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Anticipation and prediction of neutron stars

Anticipation - Landau February 1931
Widely known facts: Neutron discovered by J. Chadwick -
Jan.1932, published in Nature on February 27, 1932
(Chadwick 1932). A year before Chadwick paper -
Lev Landau had written a paper devoted to dense
stars! Landau (23 at that time, graduate student of the
Leningrad Physico-Technical Institute). Paper completed
in February 1931 in Zürich, where Landau visited Pauli
(Landau 1932). First part: brilliant (independent of
Chandrasekhar) derivation of the mass limit for white
dwarfs. Last part: for stars heavier than 1.5M� “the
density of matter becomes so great that atomic nuclei
come in close contact, forming one gigantic nucleus.”=⇒
correct description of dense matter in neutron star
interiors, given before the discovery of the neutron.
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Anticipation and prediction of neutron stars - cont.

Prediction - Baade and Zwicky December 1933
W. Baade (Mt. Wilson Observatory) and F. Zwicky (Caltech) analyzed
observations of supernova explosions and proposed an explanation of an enormous
energy release in these explosions. Results presented at the meeting of the
American Physical Society at Stanford (December 15–16, 1933) and published in
the 15 January issue of the Physical Review (Baade & Zwicky 1933) “With all
reserve we advance the view that supernovae represent the transitions from
ordinary stars to neutron stars, which in their final stages consist of extremely
closely packed neutrons.”

A brief summary of the neutron star prediction was presented to non-expert readers in

the form of a cartoon in the Los Angeles Times on January 19th, 1934: “Cosmic rays are

caused by exploding stars which burn with a fire equal to 100 million suns and then

shrivel from 1/2 million mile diameters to little spheres 14 miles thick, says Prof. Fritz

Zwicky, Swiss Physicist.”
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Neutron star interior: known and unknown

Plan

White dwarfs and neutron star
envelopes

Neutron star crusts

Neutron star cores: nucleons
and hyperons

Briefly - exotic neutron star
cores, quark stars, etc.

Briefly - confronting EOS
models with mesured neutron
star masses

Standard reference: S.L. Shapiro, S.A. Teukolsky Black Holes, White Dwarfs, and
Neutron Stars: The Physics of Compact Objects (Wiley, 1983). Alas, 23-years old.

New advanced reference available soon: P. Haensel, A.Y. Potekhin, and D.G. Yakovlev

Neutron Stars 1. Equation of state and structure (Springer, January 2007)
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EOS - an overview

EOS of neutron star matter at
T = 0: Baym et al. (1971)
(triangles), Haensel & Pichon
(1994)(HP94, stars), SLy -
Douchin & Haensel (2001) (dots).

Finite T EOSs: OPAL (Rogers et
al. 1996) at T = 106, 107, and
108 K (dashed lines), the fit
(Haensel & Potekhin 2004)(the
solid line) and the fit modified at
low ρ (the dotted line). From
Haensel & Potekhin (2004).

For ρ > 106 g cm−3 T -effects

invisible - matter fully degenerate,

T = 0 approximation for the EOS

is valid.
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Structure of envelope and crust

Schematic structure of an envelope of a neutron star with the internal
temperature ∼ 108 K.
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Plasma parameters

Outer envelope: one kind of nuclei (fully ionized atoms) (A,Z), A = N + Z. This
is an approximation - one component plasma (OCP). Mean number density of
nuclei (=ions) nN . (If several j-species of nuclei are present then mean number
density of nuclei nN =

∑
j nj .) Electron mean number density ne = ZnN .

Outer envelope, outer crust: all nucleons bound in nuclei =⇒ mean nucleon
(=baryon) number density nb = A nN

Inner envelope, inner crust nb = A′ nN where A′ ≡ A + A′′. Here A′′ is the
number of free (unbound) nucleons per one atomic nucleus. We have
A′′nN = nn (1−w), where w is the fraction of volume occupied by atomic nuclei.

Outer envelope A′ = A, inner envelope A′ > A.

Mass density ρ = E/c2, but in the envelope and crust ρ ≈ munb, where
mu = 1.6605× 10−24 g is the atomic mass unit.
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Electrons

Relativity parameter (often used instead of ne)

xr ≡
pF

mec
≈ 1.00884

(
ρ6〈Z〉

A′

)1/3

, (1)

where
pF = ~kF = ~ (3π2ne)1/3, (2)

is the electron Fermi momentum and ρ6 ≡ ρ/106 g cm−3. The Fermi energy

εF = c2
√

(mec)2 + p2
F (3)

Notice: electron rest energy mec
2 is included. The electron Fermi temperature is

TF = Tr (γr − 1) , (4)

where
Tr = mec

2/kB ≈ 5.930× 109 K (5)

is the relativistic temperature unit, γr =
√

1 + xr
2, and kB is the Boltzmann

constant. The electron gas is non-relativistic at T � Tr and xr � 1, and it is
ultrarelativistic at xr � 1 or T � Tr. It is nondegenerate at T � TF and strongly
degenerate at T � TF.
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Electrons - continued

The density or temperature are called relativistic if the respective parameter xr or

tr = T/Tr (6)

is large (> 1). The electron Fermi velocity vF = ∂εF/∂pF.

