e.g. in presence of matter): necessity of some generalization for numerical implementation.

$$
\square x^{\mu}=H^{\mu},
$$

with an arbitrary source. Generalized Harmonic gauge Choice of $H^{\mu} \Longleftrightarrow$ choice of gauge

- arbitrary function,
- evolution toward harmonic gauge $\partial_{t} H_{\mu}=-\kappa(t) H_{\mu}$,
- prescription from $3+1$ formulations (see later).
first successful simulation of binary black hole evolution

$3+1$ FORMALISM

Decomposition of spacetime and of Einstein equations

$$
\left.g_{\mu \nu} d x^{\mu} d x^{\nu}=-N^{2} d t^{2}+\gamma_{i j}\left(d x^{i}+\beta^{i} d t\right)\left(d x^{j}+\beta^{j} d t\right)^{\prime}\right)^{\prime} \text { Obsejvatoire }
$$

$3+1$ FORMALISM

Decomposition of spacetime and of Einstein equations

EvOLUTION EQUATIONS:

$$
\begin{aligned}
& \frac{\partial K_{i j}}{\partial t}-\mathcal{L}_{\boldsymbol{\beta}} K_{i j}= \\
& -D_{i} D_{j} N+N R_{i j}-2 N K_{i k} K_{j}^{k}+ \\
& N\left[K K_{i j}+4 \pi\left((S-E) \gamma_{i j}-2 S_{i j}\right)\right] \\
& K^{i j}=\frac{1}{2 N}\left(\frac{\partial \gamma^{i j}}{\partial t}+D^{i} \beta^{j}+D^{j} \beta^{i}\right) .
\end{aligned}
$$

$$
\left.g_{\mu \nu} d x^{\mu} d x^{\nu}=-N^{2} d t^{2}+\gamma_{i j}\left(d x^{i}+\beta^{i} d t\right)\left(d x^{j}+\beta^{j} d t\right)^{\prime}\right)^{\text {Obseljvatoire }} \text {, Luth }
$$

$3+1$ FORMALISM

Decomposition of spacetime and of Einstein equations

EvOLUTION EQUATIONS:

$$
\begin{aligned}
& \frac{\partial K_{i j}}{\partial t}-\mathcal{L}_{\beta} K_{i j}= \\
& -D_{i} D_{j} N+N R_{i j}-2 N K_{i k} K_{j}^{k}+ \\
& N\left[K K_{i j}+4 \pi\left((S-E) \gamma_{i j}-2 S_{i j}\right)\right] \\
& K^{i j}=\frac{1}{2 N}\left(\frac{\partial \gamma^{i j}}{\partial t}+D^{i} \beta^{j}+D^{j} \beta^{i}\right) .
\end{aligned}
$$

EQUATIONS:

$$
\begin{aligned}
& R+K^{2}-K_{i j} K^{i j}=16 \pi E, \\
& D_{j} K^{i j}-D^{i} K=8 \pi J^{i}
\end{aligned}
$$

$$
g_{\mu \nu} d x^{\mu} d x^{\nu}=-N^{2} d t^{2}+\gamma_{i j}\left(d x^{i}+\beta^{i} d t\right)\left(d x^{j}+\beta^{j} d t t^{\text {Vbsevevatore }}\right.
$$

Constrained / Free FORMULATIONS

As in electromagnetism, if the constraints are satisfied initially, they remain so for a solution of the evolution equations.

Constrained / FREE FORMULATIONS

As in electromagnetism, if the constraints are satisfied initially, they remain so for a solution of the evolution equations.

FREE EVOLUTION

- start with initial data verifying the constraints,
- solve only the 6 evolution equations,
- recover a solution of all Einstein equations.

Constrained / FREE FORMULATIONS

As in electromagnetism, if the constraints are satisfied initially, they remain so for a solution of the evolution equations.

FREE EVOLUTION

- start with initial data verifying the constraints,
- solve only the 6 evolution equations,
- recover a solution of all Einstein equations.
\Rightarrow apparition of constraint violating modes from round-off errors. Considered cures:
- Using of constraint damping terms and adapted gauges (many groups).
- Solving the constraints at every time-step (efficient elliptic solver?).

Fully-Constrained

FORMULATION IN DIRAC GAUGE

Proposed by Bonazzola, Gourgoulhon, Grandclément \& JN (2004): Define the conformal metric (carrying the dynamical degrees of freedom)

$$
\tilde{\gamma}^{i j}=\Psi^{4} \gamma^{i j} \text { with } \Psi=\left(\frac{\operatorname{det} \gamma_{i j}}{\operatorname{det} f_{i j}}\right)^{1 / 12},
$$

choose the generalized Dirac gauge

$$
\nabla_{j}^{(f)} \tilde{\gamma}^{i j}=0,
$$

Then, one solves 4 constraint equations +4 gauge equations (elliptic) at each time-step. Only 2 evolution equations

Fully-constrained FORMULATION

Properties of the hyperbolic part

 The hyperbolic part is obtained combining the evolution equations:$$
\frac{\partial K_{i j}}{\partial t}-\mathcal{L}_{\boldsymbol{\beta}} K_{i j}=\mathcal{S}_{i j} \text { and } K^{i j}=\frac{1}{2 N}\left(\frac{\partial \gamma^{i j}}{\partial t}+\ldots\right)
$$

to obtain a wave-type equation for $\tilde{\gamma}^{i j}$.

