

On Dicke's non-discovery

- Dicke et al. (1946) reported on war-time work done to see if K band radar was practical. The atmospheric absorption was low enough.
- T_{sky} < 20 K
- Dicke invented the differential radiometer for this work. This compares a source to a reference source. The switch used to connect the two sources alternately to the radiometer is called a *Dicke switch*.
- Dicke had all the tools needed to measure the 3 K CMB in 1945, but didn't look for the CMB until 1964 and got scooped.

From a Ned Wright talk

SMALL-SCALE FLUCT	UATIONS OF RELIC RADIATION*
R. A.SUNYA	EV and VA. B. ZELDOVICH
Institute of Applied Mathematics, Ac	ademy of Sciences of the U.S.S.R., Maxow, U.S.S.R.
(Receiv	ed 11 September, 1969)
Abstract. Performations of the matter den- which leads to the formation of galaxies si- of relic radiation. Silk assumed that an adi- at the anoment of recombination of the is of radiation $\delta F/T = \delta \varrho_m \beta \vartheta_m$. It is shown i- due to : (1) The long time of recombination;	isity in a homogeneous and isotropic cosmological model would, at later stages of evolution, cause spatial fluctuations abatic connection existed between the density perturbations attal plasma and fluctuations of the observed temperature in this article that such a simple connection is not applicable
(2) The fact that when regions with M depth to the observer is still large due to (3) The snappools increase of An-in-	$l < 10^{19} M_{\odot}$ become transparent for radiation, the optical Thompson scattering: in mecanimization
As a result the expected temperature fluctuations, in this article the value of δT is calculated: the velocity field is generative tions of the relic radiation due to secon	ctuations of relic radiation should be smaller than adiabatle // arising from scattering of radiation on moving electrons of by adiabatle or entropy density perturbations. Fluctua- dary heating of the internalactic cas are also estimated.
A detailed investigation of the spectrum of the nature of initial density perturbat	of fluctuations may, in principle, lead to an understanding ions since a distinct periodic dependence of the spectral

WHAT CAN WE LEARN FROM POLARISATION?

- Consistency check of the paradigm (may also include evolution or lack of- of physical constants)
- + Check whether there are super-horizon perturbations
- Improvement in parameter constraints (lifting degeneracies, eg, ns vs tau) and on features in the primordial spectrum

GENERAL RELATIVITY TRIMESTER @ IHP

- Isocurvature perturbations (see later)
- Reionization history

F.R. BOUCHET, IAP, CNRS, 27-28/11/07

- Help with lensing reconstruction of los-projected matter density properties (P_{kk})
- Gravitation wave from inflation existence, maybe n_T (and indirectly on inflaton potential)

long lasting effort, with tighter and tighter upper limits for 37 years !				
	Year	Frequency [GHz]	Angular scale	Upper limit
Penzias & Wilson	1965	4	-	10-1
Caderni et al.	1978	100 - 600	0.5° ÷ 40°	10 ⁻³
Nanos	1979	9.3	15 °	6 10-4
Lubin & Smoot	1981	33	Quadr.+Oct.	6 10 ⁻⁵
Partridge et al.	1988	5	1' ÷ 3'	4 10 ⁻⁵
Wollack et al.	1993	26 - 36	~1°	9 10 ⁻⁶
Netterfield et al.	1995	26 - 46	~1°	6 10 ⁻⁶
Hadman et al.	2001	90	~ 0.5°	3 10 ⁻⁶
Keating et al.	2001	30	2-20°	3 10-6