One introduces electron-sphere radius = radius of a sphere of volume equal to a
volume per one electron = V/Ne = 1/ne ,

ae = [3/(4πne)]1/3 . (7)
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Electrons - continued

The strength of the electron Coulomb interaction in a plasma of nondegenerate
electrons can be characterized by the electron Coulomb coupling parameter

Γe =
e2

aekBT
≈ 22.75

T6

(
ρ6

Z

A′

)1/3

, (8)

where T6 ≡ T/106 K. We shall use this parameter Γe for any plasma conditions
though Γe has no transparent physical meaning for degenerate electrons.
For further use, it is convenient to introduce the electron plasma temperature

Tpe = ~ωpe/kB ≈ 3.300× 108 xr

√
βr K . (9)

where βr = vF/c and electron plasma frequency is given by

ωpe =
(
4πe2ne/m∗

e

)1/2
(10)

Here, m∗
e ≡ εF/c2 = meγr is the effective dynamical mass of an electron at the

Fermi surface. Perturbations of electron density oscillate with a frequency ωpe - see Landau & Lifshitz Stat. Phys. 1, Physical Kinetics
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Ions

ni = nN

The strength of the Coulomb interaction of ions is characterized by the Coulomb
coupling parameter,

Γ = ΓeZ
5/3 = (Ze)2/(aikBT ), (11)

where
ai = aeZ

1/3 = (3ni/4π)1/3 (12)

is the ion-sphere radius.

At sufficiently high temperatures, the ions form a classical Boltzmann gas. With
decreasing T , the gas gradually, without a phase transition, becomes a strongly
coupled Coulomb liquid, and then (with a phase transition) a Coulomb crystal.
The gas and liquid constitute the neutron star ocean, while the crystal is formed
under the ocean.
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Ions - continued

The gaseous regime of an OCP occurs for Γ � 1, or T � Tl, where

Tl =
Z2e2

aikB
≈ 2.275× 107 Z2

(ρ6

A′

)1/3

K. (13)

Important feature: For a plasma of light elements (H, He,C) one has Tl < TF,
whereas for heavy elements (Fe, Ni, etc.) Tl & TF.
The ion-sphere radius ai, defined by Eq. (12), is the main ingredient of the
ion-sphere model for strongly coupled Coulomb systems (T . Tl) with nearly
uniform electron background. In this model the matter is considered as an
ensemble of ion spheres filled by the uniform electron background. It is supposed
that any ion sphere contains an ion in its center. The radius ai is chosen in such a
way that electron charge within the sphere compensates the ion charge. Then the
spheres are electrically neutral and can be treated as non-interacting between
themselves.
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Ions - continued

The scale-length that characterizes quantum-mechanical effects on
thermodynamics of liquid and gaseous phases is the ion thermal (de Broglie)
wavelength

λi =
(

2π~2

mikBT

)1/2

, (14)

where mi is the ion (nucleus) mass. In the following, we shall also use also
electron thermal wavelength λe, given by Eq. (14) with mi replaced by me.
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Ions - continued

The crystallization of a Coulomb plasma occurs at a well defined temperature

Tm =
Z2e2

aikBΓm
≈ 1.3× 105 Z2

(ρ6

A′

)1/3 175
Γm

K, (15)

where Γm is the ”melting value” of Γ. For a classical OCP, Γm ≈ 175.
At low T the quantum effects on ion motion become important. They are
especially pronounced at T � Tpi, where

Tpi ≡
~ωpi

kB
≈ 7.832× 106

(
ρ6

A′
Z2

A

)1/2

K (16)

is the plasma temperature of ions determined by the ion plasma frequency

ωpi =
(
4πe2 niZ

2/mi

)1/2
. (17)

If Tpi � Tm, huge zero-point ion vibrations suppress crystallization and reduce the
melting temperature. Under these conditions, the actual melting temperature
decreases with growing ρ and drops to zero at a certain ρ = ρm.
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ρ− T diagram for the outer envelope

Density-temperature diagram for the outer envelope composed of carbon (left) or iron

(right). Electron Fermi temperature (TF), electron and ion plasma temperatures (Tpe

and Tpi), temperature of the gradual gas-liquid transition (Tl), and the temperature of

the sharp liquid-solid phase transition (Tm). Shaded: typical temperatures in the outer

envelopes of middle-aged cooling neutron stars (age ∼ 104 − 106). Corner bounded by the dotted line:

strong electron non-uniformity or bound-state formation (atoms!) in the iron plasma. Difficult region!
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Pressure

Decomposition

P = P
(i)
id + P

(e)
id + Pxc + Pii + Pie. (18)

P
(i)
id - ideal Boltzmann gas of ions

P
(e)
id - ideal Fermi gas of electrons

Pxc - exchange corrections in electron gas, negligible for ρ � 1 g cm−3

Pii - Coulomb corrections calculated assuming an uniform (”rigid”) electron
background

Pie - Coulomb corrections owing to electron polarization (inhomogeneities)
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Pressure - electrons - main term

(id)e pressure and the number density are functions of µe and T :

P
(e)
id = 2kBT

∫
ln

[
1 + exp

(
µe − ε

kBT

)]
d3p

(2π~)3

=
8

3
√

π

kBT

λ3
e

[
I3/2(χ, tr) +

tr
2

I5/2(χ, tr)
]

, (19)

ne = 2
∫

f (0)(ε− µe, T )
d3p

(2π~)3
=

4√
π λ3

e

[
I1/2(χ, tr) + trI3/2(χ, tr)

]
, (20)

where λe is the electron thermal wavelength, χ = (µe −mec
2)/(kBT ), and

definitions of λe , tr - in previous slides

Iν(χ, τ) ≡
∫ ∞

0

xν (1 + τx/2)1/2

exp(x− χ) + 1
dx (21)

is a Fermi-Dirac integral.
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The electron pressure P = P
(e)
id

versus density for an ideal strongly

degenerate electron gas (the solid

line) together with non-relativistic

and ultrarelativistic asymptotes

(the dotted and dashed lines).