Fully-constrained FORMULATION

Properties of the hyperbolic part

The hyperbolic part is obtained combining the evolution equations:

$$
\frac{\partial K_{i j}}{\partial t}-\mathcal{L}_{\boldsymbol{\beta}} K_{i j}=\mathcal{S}_{i j} \text { and } K^{i j}=\frac{1}{2 N}\left(\frac{\partial \gamma^{i j}}{\partial t}+\ldots\right)
$$

to obtain a wave-type equation for $\tilde{\gamma}^{i j}$.
This system of evolution equations has been studied by Cordero-Carrión et al. (2008):

- the choice of Dirac gauge implies that the system is strongly hyperbolic
- can write it as conservation laws
- no incoming characteristic in the case of black hole excision technique

Elliptic Part

Uniqueness issue

From the 4 constraints and the choice of time-slicing (gauge), an elliptic system of 5 non-linear equations can be formed

- Elliptic part of Einstein equations, to be solved at every time-step
- When setting $\tilde{\gamma}^{i j}=f^{i j}$, the system reduces to the Conformal-Flatness Condition (CFC).

Because of non-linear terms, the elliptic system may not converge \Rightarrow the case appears for dynamical, very compact matter and GW configurations (before appearance of the black hole).

A solution to the UNIQUENESS ISSUE

Considering local uniqueness theorems for non-linear elliptic PDEs, it is possible to address the problem:

A solution to the

UNIQUENESS ISSUE

Considering local uniqueness theorems for non-linear elliptic PDEs, it is possible to address the problem: \Rightarrow introducing auxiliary variables, to solve directly for the momentum constraints (Cordero-Carrión et al. (2009))
$2^{\text {nd }}$ fundamental form is rescaled by the conformal factor $A^{i j}=\Psi^{10} K^{i j}$, and decomposed into transverse and longitudinal parts \Rightarrow solving for each part:

- longitudinal \Longleftrightarrow momentum constraint,
- transverse \Longleftrightarrow zero (CFC) or evolution.

Summary of Einstein
 EQUATIONS

CONSTRAINED SCHEME

EVOLUTION

CONSTRAINTS

$$
\begin{aligned}
& \frac{\partial A^{i j}}{\partial t}= \\
& \frac{\partial \tilde{\gamma}^{i j}}{\partial t} \nabla_{k} \tilde{\gamma}^{i j}+\ldots \\
&=\quad 2 N \Psi^{-6} A^{i j}+\ldots \\
& \text { with } \quad \\
& \operatorname{det} \tilde{\gamma}^{i j}=1 \\
& \nabla_{j}^{(f)} \tilde{\gamma}^{i j}=0
\end{aligned}
$$

$$
\begin{aligned}
\nabla_{j} A^{i j}= & 8 \pi \Psi^{10} S^{i} \\
\Delta \Psi= & -2 \pi \Psi^{-1} E \\
& -\Psi^{-7} \frac{A^{i j} A_{i j}}{8} \\
\Delta N \Psi= & 2 \pi N \Psi^{-1}+\ldots
\end{aligned}
$$

with

$$
\lim _{r \rightarrow \infty} \tilde{\gamma}^{i j}=f^{i j}, \lim _{r \rightarrow \infty} \Psi=\lim _{r \rightarrow \infty} N=1
$$

Spectral methods

for numerical relativity

Simplified Picture

 (See also Grandclément \& JN 2009)How to deal with functions on a computer?
\Rightarrow a computer can manage only integers

Simplified Picture
 (See also Grandclément \& JN 2009)

How to deal with functions on a computer?
\Rightarrow a computer can manage only integers
In order to represent a function $\phi(x)$ (e.g. interpolate), one
can use:

- a finite set of its values $\left\{\phi_{i}\right\}_{i=0 \ldots N}$ on a grid $\left\{x_{i}\right\}_{i=0 \ldots N}$,
- a finite set of its coefficients in a functional basis

$$
\phi(x) \simeq \sum_{i=0}^{N} c_{i} \Psi_{i}(x)
$$

Simplified Picture

(See also Grandclément \& JN 2009)
How to deal with functions on a computer?
\Rightarrow a computer can manage only integers
In order to represent a function $\phi(x)$ (e.g. interpolate), one can use:

- a finite set of its values $\left\{\phi_{i}\right\}_{i=0 \ldots N}$ on a grid $\left\{x_{i}\right\}_{i=0 \ldots N}$,
- a finite set of its coefficients in a functional basis

$$
\phi(x) \simeq \sum_{i=0}^{N} c_{i} \Psi_{i}(x)
$$

In order to manipulate a function (e.g. derive), each approach leads to:

- finite differences schemes

$$
\phi^{\prime}\left(x_{i}\right) \simeq \frac{\phi\left(x_{i+1}\right)-\phi\left(x_{i}\right)}{x_{i+1}-x_{i}}
$$

- spectral methods

$$
\phi^{\prime}(x) \simeq \sum_{i=0}^{N} c_{i} \Psi_{i}^{\prime}(x)
$$

Convergence of Fourier

SERIES

$$
\begin{gathered}
\phi(x)=\sqrt{1.5+\cos (x)}+\sin ^{7} x \\
\phi(x) \simeq \sum_{i=0}^{N} a_{i} \Psi_{i}(x) \text { with } \Psi_{2 k}=\cos (k x), \Psi_{2 k+1}=\sin (k x) \\
\mathrm{N}=2
\end{gathered}
$$

Convergence of Fourier

SERIES

$$
\begin{gathered}
\phi(x)=\sqrt{1.5+\cos (x)}+\sin ^{7} x \\
\phi(x) \simeq \sum_{i=0}^{N} a_{i} \Psi_{i}(x) \text { with } \Psi_{2 k}=\cos (k x), \Psi_{2 k+1}=\sin (k x) \\
\mathrm{N}=6
\end{gathered}
$$

Convergence of Fourier

SERIES

$$
\begin{gathered}
\phi(x)=\sqrt{1.5+\cos (x)}+\sin ^{7} x \\
\phi(x) \simeq \sum_{i=0}^{N} a_{i} \Psi_{i}(x) \text { with } \Psi_{2 k}=\cos (k x), \quad \Psi_{2 k+1}=\sin (k x) \\
\mathrm{N}=10
\end{gathered}
$$

Convergence of Fourier

SERIES

$$
\phi(x) \simeq \sum_{i=0}^{N} a_{i} \Psi_{i}(x) \text { with } \Psi_{2 k}=\cos (k x), \Psi_{2 k+1}=\sin (k x)
$$

$$
\mathrm{N}=14
$$

Convergence of Fourier

SERIES

$$
\begin{gathered}
\phi(x)=\sqrt{1.5+\cos (x)}+\sin ^{7} x \\
\phi(x) \simeq \sum_{i=0}^{N} a_{i} \Psi_{i}(x) \text { with } \Psi_{2 k}=\cos (k x), \Psi_{2 k+1}=\sin (k x) \\
\mathrm{N}=18
\end{gathered}
$$

Use of orthogonal polynomials
The solutions $\left(\lambda_{i}, u_{i}\right)_{i \in \mathbb{N}}$ of a singular Sturm-Liouville problem on the interval $x \in[-1,1]$:
$-\left(p u^{\prime}\right)^{\prime}+q u=\lambda w u$,
with $p>0, \mathcal{C}^{1}, p(\pm 1)=0$

Use of orthogonal polynomials
The solutions $\left(\lambda_{i}, u_{i}\right)_{i \in \mathbb{N}}$ of a singular Sturm-Liouville problem on the interval $x \in[-1,1]$:

$$
-\left(p u^{\prime}\right)^{\prime}+q u=\lambda w u
$$

with $p>0, \mathcal{C}^{1}, p(\pm 1)=0$

- are orthogonal with respect to the measure w :

$$
\left(u_{i}, u_{j}\right)=\int_{-1}^{1} u_{i}(x) u_{j}(x) w(x) \mathrm{d} x=0 \text { for } m \neq n
$$

The solutions $\left(\lambda_{i}, u_{i}\right)_{i \in \mathbb{N}}$ of a singular Sturm-Liouville problem on the interval $x \in[-1,1]$:

$$
-\left(p u^{\prime}\right)^{\prime}+q u=\lambda w u
$$

with $p>0, \mathcal{C}^{1}, p(\pm 1)=0$

- are orthogonal with respect to the measure w :

$$
\left(u_{i}, u_{j}\right)=\int_{-1}^{1} u_{i}(x) u_{j}(x) w(x) \mathrm{d} x=0 \text { for } m \neq n
$$

- form a spectral basis such that, if $f(x)$ is smooth $\left(\mathcal{C}^{\infty}\right)$

$$
f(x) \simeq \sum_{i=0}^{N} c_{i} u_{i}(x)
$$

converges faster than any power of N (usually as e^{-N}).