The internal energy is given by V =volume of plasma

U
(e)
id

V
=

4√
π

kBT

λ3
e

[
I3/2(χ, tr) + tr I5/2(χ, tr)

]
. (22)
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Coulomb gas of ions

(id)i Ideal classical gas. The free energy of N = NN = nNV (nN = ni) -
non-relativistic classical ions is

F
(i)
id = NNkBT

[
ln(nNλ3

i /gi)− 1
]
, (23)

where gi is the spin degeneracy (the rest-mass energy is not included here). The
internal energy and pressure contributions from the ideal gas of ions are simply

U
(i)
id =

3
2

NNkBT, P
(i)
id = nNkBT. (24)

(ii)Ion correlations Additional terms from Coulomb interactions. In a classical
OCP the quantity Fii/NNkBT is a function of a single argument Γ. This function
determines all other ”excess” quantities which can also be expressed via some
universal functions of Γ. Methods for calculation of the ”ii” term - Monte Carlo
simulations and hypernetted chain (HNC) method. Very precise fitting formula to
numerical results of DeWitt et al. (1996) is

uii ≡
Uii

kBTNN
= Γ3/2

(
A1√

A2 + Γ
+

A3

1 + Γ

)
+

B1 Γ2

B2 + Γ
+

B3 Γ2

B4 + Γ2
, (25)

where Ai and Bi are constants.
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Instructive figure

Comparison of the fit (25) with the

Debye-Hückel (see, e.g., Landau &

Lifshitz Stat. Phys. 1, Abe (1959),

and Cohen-Murphy (1969)

approximate expressions valid at

small Γ� 1 and with very precise

extensive Monte Carlo and HNC

calculations. It is clear that

Coulomb contribution to the EOS

of strongly-coupled OCP with

Γ > 1 is difficult to calculate. One

has to be very careful, and not use

approximate low-Γ expressions if

Γ > 1!
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Strongly coupled Coulomb liquid

N = NN = Ni = nNV

In the gaseous regime the Coulomb energy is small, |Uii| � NkBT , so that the
Coulomb binding is lower than the thermal energy of ions, and the ions are nearly
free. In the strongly coupled liquid (Γ & 1) one has |Uii| & NkBT and the
Coulomb energy exceeds the thermal one. In this regime the ions are bound in
Coulomb potential wells (whose depth is ∼ Z2e2/ai) and slightly oscillate there
due to thermal motion. In a Coulomb liquid there is no exact order and the wells
slowly migrate within the liquid. In the limit of Γ � 1 from Eq. (25) one obtains
the linear Γ dependence, Uii/NkBT ≈ A1 Γ. In this limit Uii ≈ NA1Z

2e2/ai and
Pii ≈ A1 nNZ2e2/(3ai) are nearly independent of temperature.

Numerical factor A1 is very close to the value AIS
1 = −0.9 predicted by the

ion-sphere model. In that model ne = const., Coulomb energy of one ion sphere
is equal to −0.9Z2e2/ai: it is a sum of (repulsive) electron-electron contribution
0.6Z2e2/ai, and the attractive electron-ion term −1.5Z2e2/ai (see, e.g., Shapiro
& Teukolsky 1983).

Pawe l Haensel (CAMK) EOS for compact stars Lecture 1, IHP Paris, France 21 / 54



Crystallization of ions

At T < Tm, an infinite (unlimited, unbound) ion motion is replaced by oscillations
near equilibrium positions: a crystal is formed.
Internal energy at T = 0 consists of two parts,

U0 = UM + Uq, , (26)

where
UM = −NNCM(Ze)2/ai. (27)

Here, UM is the classical static-lattice energy, CM is the Madelung constant. Uq

accounts for the zero-point quantum vibrations.

CM(bcc) = 0.895929 (Fuchs 1935) bcc - body-centered-cubic

Klaus Fuchs - famous for his role in the Soviet A-bomb program in 1940s

CM(fcc) = 0.895874, fcc - face-centered-cubic

CM(hcp) = 0.895838 fcc - hexagonal closest packing, see, e.g., Kittel 1986.

The ion-sphere expression UM = −0.9 NN Z2e2/ai is sufficiently accurate for the
ion liquid and solid, as long as the ions are strongly coupled (Γ � 1)

Pawe l Haensel (CAMK) EOS for compact stars Lecture 1, IHP Paris, France 22 / 54



Melting - phase transition

The solid-liquid phase transition occurs at Γ = Γm, where the free energies F (Γ)
of liquid and solid phases intersect. It is difficult to find Γm with high precision,
because the intersection of the free energy curves is strongly affected by the
thermal corrections which are small at Γ ∼ Γm (the free energy curves are nearly
parallel). For instance, a 0.1% error in Fii shifts the intersection by ∆Γ ≈ 15
(Pollock & Hansen 1973)!
The phase transition is 1st order but very weak. Fix the number density of
ions and decrease the temperature =⇒ discontinuous changes of the ion energy Ui

and the ion pressure Pi at the melting point. One can easily show that both
quantities undergo discontinuous drops at Γ = Γm. The drop of the ion energy
density Ui/V , associated with the crystallization to the bcc lattice at Γm = 175, is
∆Ui/V ≈ 0.76 nNkBTm, with ∆Ui/Ui ≈ 0.5%, and the drop of the ion pressure
∆Pi/Pi is approximately three times smaller. Because the ion pressure is only a
small part of the total pressure P (the leading part Pe is provided by the
electrons), the fractional drop of the total pressure ∆P/P is much smaller than
the fractional drop of the ion pressure ∆Pi/Pi.
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Latent heat at freezing

The latent heat released at freezing equals

Qlatent = Um,liq − Um,solid ≈ ∆Ui, (28)

where and Um,liq and Um,solid are the corresponding values of the
internal energy at T = Tm.

Qlatent is only ≈ 0.5% of the ion contribution Ui, which is only a tiny
fraction of the total internal energy U (mainly determined by
degenerate electrons at the conditions mentioned above).

Nevertheless, the absolute value of Qlatent (≈ 0.76kBT per ion) is a
substantial fraction of thermal thermal energy of the ions. It is
sufficient, for instance, to delay the cooling of old white dwarfs with
crystallizing cores (Chabrier 1999, Hansen 2004). =⇒ important for
the white dwarf chronology.

Note: dense matter may form a supercooled liquid and freeze at T < Tm.
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Quantum zero-point vibrations and melting

At high densities the amplitude of zero-point quantum vibrations of ions may
become comparable to the lattice constant and make lattice ordering difficult:
Tm(ρ) becomes then significantly lower than the classical melting temperature and
at some critical density ρm zero-point vibrations destroy the lattice even at T = 0
(i.e., Tm(ρm) = 0). Hence at ρ > ρm the liquid does not solidify at all, and one
obtains the quantum liquid domain at T . Tpi and ρ & ρm. In that domain spin
statistics of ions (fermion or boson) is important.

In practice the appearance of quantum liquid is actually important only for
hydrogen and helium in the outer neutron star envelope, where zero-point motion
drastically suppresses the crystallization of these ions.
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Electrostatic corrections to electron presure

Take the pressure P
(e)
id of the ideal fully degenerate electron gas (T = 0

approximation is valid) and supplement it with the Coulomb correction calculated
within the ion-sphere model, Pii ≈ −0.3 nN Z2e2/ai. This gives

P =
Pr

8π2

[
xr

(
2
3

xr
2 − 1

)
γr + ln(xr + γr)

]
− 0.3 nN

Z2e2

ai
. (29)

This EOS can be used in the outer envelope of NS not too close to the surface. It
is also widely used in white dwarf cores. It is temperature independent and applies
to any composition of the matter. Its derivation implies that the electron

contribution P
(e)
id should be much larger than the Coulomb correction Pii. In the

ultrarelativistic electron gas (xr � 1) both pressures have the same (polytropic)

density dependence, P
(e)
id ∝ Pii ∝ xr

4. Therefore, their ratio is then density
independent being determined only by the ion charge number Z,

Pii

P
(e)
id

= −6
5

(
4
9π

)1/3
Z2/3e2

~c
≈ −0.0046 Z2/3, (30)

which gives Pii/P
(e)
id ≈ −0.04 for the matter composed of iron.
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Other corrections relevant to electron contribution

Electron exchange and correlation, electron polarization in ion liquid and ion solid,
partial ionization.

An example: EOS of hydrogen plasma accreted onto neutron star

Pressure isotherms (lg T [K] = 4.5,

5.0, and 5.5) of partially ionized

hydrogen given by three theoretical

models, compared with the EOS of

ideal fully ionized gas (shown by

dotted lines). Models: PCS -

Potekhin et al. 1999b; P96 -

Potekhin 1996b; SC - Saumon et

al. 1995
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Formation of the crust in newly born neutron stars

NS is born as a very hot object - T ∼ 1011 K. Cools rapidly due to neutrino
emission, and within hours the bulk of outer 1% of mass has T < 1010 K, and
within a year it gets cooled to ∼ 109 K.

Mass fractions of different constituents of the outer
envelope of a newly born neutron star versus matter
density in beta equilibrium at different temperatures
T9 = T/(109 K) (after Haensel et al. 1996).
Calculations are performed for the Lattimer & Swesty
(1991) model of nuclear matter with a specific choice
(K0 = 220 MeV) of the incompressibility of cold
symmetric nuclear matter at the saturation density.

After one year the thermal effects for

ρ > 106 g cm−3 are negligible T = 0 approximation

for the EOS is fine. Simplifying assumptions: single

A, Z-nucleus; crust in the ground state.
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Ground state crust - T = 0

Notation: enthalpy per nucleon = h; energy per nucleon=E; energy density - E .