The solutions $\left(\lambda_{i}, u_{i}\right)_{i \in \mathbb{N}}$ of a singular Sturm-Liouville problem on the interval $x \in[-1,1]$:

$$
-\left(p u^{\prime}\right)^{\prime}+q u=\lambda w u
$$

with $p>0, \mathcal{C}^{1}, p(\pm 1)=0$

- are orthogonal with respect to the measure w :

$$
\left(u_{i}, u_{j}\right)=\int_{-1}^{1} u_{i}(x) u_{j}(x) w(x) \mathrm{d} x=0 \text { for } m \neq n
$$

- form a spectral basis such that, if $f(x)$ is smooth $\left(\mathcal{C}^{\infty}\right)$

$$
f(x) \simeq \sum_{i=0}^{N} c_{i} u_{i}(x)
$$

converges faster than any power of N (usually as e^{-N}).
Gauss quadrature to compute the integrals giving the c_{i} 's.
Chebyshev, Legendre and, more generally any type of Jacobi polynomial enters this category.

Method of weighted residuals
General form of an ODE of unknown $u(x)$:

$$
\forall x \in[a, b], L u(x)=s(x), \text { and }\left.B u(x)\right|_{x=a, b}=0,
$$

Method of weighted residuals

General form of an ODE of unknown $u(x)$:

$$
\forall x \in[a, b], L u(x)=s(x), \text { and }\left.B u(x)\right|_{x=a, b}=0,
$$

The approximate solution is sought in the form

$$
\bar{u}(x)=\sum_{i=0}^{N} c_{i} \Psi_{i}(x) .
$$

The $\left\{\Psi_{i}\right\}_{i=0 \ldots N}$ are called trial functions: they belong to a finite-dimension sub-space of some Hilbert space $\mathcal{H}_{[a, b]}$.

Method of weighted residuals

General form of an ODE of unknown $u(x)$:

$$
\forall x \in[a, b], L u(x)=s(x), \text { and }\left.B u(x)\right|_{x=a, b}=0,
$$

The approximate solution is sought in the form

$$
\bar{u}(x)=\sum_{i=0}^{N} c_{i} \Psi_{i}(x) .
$$

The $\left\{\Psi_{i}\right\}_{i=0 \ldots N}$ are called trial functions: they belong to a finite-dimension sub-space of some Hilbert space $\mathcal{H}_{[a, b]}$. \bar{u} is said to be a numerical solution if:

- $B \bar{u}=0$ for $x=a, b$,
- $R \bar{u}=L \bar{u}-s$ is "small".

Method of weighted residuals

General form of an ODE of unknown $u(x)$:

$$
\forall x \in[a, b], L u(x)=s(x), \text { and }\left.B u(x)\right|_{x=a, b}=0
$$

The approximate solution is sought in the form

$$
\bar{u}(x)=\sum_{i=0}^{N} c_{i} \Psi_{i}(x)
$$

The $\left\{\Psi_{i}\right\}_{i=0 \ldots N}$ are called trial functions: they belong to a finite-dimension sub-space of some Hilbert space $\mathcal{H}_{[a, b]}$. \bar{u} is said to be a numerical solution if:

- $B \bar{u}=0$ for $x=a, b$,
- $R \bar{u}=L \bar{u}-s$ is "small".

Defining a set of test functions $\left\{\xi_{i}\right\}_{i=0 \ldots N}$ and a scalar product on $\mathcal{H}_{[a, b]}, R$ is small iff:

$$
\forall i=0 \ldots N, \quad\left(\xi_{i}, R\right)=0
$$

It is expected that $\lim _{N \rightarrow \infty} \bar{u}=u$, "true" solution of the ODE.

Various numerical methods

TYPE OF TRIAL FUNCTIONS Ψ

- finite-differences methods for local, overlapping polynomials of low order,
- finite-elements methods for local, smooth functions, which are non-zero only on a sub-domain of $[a, b]$,
- spectral methods for global smooth functions on $[a, b]$.

Various numerical methods

TYPE OF TRIAL FUNCTIONS Ψ

- finite-differences methods for local, overlapping polynomials of low order,
- finite-elements methods for local, smooth functions, which are non-zero only on a sub-domain of $[a, b]$,
- spectral methods for global smooth functions on $[a, b]$.

TYPE OF TEST FUNCTIONS ξ FOR SPECTRAL METHODS

- tau method: $\xi_{i}(x)=\Psi_{i}(x)$, but some of the test conditions are replaced by the boundary conditions.
- collocation method (pseudospectral): $\xi_{i}(x)=\delta\left(x-x_{i}\right)$, at collocation points. Some of the test conditions are replaced by the boundary conditions.
- Galerkin method: the test and trial functions are chosen to fulfill the boundary conditions.