Neglect envelope of NS with ρ < 108 g cm−3 (it has mass < 10−8M�) - it could
have been accreted, and the T -effects there might be significant. Consider crust
at T = 0 and P = 0, i.e., h = E = E/nb. In this case the minimum energy per
nucleon (ground state) is reached for a body-centered-cubic (bcc) lattice of 56Fe,
and is E(56Fe) = 930.4 MeV. It corresponds to ρ = 7.86 g cm−3 and
nb = 4.73× 1024 cm−3 = 4.73× 10−15 fm−3.

Remark It is worth to mention that 56Fe is not the most tightly bound free
atomic nucleus. Binding energy per nucleon
b ≡ [(A− Z)mnc2 + Zmpc

2 −M(A,Z)c2]/A in a nucleus with the ground-state
mass M(A,Z) reaches maximum for 62Ni, b(62Ni) = 8.7945 MeV, to be
compared with b(56Fe) = 8.7902 MeV. Let us notice that b(58Fe) = 8.7921 MeV
is also higher than b(56Fe).

Ground state of matter at a given P or nb is called cold catalyzed matter. Cold
- because T = 0. Catalyzed - because all reaction have been completed so that
the ground state has been reached.
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Ground state crust - T = 0

Ion-sphere model used - Γ � 1. Terminology: ion sphere ≡ (spherical) unit
cell, (spherical) Wigner-Seitz cell.
Charge neutrality of the unit cell, under pressure P ,

ne = ZnN , P = Pe(ne, Z) + PL(nN , Z) , (31)

where Pe is the electron pressure and PL is the “lattice” contribution (also called
the electrostatic correction) resulting from the Coulomb interactions (PL = Pii).
Spherical ”unit cell” per one nucleus in a OCP. At T = 0 enthalpy of the
cell=Gibbs free energy (G = H − TS) of the cell =Gcell.

Gcell(A,Z) = WN (A,Z) + WL(Z, nN ) + [Ee(ne, Z) + P ]/nN , (32)

where WN is the energy of the nucleus (including rest energy of nucleons), WL is
the lattice (Coulomb) energy per cell, and Ee is the mean electron energy density.
Neglecting quantum and thermal corrections and the nonuniformity of the
electron gas, we have

WL = −CM Z2e2/rc, CM ≈ 0.9. (33)
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Ground state crust - T = 0

The lattice (Coulomb) contribution to the pressure, Eq.(31), is thus
PL = Pii = 1

3WLnN .
The Gibbs free energy per nucleon h = Gcell/A is just the baryon (=nucleon)
chemical potential µb(A,Z) for a given nuclide. To determine the ground state
at a given P , one has to minimize µb(A,Z) with respect to A and Z.
To a very good approximation, a density jump, at which optimal values (A,Z)
change into (A′, Z ′), is given by

∆ρ

ρ
≈ ∆nb

nb
≈ Z

A

A′

Z ′
− 1 . (34)

This equation follows from the continuity of the pressure P ' Pe.
A sharp discontinuity in ρ and nb is a consequence of the assumed
one-component plasma model. Detailed calculations of the ground state of dense
matter by Jog & Smith (1982) show, that actually the transition between (A, Z)
and (A′, Z ′) shells takes places through a very thin layer of a mixed state of these
two species. However, since the pressure interval, where this mixed phase exists, is
∼ 10−4P , the approximation of a sharp density jump is quite adequate.
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A model of ground state crust

Haensel & Pichon (1994)(HP94) took experimental masses of nuclei from the
tables of Audi (1992, 1993 – private communication).1 Because of pairing effect
(nucleons in nuclei are superfluid!) only even-even nuclei are relevant for the
ground-state problem. For the remaining isotopes, up to the last one stable with
respect to the emission of a neutron pair, HP94 used theoretical masses obtained
from the mass formula of Möller (1992, private communication).).
The equilibrium nuclides present in the ”cold catalyzed matter” are listed in Table
1. In the fifth column one finds the maximum density ρmax at which a given
nuclide is present. The sixth column gives the electron chemical potential µe at
ρ = ρmax. The transition to the next nuclide has a character of a first-order phase
transition. The corresponding fractional density jump ∆ρ/ρ is given in the last
column. The last row above the horizontal line, which divides the table into two
parts, corresponds to the maximum density, at which the ground state of dense
matter contains a nucleus with mass measured in laboratory. The last row of
Table 1 corresponds to the neutron drip point which is determined theoretically.

1Some masses of unstable nuclei in these tables are actually semi-empirical evaluations based
on the knowledge of masses of neighboring isotopes. More recent evaluations of nuclear masses
are given by Audi et al. (1997) and Audi et al. (2003).
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Ground state crust - T = 0 - nuclei

Table: Nuclei in the ground state of cold dense matter (after Haensel & Pichon 1994),
with slight modification. Upper part is obtained with experimentally measured nuclear
masses. Lower part: from mass formula of Möller. The last line corresponds to the
neutron drip point. For a recent re-calculation of the ground state of the crust - see Ruster et al. (2006).

element Z N Z/A ρmax µe ∆ρ/ρ

(g cm−3) (MeV) (%)

56Fe 26 30 0.4643 7.96 × 106 0.95 2.9
62Ni 28 34 0.4516 2.71 × 108 2.61 3.1
64Ni 28 36 0.4375 1.30 × 109 4.31 3.1
66Ni 28 38 0.4242 1.48 × 109 4.45 2.0
86Kr 36 50 0.4186 3.12 × 109 5.66 3.3
84Se 34 50 0.4048 1.10 × 1010 8.49 3.6
82Ge 32 50 0.3902 2.80 × 1010 11.4 3.9
80Zn 30 50 0.3750 5.44 × 1010 14.1 4.3

78Ni 28 50 0.3590 9.64 × 1010 16.8 4.0
126Ru 44 82 0.3492 1.29 × 1011 18.3 3.0
124Mo 42 82 0.3387 1.88 × 1011 20.6 3.2
122Zr 40 82 0.3279 2.67 × 1011 22.9 3.4
120Sr 38 82 0.3167 3.79 × 1011 25.4 3.6
118Kr 36 82 0.3051 (4.32 × 1011) (26.2 )
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Approximate calculation of neutron drip point

A rough estimate of the neutron drip density can be obtained using a simplified version
of the nuclear mass formula. Neglecting Coulomb, surface and all other finite-size terms
and keeping only quadratic term in δ = (N − Z)/A, one can write the energy per
nucleon in an atomic nucleus (subtracting the rest energy and neglecting neutron-proton
mass difference) as EN (A, Z)/A ' E0 + S0 δ2 , where E0 is the energy per nucleon in
the symmetric nuclear matter and S0 is the symmetry energy, both calculated at
saturation density (see section on nuclear matter in Lecture 2). In this approximation,
the neutron and proton chemical potentials (without rest energy contribution) are

µ′n = ∂EN/∂N = E0 + (2δ + δ2) S0 , µ′p = ∂EN/∂Z = E0 + (−2δ + δ2) S0 . (35)

The value of δ corresponding to ρND can be calculated from the condition µ′n = 0,

δND =
√

1− (E0/S0)− 1 . (36)

Putting the experimental values E0 = −16 MeV and S0 = 32 MeV we get δND = 0.225.

Pawe l Haensel (CAMK) EOS for compact stars Lecture 1, IHP Paris, France 34 / 54



Matter should be in equilibrium with respect to beta decay and electron capture

(A,Z) + e− −→ (A,Z − 1) + νe

(A,Z) −→ (A,Z + 1) + e− + νe , (37)

which results in relation between the chemical potentials

µn = µp + µe . (38)

Therefore
µe = µn − µp ' 4S0 δ . (39)

Using the formula µe = 0.516 (ρ6Z/A)1/3 MeV, we get a rough estimate

bulk approximation : ρND ' 2.2× 1011 g cm−3, (40)

which is quite close to the refined theoretical value.
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Hartree-Fock calculation of ground state crust

Put A = N + Z nucleons and Z electrons in a box of volume Vcell (=unit
cell) and calculate ground state of the system at fixed nb = A/Vcell. The
A− body problem - solved using nuclear many-body theory. A ∼ 50− 1000.
”Effective nuclear” Hamiltonian

Ĥeff
N =

A∑
j=1

t̂j +
∑

k<j≤A

v̂eff
jk , (41)

where t̂j is the kinetic energy operator of j-th nucleon, while v̂eff
jk is an operator of

an effective two-body interaction between a jk nucleon pair.
The effective nuclear Hamiltonian Ĥeff

N has to reproduce – as accurate as possible
within the Hartree-Fock approximation – relevant properties of the ground state of
a many-nucleon system, particularly, the ground state energy E0. This last
condition can be written as 〈Φ0|Ĥeff

N |Φ0〉 ' 〈Ψ0|ĤN|Ψ0〉, where Φ0 and Ψ0 are,

respectively, the Hartree-Fock and exact wave functions, and ĤN is the exact
nuclear Hamiltonian.
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Effective nucleon-nucleon interaction

Most popular: Skyrme interaction. The basic assumption which justifies a
Skyrme-type effective NN interaction (Skyrme 1956) is that its range is small as
compared with the internucleon distances. This means, that in momentum
representation the effective NN interaction ˆ̃v eff(k,k′) can be approximated by a
momentum independent term plus terms quadratic in the initial and final relative
momenta of an interacting nucleon pair, k and k′, with the appropriate spin
dependence.

Numerical values of the parameters of effective interaction are to be determined
from fitting masses of laboratory nuclei in ground states and low-lying excited
states. The complete Hamiltonian of the unit cell is Ĥeff

cell = Ĥeff
N + VCoul + Ĥe,

where VCoul describes Coulomb interaction between protons and electrons, and
Ĥe corresponds to a uniform electron gas.
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Nucleon wave functions

Box=unit cell=ion sphere. The Hartree-Fock approximation for the many-body
nucleon wave function is

ΦNZ = CNZ det
[
ϕ(p)

αi
(ξk)

]
det

[
ϕ

(n)
βj

(ζl)
]