Inversion of Linear ODEs

Thanks to the well-known recurrence relations of Legendre and Chebyshev polynomials, it is possible to express the coefficients $\left\{b_{i}\right\}_{i=0 \ldots N}$ of

$$
L u(x)=\sum_{i=0}^{N} b_{i} \left\lvert\, \begin{aligned}
& P_{i}(x) \\
& T_{i}(x)
\end{aligned}\right., \text { with } u(x)=\sum_{i=0}^{N} a_{i} \left\lvert\, \begin{gathered}
P_{i}(x) \\
T_{i}(x)
\end{gathered} .\right.
$$

If $L=\mathrm{d} / \mathrm{d} x, x \times, \ldots$, and $u(x)$ is represented by the vector $\left\{a_{i}\right\}_{i=0 \ldots N}, L$ can be approximated by a matrix.

Inversion of Linear ODEs

Thanks to the well-known recurrence relations of Legendre and Chebyshev polynomials, it is possible to express the coefficients $\left\{b_{i}\right\}_{i=0 \ldots N}$ of

$$
L u(x)=\sum_{i=0}^{N} b_{i} \left\lvert\, \begin{aligned}
& P_{i}(x) \\
& T_{i}(x)
\end{aligned}\right., \text { with } u(x)=\sum_{i=0}^{N} a_{i} \left\lvert\, \begin{gathered}
P_{i}(x) \\
T_{i}(x)
\end{gathered} .\right.
$$

If $L=\mathrm{d} / \mathrm{d} x, x \times, \ldots$, and $u(x)$ is represented by the vector $\left\{a_{i}\right\}_{i=0 \ldots N}, L$ can be approximated by a matrix.

Resolution of a linear ODE

$$
\Uparrow
$$

inversion of an $(N+1) \times(N+1)$ matrix

Inversion of Linear ODEs

Thanks to the well-known recurrence relations of Legendre and Chebyshev polynomials, it is possible to express the coefficients $\left\{b_{i}\right\}_{i=0 \ldots N}$ of

$$
L u(x)=\sum_{i=0}^{N} b_{i} \left\lvert\, \begin{aligned}
& P_{i}(x) \\
& T_{i}(x)
\end{aligned}\right., \text { with } u(x)=\sum_{i=0}^{N} a_{i} \left\lvert\, \begin{gathered}
P_{i}(x) \\
T_{i}(x)
\end{gathered} .\right.
$$

If $L=\mathrm{d} / \mathrm{d} x, x \times, \ldots$, and $u(x)$ is represented by the vector $\left\{a_{i}\right\}_{i=0 \ldots N}, L$ can be approximated by a matrix.

Resolution of a linear ODE

$$
\Uparrow
$$

inversion of an $(N+1) \times(N+1)$ matrix
With non-trivial ODE kernels, one must add the boundary conditions to the matrix to make it invertible!

Some singular operators

$u(x) \mapsto \frac{u(x)}{x}$ is a linear operator, inverse of $u(x) \mapsto x u(x)$.
Its action on the coefficients $\left\{a_{i}\right\}_{i=0 \ldots N}$ representing the N-order approximation to a function $u(x)$ can be computed as the product by a regular matrix.

Some singular operators

$u(x) \mapsto \frac{u(x)}{x}$ is a linear operator, inverse of $u(x) \mapsto x u(x)$.
Its action on the coefficients $\left\{a_{i}\right\}_{i=0 \ldots N}$ representing the N-order approximation to a function $u(x)$ can be computed as the product by a regular matrix. \Rightarrow The computation in the coefficient space of $u(x) / x$, on the interval $[-1,1]$ always gives a finite result (both with Chebyshev and Legendre polynomials).

Some singular operators

$u(x) \mapsto \frac{u(x)}{x}$ is a linear operator, inverse of $u(x) \mapsto x u(x)$.
Its action on the coefficients $\left\{a_{i}\right\}_{i=0 \ldots N}$ representing the N-order approximation to a function $u(x)$ can be computed as the product by a regular matrix. \Rightarrow The computation in the coefficient space of $u(x) / x$, on the interval $[-1,1]$ always gives a finite result (both with Chebyshev and Legendre polynomials).
\Rightarrow The actual operator which is thus computed is

$$
u(x) \mapsto \frac{u(x)-u(0)}{x}
$$

Some singular operators

$u(x) \mapsto \frac{u(x)}{x}$ is a linear operator, inverse of $u(x) \mapsto x u(x)$.
Its action on the coefficients $\left\{a_{i}\right\}_{i=0 \ldots N}$ representing the N-order approximation to a function $u(x)$ can be computed as the product by a regular matrix. \Rightarrow The computation in the coefficient space of $u(x) / x$, on the interval $[-1,1]$ always gives a finite result (both with Chebyshev and Legendre polynomials).
\Rightarrow The actual operator which is thus computed is

$$
u(x) \mapsto \frac{u(x)-u(0)}{x}
$$

\Rightarrow Compute operators in spherical coordinates, with coordinate singularities

$$
\text { e.g. } \Delta=\frac{\partial^{2}}{\partial r^{2}}+\frac{2}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \Delta_{\theta \varphi}
$$

Time discretization

Formally, the representation (and manipulation) of $f(t)$ is the same as that of $f(x)$.
\Rightarrow in principle, one should be able to represent a function $u(x, t)$ and solve time-dependent PDEs only using spectral methods...