, (42)

where ϕ
(n)
βj

(ζl) and ϕ
(p)
αi (ξk) are single-particle wave functions (orbitals) for

neutrons (j, l = 1, . . . , N) and protons (i, k = 1, . . . , Z), respectively, and CNZ is
a normalization constant. The space and spin coordinates of a k-th proton are
represented by ξk; ζl is the same for an l-th neutron; {αi} and {βj} are sets of
quantum numbers of occupied single-particle states for protons and neutrons,
respectively.
The Hartree-Fock equations for ϕ(p) and ϕ(n) were derived by minimizing the
Hartree-Fock energy functional at a fixed volume Vc of the unit cell,

Ecell

[
ϕ(p)

α , ϕ
(n)
β

]
= 〈ΦNZΦe |Ĥeff

cell|ΦNZΦe〉 = minimum , (43)

where Φe is the plane-wave Slater determinant for an ultra-relativistic electron gas
of constant density ne = Z/Vc. The minimization was performed at fixed average
neutron and proton densities, nn = N/Vc, np = Z/Vc = nNZ.
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Nucleon density distribution in the inner crust - HF

Density profiles of neutron and protons, at several average densities ρ, along a line joining

the centers of two adjacent unit cells. Based on Fig. 3 of Negele & Vautherin (1973)
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Determining the ground state of inner crust

unit cell = ion sphere

Once the Hartree-Fock orbitals ϕ
(n)
β and ϕ

(p)
α are determined, one finds the

minimum (ground state) value of Ecell(N,Z), filling the lowest N neutron and Z
proton states. Then, the absolute ground state configuration is found by
minimizing Ecell(N,Z) at a fixed A = N + Z.

Let us notice, that αZ and βN correspond to “Fermi levels” for protons and
neutrons, respectively. In terms of the single-nucleon orbitals, the neutron drip
point corresponds to the threshold density at which the neutron Fermi level

becomes unbound, i.e., ϕ
(n)
βN

extends over the entire unit cell.

Remark: In reality an unbound ϕ
(n)
β extends over all volume of the crystal V , and

not only over Vc. Moreover, in an infinite crystal ϕ
(n)
β should fulfill the same

symmetry (periodicity) conditions as the crystal lattice itself.
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Semi-classical - Thomas-Fermi method

∼ 103 nucleons in unit cell - full quantum description is ”too detailed” for
getting ground state energy - semiclassical approximation is quite precise

In HF method energy was a functional of nucleon wave functions. In TF the
energy is a functional of nucleon densities

EN =
∫

cell

{
EN [nn(r), np(r),∇nn(r),∇np(r)] + mnc2nn(r)

+mpc
2np(r)

}
d3r . (44)

ECoul =
1
2

∫
cell

e [np(r)− ne]φ(r) d3r , (45)

where φ(r) is the electrostatic potential to be calculated from the Poisson
equation,

∇2φ(r) = 4πe [np(r)− ne] . (46)
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Thomas-Fermi method - continued

To determine the ground state at a given nb, one has to find nn(r) and np(r),
which minimize Ecell/Vc under the constraints

Vcnb =
∫

cell

[nn(r) + np(r)] d3r ,

∫
cell

[np(r)− ne] d3r = 0 . (47)

The problem is simplified assuming spherical symmetry; in this case the unit cell is

approximated by a sphere of the radius rc = (3Vc/4π)1/3. The boundary
conditions are such that far from the nucleus surface the nucleon densities are
uniform. This requires the nuclear radius to be significantly smaller than rc.
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Thomas-Fermi method - continued

Neutron and proton density profiles at two average mass densities along a line
joining the centers of adjacent unit cells. Based on Fig. 5 of Cheng et al. (1997).
No wiggles in profiles - because no quantum interference between nucleon wave
functions.
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Compresible Liquid Drop Model

The model is classical (non-quantum) par excellence.

Nucleons divided between three thermodynamical subsystems: bulk nuclear matter
inside nuclei - (i), neutron gas outside nuclei (o), nucleons in the transition layer
between (i) and (o) - the surface (s) or (surf).

Ecell = EN,bulk + EN,surf + ECoul + Ee . (48)

Contrary to EN,bulk, EN,surf and ECoul depend on sizes and shapes of nuclear
structures. All necessary parameters calculated using many-body microscopic
theories. Unknown parameters: nuclear radii, fraction of neutrons in the gas
outside, density of neutron and protons inside nuclei, surface tension at the
nuclear surface, number of neutrons ”adsorbed at the nuclear surface”, radius of
the unit cell . . . . Then thermodynamic equilibrium conditions imposed
(mechanical and ”chemical”, charge neutrality of the unit cell) =⇒ structure of
the ground state of the inner crust at a given nb.
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Compressible Liquid Drop Model

Spherical unit cell radius rc, the proton

radius of nuclei rp, and the fraction of

volume w filled by protons (in percent) vs.

average matter density ρ. Douchin & Haensel (2000)

Nuclei: A and Z vs. ρ. The dotted line

gives number of the nucleons in nuclei after

subtracting the neutrons belonging to

neutron skin. Douchin & Haensel (2000)
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Z of nuclei in the inner crust

Numbers of protons per nucleus in the ground state of the inner crust obtained by

various authors. Solid lines: RBP – Ravenhall et al. (1972); FPS – as quoted by Pethick

& Ravenhall (1995); DH – Douchin & Haensel (2000,2001). Crosses – Negele &

Vautherin (1973).
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Funny nuclei - ”nuclear pasta”

Generally, while minimizing the energy, the nuclear shape has to be treated as a
thermodynamic variable. The actual shape of nuclei in the ground state
corresponds to the minimum of E at a given nb.

Unit cells for a set of nuclear

shapes (spheres, rods, plates) in

the inner crust. The size of the

unit cell is rc. Hatched regions

show nuclear matter, while blank

regions show neutron gas. In

“bubbular phases” (tubes, spherical

bubbles) one has to exchange the

blank and hatched regions. Culinary

names for ”pasta phases”: cylinders - spaghetti; plates -

lasagna; spherical bubbles - Swiss cheese, . . .
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Funny nuclei - nuclear pasta and EOS

Presence or absence of ”pasta” are model dependent. Only NS
observations can tell us the actual situation With increasing density SLy (Skyrme

Lyon – Douchin & Haensel 2000): spheres −→ nuclear matter. FPS (Friedman -

Pandharipande - Skyrme – Lorenz et al. 1993): spheres −→ columns −→ plates −→
tubes −→ spherical bubbles −→ nuclear matter. Large surface tension prevents pasta to

appear before nuclei merge into homogeneous nuclear matter. Each transition is

accompanied by a very small density jump ∆ρ/ρ . 1%. Effects of ”pasta” on the EOS -

some smoothing of the crust-core transition region. But: huge effect on the transport

and elastic properies !

Comparison of the SLy and FPS

EOSs near the crust-core transition.

Thick solid lines refer to the inner

crust with spherical nuclei. The

dashed line is for “exotic nuclear

shapes”. Thin solid lines refer to

the uniform npe matter.
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Overall inner crust EOSs - SLy and FPS

Left: Comparison of the SLy and FPS

EOSs. These are unified EOSs - based on a

one single model to describe both crust and

core. Right: SLy EOS of the crust. Dotted lines:

neutron drip and crust-core transition.
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Overall crust EOSs - adiabatic index

Adiabatic index γ for the ground

state model of the outer crust of

Haensel & Pichon (1994) before

neutron drip and Compressible

Liquid Drop Model of Douchin &

Haensel (2001) at higher ρ. Dotted

vertical lines indicate the neutron

drip and crust-core interface.
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Melting temperature

Melting temperature (left) and electron and ion plasma

temperatures (right) of the ground-state matter in the crust.

Solid lines are based on the models of Haensel & Pichon

(1994) and Negele & Vautherin (1973) for the outer and inner

crusts, respectively.

Jumps are associated

with changes of

nuclides.

Dot-and-dashed lines

are based on the

CLDM of Douchin &

Haensel (2000,2001);

their smooth behavior

is an approximation

inherent to the

model. Thick vertical

dashes indicate the

neutron drip.
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Elastic properties of the crust

Isotropic solid = polycrystal of bcc crystals. Initially - all nuclei in the
equilibrium positions. Consider displacement of the nuclei into their new positions
r′ = r + u, where u = u(r) is the displacement vector. In the
continuum-medium limit, relevant for macroscopic phenomena, both r and u are
treated as continuous fields. The displacement u produces an elastic strain (i.e., a
force which tends to return the matter element to the equilibrium state with the
minimum energy E0) and determines the deformation energy Edef = E(u)− E0. A
uniform translation does not contribute to Edef .

Edef =
1
2

K (∇ · u)2 + µ

(
uik −

1
3

δik ∇ · u
)2

. (49)

Here, µ is the shear modulus and K is the compression modulus.

Calculation for bcc, after averaging over orientations gives

µ = 0.0159 (Z/26)2/3
Pe , so that µ/K = 0.016 (Z/26)2/3 (Pe/γP ) � 1 , where

γ = (nb/P )(dP/dnb) is the adiabatic index.
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Shear modulus of the crust

Effective shear modulus µ versus

density at T = 0 for bcc lattice.

The solid line is for the models of

Haensel & Pichon (1994) and

Negele & Vautherin (1973)(in the

outer and inner crust, respectively.

The dot-and-dashed line is for the

model of Douchin & Haensel

(2000).

Notice: The crust is much more susceptible to shear than to compression; its
Poisson coefficient σ ' 1/2, while its Young modulus E ' 3µ.
Strictly speaking, the above formulae hold for the outer crust, where the radius of
nuclei rN � rc and P ' Pe. In the inner crust they are only approximate.
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Effect of B on the envelope & crust EOS
Effect of B on EOS significant when only
a few lowest Landau levels (e.g.,
n = 0, 1) are populated by electrons

Matter density ρ at the depth z and the mass

of the spherical outer shell of the thickness z for

B = 0 and B = 1012 G and B = 1013 G.

electron states:
B = 0 : (px, py, pz, s)
B > 0 (p̃x, pz, n, s)
Landau levels n = 0 : s = −1

n = 1, 2, . . . : s = ±1

cyclotron frequency ωc = eB/(mec)

For ρ > 107 g cm−3 the effects of
B on the EOS are negligible.
However, in the outer envelope
∼ 10 cm the effects may be huge
(magnetized atmospheres!). Strong
effect on the conductivity and
opacity as long as collision frequency
for electrons νcoll � ωc/(2π) =⇒
anisotropy with opacity κ⊥ � κ‖.
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