Time discretization

Formally, the representation (and manipulation) of $f(t)$ is the same as that of $f(x)$.
\Rightarrow in principle, one should be able to represent a function $u(x, t)$ and solve time-dependent PDEs only using spectral methods...but this is not the way it is done! Two works:

- Ierley et al. (1992): study of the Korteweg de Vries and Burger equations, Fourier in space and Chebyshev in time \Rightarrow time-stepping restriction.
- Hennig and Ansorg (2008): study of non-linear (1+1) wave equation, with conformal compactification in Minkowski space-time. \Rightarrow nice spectral convergence.

Time discretization

Formally, the representation (and manipulation) of $f(t)$ is the same as that of $f(x)$.
\Rightarrow in principle, one should be able to represent a function $u(x, t)$ and solve time-dependent PDEs only using spectral methods...but this is not the way it is done! Two works:

- Ierley et al. (1992): study of the Korteweg de Vries and Burger equations, Fourier in space and Chebyshev in time \Rightarrow time-stepping restriction.
- Hennig and Ansorg (2008): study of non-linear (1+1) wave equation, with conformal compactification in Minkowski space-time. \Rightarrow nice spectral convergence.

WHY?

- poor a priori knowledge of the exact time interval,
- too big matrices for full $3+1$ operators $\left(\sim 30^{4} \times 30^{4}\right)$,
- finite-differences time-stepping errors can be quite small.

Explicit / implicit schemes

Let us look for the numerical solution of (L acts only on x):

$$
\forall t \geq 0, \quad \forall x \in[-1,1], \quad \frac{\partial u(x, t)}{\partial t}=L u(x, t)
$$

with good boundary conditions. Then, with δt the time-step: $\forall J \in \mathbb{N}, \quad u^{J}(x)=u(x, J \times \delta t)$, it is possible to discretize the PDE as

Explicit / implicit schemes

Let us look for the numerical solution of (L acts only on x):

$$
\forall t \geq 0, \quad \forall x \in[-1,1], \quad \frac{\partial u(x, t)}{\partial t}=L u(x, t)
$$

with good boundary conditions. Then, with δt the time-step: $\forall J \in \mathbb{N}, \quad u^{J}(x)=u(x, J \times \delta t)$, it is possible to discretize the PDE as

- $u^{J+1}(x)=u^{J}(x)+\delta t L u^{J}(x)$: explicit time scheme (forward Euler); easy to implement, fast but limited by the CFL condition.

Explicit / implicit schemes

Let us look for the numerical solution of (L acts only on x):

$$
\forall t \geq 0, \quad \forall x \in[-1,1], \quad \frac{\partial u(x, t)}{\partial t}=L u(x, t)
$$

with good boundary conditions. Then, with δt the time-step: $\forall J \in \mathbb{N}, \quad u^{J}(x)=u(x, J \times \delta t)$, it is possible to discretize the PDE as

- $u^{J+1}(x)=u^{J}(x)+\delta t L u^{J}(x)$: explicit time scheme (forward Euler); easy to implement, fast but limited by the CFL condition.
- $u^{J+1}(x)-\delta t L u^{J+1}(x)=u^{J}(x)$: implicit time scheme (backward Euler); one must solve an equation (ODE) to get u^{J+1}, the matrix approximating it here is $I-\delta t L$. Allows longer time-steps but slower and limited to second-order schemes.

Multi-domain approach

Multi-domain technique : several touching, or overlapping, domains (intervals), each one mapped on $[-1,1]$.

- boundary between two domains can be the place of a discontinuity \Rightarrow recover spectral convergence,

Multi-domain approach

Multi-domain technique : several touching, or overlapping, domains (intervals), each one mapped on $[-1,1]$.

- boundary between two domains can be the place of a discontinuity \Rightarrow recover spectral convergence,
- one can set a domain with more coefficients (collocation points) in a region where much resolution is needed \Rightarrow fixed mesh refinement,

Multi-DOMAIN APPROACH

Multi-domain technique : several touching, or overlapping, domains (intervals), each one mapped on $[-1,1]$.

- boundary between two domains can be the place of a discontinuity \Rightarrow recover spectral convergence,
- one can set a domain with more coefficients (collocation points) in a region where much resolution is needed \Rightarrow fixed mesh refinement,
- 2D or 3D, allows to build a complex domain from several simpler ones,

Multi-domain approach

Multi-domain technique : several touching, or overlapping, domains (intervals), each one mapped on $[-1,1]$.

- boundary between two domains can be the place of a discontinuity \Rightarrow recover spectral convergence,
- one can set a domain with more coefficients (collocation points) in a region where much resolution is needed \Rightarrow fixed mesh refinement,
- 2 D or 3 D , allows to build a complex domain from several simpler ones,

Domain $1 \quad$ Domain 2

$$
\left.\left\lvert\, \begin{array}{lll}
x_{1}=-1 & x_{1}=1 \mid & x_{2}=-1
\end{array}\right.\right)
$$

Depending on the PDE, matching conditions are imposed at $y=y_{0} \Longleftrightarrow$ boundary conditions in each domain.

Mappings and multi-D

In two spatial dimensions, the usual technique is to write a function as:

$$
\begin{aligned}
f & : \quad \hat{\Omega}=[-1,1] \times[-1,1] \rightarrow \mathbb{R} \\
f(x, y) & =\sum_{i=0}^{N_{x}} \sum_{j=0}^{N_{y}} c_{i j} P_{i}(x) P_{j}(y)
\end{aligned}
$$

The domain $\hat{\Omega}$ is then mapped to the real physical domain, trough some mapping $\Pi:(x, y) \mapsto(X, Y) \in \Omega$.
\Rightarrow When computing derivatives, the Jacobian of Π is used.

Mappings and multi-D

In two spatial dimensions, the usual technique is to write a function as:

$$
\begin{aligned}
f & : \quad \hat{\Omega}=[-1,1] \times[-1,1] \rightarrow \mathbb{R} \\
f(x, y) & =\sum_{i=0}^{N_{x}} \sum_{j=0}^{N_{y}} c_{i j} P_{i}(x) P_{j}(y)
\end{aligned}
$$

The domain $\hat{\Omega}$ is then mapped to the real physical domain, trough some mapping $\Pi:(x, y) \mapsto(X, Y) \in \Omega$.
\Rightarrow When computing derivatives, the Jacobian of Π is used.

COMPACTIFICATION

A very convenient mapping in spherical coordinates is

$$
x \in[-1,1] \mapsto r=\frac{1}{\alpha(x-1)}
$$

to impose boundary condition for $r \rightarrow \infty$ at $x=1$.

Example:

3D Poisson equation, With non-COMPACT SUPPORT To solve $\Delta \phi(r, \theta, \varphi)=s(r, \theta, \varphi)$, with s extending to infinity.

Compactified domain

$$
\begin{aligned}
& \mathrm{r}=\frac{1}{\beta(\xi-1)}, 0 \leq \xi \leq 1 \\
& \text { T_i }_{-}(\xi)
\end{aligned}
$$

$$
\mathrm{r}=\alpha \xi, 0 \leq \xi \leq 1
$$

$\mathrm{T}_{2 i}(\xi)$ for 1 even $\mathrm{T}_{2 \mathrm{i}+1}(\xi)$ for 1 odd

- setup two domains in the radial direction: one to deal with the singularity at $r=0$, the other with a compactified mapping.
- In each domain decompose the angular part of both fields onto spherical harmonics:

$$
\phi(\xi, \theta, \varphi) \simeq \sum_{\ell=0}^{\ell_{\max }} \sum_{m=-\ell}^{m=\ell} \phi_{\ell m}(\xi) Y_{\ell}^{m}(\theta, \varphi)
$$

Example:

3D Poisson equation, With non-COMPACT SUPPORT To solve $\Delta \phi(r, \theta, \varphi)=s(r, \theta, \varphi)$, with s extending to infinity.

Compactified domain
Nucleus
$r=\frac{1}{\beta \xi, 0 \leq \xi \leq 1}, 0 \leq \xi \leq 1$
$\mathrm{~T}_{2 \mathrm{i}}(\xi)$ for 1 even
$\mathrm{T}_{2 \mathrm{i}+1}(\xi)$ for 1 odd
$\mathrm{T}_{-}(\xi)$

- setup two domains in the radial direction: one to deal with the singularity at $r=0$, the other with a compactified mapping.
- In each domain decompose the angular part of both fields onto spherical harmonics:

$$
\phi(\xi, \theta, \varphi) \simeq \sum_{\ell=0}^{\ell_{\max }} \sum_{m=-\ell}^{m=\ell} \phi_{\ell m}(\xi) Y_{\ell}^{m}(\theta, \varphi)
$$

$$
\forall(\ell, m) \text { solve the ODE: } \frac{\mathrm{d}^{2} \phi_{\ell m}}{\mathrm{~d} \xi^{2}}+\frac{2}{\xi} \frac{\mathrm{~d} \phi_{\ell m}}{\mathrm{~d} \xi}-\frac{\ell(\ell+1) \phi_{\ell m}}{\xi^{2}}=s_{\ell m}(\xi)
$$

- match between domains, with regularity conditions at $r=0$, and boundary conditions at $r \rightarrow \infty$.

Numerical simulation of black holes

Puncture methods

... it is not yet clear how and why they work. Hannam et al. (2007)

Puncture methods

. . . it is not yet clear how and why they work. Hannam et al. (2007)

- black holes are described in the initial data in coordinates that do not reach the physical singularity,
\Rightarrow the coordinates follow a wormhole through another copy of the asymptotically flat exterior spacetime,
- this is compactified so that infinity is represented by a single point, called "puncture".
$\gamma_{i j}=\Psi^{4} \tilde{\gamma}_{i j}$ with $\Psi \sim \frac{1}{r}$, use of $\phi=\log \Psi$ or $\chi=\Psi^{-4}$.

Puncture methods

. . . it is not yet clear how and why they work. Hannam et al. (2007)

- black holes are described in the initial data in coordinates that do not reach the physical singularity,
\Rightarrow the coordinates follow a wormhole through another copy of the asymptotically flat exterior spacetime,
- this is compactified so that infinity is represented by a single point, called "puncture".

$$
\gamma_{i j}=\Psi^{4} \tilde{\gamma}_{i j} \text { with } \Psi \sim \frac{1}{r}, \text { use of } \phi=\log \Psi \text { or } \chi=\Psi^{-4} .
$$

BUT

During the evolution the time-slice loses contact with the second asymptotically flat end, and finishes on a cylinder of finite radius.

$$
\Psi(t=0)=\mathcal{O}\left(\frac{1}{r}\right) \text { evolves into } \Psi(t>0)=\mathcal{O}\left(\frac{1}{\sqrt{r}}\right)
$$

Use of the shift vector β^{i} to generate motion.

ExCISION TECHNIQUES

APPARENT HORIZONS AS A BOUNDARY

- Remove a neighborhood of the central singularity from computational domain;
- Replace it with boundary conditions on this newly obtained boundary (usually, a sphere),
- Until now, imposition of apparent horizon / isolated horizon properties: zero expansion of outgoing light rays.
\Rightarrow New views on the concept of black hole, following works by Hayward, Ashtekar and Krishnan:
- Quasi-local approach, making the black hole a causal object;
- For hydrodynamic, electromagnetic and gravitational waves (Dirac gauge): no incoming characteristics.

ExCision TECHNIQUE

KERR SOLUTION FROM BOUNDARY CONDITIONS
Can one recover a Kerr black hole only from boundary conditions and Einstein equations?

ExCision TECHNIQUE

KERR SOLUTION FROM BOUNDARY CONDITIONS

Can one recover a Kerr black hole only from boundary conditions and Einstein equations?
\Rightarrow Many computations with CFC, but there is no time slicing in which (the spatial part of) Kerr solution can be conformally flat (Garat \& Price 2000).
Vasset, JN \& Jaramillo (2009) recover full Kerr solution

- constant value (N), zero expansion on the horizon (ψ);
- rotation state for $\beta^{\theta}, \beta^{\phi}$ and isolated horizon for β^{r};
- NO condition for $\tilde{\gamma}^{i j}$;
+ asymptotic flatness and Einstein equations!

ExCision technique

KERR SOLUTION FROM BOUNDARY CONDITIONS

Can one recover a Kerr black hole only from boundary conditions and Einstein equations?
\Rightarrow Many computations with CFC, but there is no time slicing in which (the spatial part of) Kerr solution can be conformally flat (Garat \& Price 2000).
Vasset, JN \& Jaramillo (2009) recover full Kerr solution

- constant value (N), zero expansion on the horizon (ψ);
- rotation state for $\beta^{\theta}, \beta^{\phi}$ and isolated horizon for β^{r};
- NO condition for $\tilde{\gamma}^{i j}$;
+ asymptotic flatness and Einstein equations!
In particular, no symmetry requirement has been imposed in the "bulk" (only on the horizon) \Rightarrow illustration of the rigidity theorem by Hawking \& Ellis (1973).

LUTH

Summary - Perspectives

- Many new results in numerical relativity,
- The Fully-constrained Formulation is needed for long-term evolutions, particularly in the cases of gravitational collapse,
- This formulation is now well-studied and stable.

Summary - Perspectives

- Many new results in numerical relativity,
- The Fully-constrained Formulation is needed for long-term evolutions, particularly in the cases of gravitational collapse,
- This formulation is now well-studied and stable.

Many of the numerical features presented here are available in the LORENE library: http://lorene.obspm.fr, publicly available under GPL.

Summary - Perspectives

- Many new results in numerical relativity,
- The Fully-constrained Formulation is needed for long-term evolutions, particularly in the cases of gravitational collapse,
- This formulation is now well-studied and stable.

Many of the numerical features presented here are available in the LORENE library: http://lorene.obspm.fr, publicly available under GPL.
Future directions:

- Implementation of FCF and excision methods in the collapse code to simulate the formation of a black hole;
- Use of excision techniques in the dynamical case \Rightarrow most of groups are now heading toward more complex physics: electromagnetic field, realistic equation of state for matter, ...

