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Strong interactions and neutron stars

Neglecting NN interactions =⇒ a model of neutron stars
built of ideal Fermi gas of neutrons. This is what
Oppenheimer & Volkoff (1939) did (they could be excused
for doing that). They got maximum allowable mass for
neutron stars Mmax = 0.71M�, half of the Chandrasekhar
mass limit for white dwarfs. This was a puzzle! Today, the
precisely measured mass of the Hulse-Taylor binary pulsar
is 1.44M�. Observations tell us that

Mmax(with interactions)/Mmax(no interactions) > 2

Strong interactions are crucial for understanding
neutron stars.
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Nuclear matter and experiment

Nuclei are droplets of self-bound nuclear matter. Ideal infinite system:
A = N + Z −→∞, Coulomb forces being switched-off. Uniform medium, with
nucleon density nb = nn + np and the asymmetry parameter δ = (nn − np)/nb,
so that nn = (1 + δ)nb/2, np = (1− δ)nb/2. Charge symmetry of nuclear forces
implies that E(nb, δ) = E(nb,−δ). General nuclear physics reference: Bhaduri & Preston (1975)

Energy per nucleon versus baryon number density for

symmetric nuclear matter (δ = 0), asymmetric

nuclear matter with δ = 0.4 (such an asymmetry

corresponds to the neutron-drip point in a neutron

star crust and to a central core of a newly born

protoneutron star), and pure neutron matter (δ = 1).

Minima of the E(nb) curves are indicated by filled

dots. Dotted segments correspond to negative

pressure. Calculations are performed for the SLy4

model of effective nuclear Hamiltonian, which was

used to calculate the SLy EOS by Douchin &

Haensel (2001). It yields n0 = 0.16 fm−3 and

E0 = −16.0 MeV.
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Nuclear matter

B0 = −E0 = maximum binding energy per nucleon in nuclear matter (”at
saturation point” - nb = n0, δ = 0). In the vicinity of saturation point:

E(nb, δ) ' E0 + S0 δ2 +
K0

9

(
nb − n0

n0

)2

, (1)

where S0 and K0 are, respectively, the nuclear symmetry energy and
incompressibility at the saturation point,

S0 =
1
2

(
∂2E

∂δ2

)
nb=n0, δ=0

, K0 = 9
(

n2
b

∂2E

∂n2
b

)
nb=n0, δ=0

. (2)

Experiment: n0 = 0.16± 0.01 fm−3,
B0 = 16.0± 1.0 MeV, S0 = 32± 6 MeV, K0 ≈ 230 MeV
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Hadronic interactions and dense matter

From principles to practice: Principle: interaction is given by the
quantum chromodynamics (QCD). The electromagnetic interaction is negligible
for the EOS, and the weak interaction enters the problem only indirectly by
opening some channels for reaching the ground state of the matter. Practice: We
have to use an effective theory, where quark degrees of freedom are not treated
explicitly but are replaced by hadrons – baryons and mesons – in which quarks are
confined. Hadronic Hamiltonian cannot be presently derived from the QCD, we
have to use phenomenological models of strong (hadronic) interaction, based
partly on mesonic theories, where strong interaction between hadrons is modeled
by the exchange of mesons. Most refined and complete phenomenological models
constructed for the NN interactions. Tested using thousands of experimental data
on NN scattering cross sections supplemented with experimental deuteron (2H)
properties. Experimental information on the NH and HH interactions for the
lowest-mass hyperons Λ and Σ only. Mainly obtained from studies of hypernuclei.
Generally: the interaction models for NH and HH are incomplete and plagued by
uncertainties due to scarcity (or non-existence) of experimental data.
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Hadronic interactions and dense matter

Three body interactions. Two-body hadronic interactions yield only a part of
the hadronic Hamiltonian of dense matter. At ρ ∼ 1015 g cm−3, interactions
involving three and more hadrons might be important. Our experimental
knowledge of three-body interaction is restricted to nucleons. The three-nucleon
(NNN) force is necessary to reproduce properties of 3H and 4He and to obtain
correct parameters of symmetric nuclear matter at saturation.

Minimal model and beyond. In view of such a high degree of our ignorance, it
seems reasonable to start with a model which is the simplest, and not obviously
wrong. Such a “minimalistic” approach consists in extending the npeµ model to
ρ & 2ρ0. The calculated EOS has to be confronted with observations, to see
whether it is sufficient to explain observational data. After fulfilling this minimal
program, we can try richer models, including hyperons and exotic phases of
hadronic matter. Whatever model of dense matter we assume, we should calculate
its ground state as a function of density.
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Phenomenological NN interaction - 1

Introductory reference: Preston & Bhaduri (1975) Since the dawn of nuclear physics the determination of
forces which bind atomic nuclei has been a central problem for experimentalists
and theoreticians. In its most basic formulation, the problem consists in
determining the nucleon-nucleon potential which would explain the
nucleon-nucleon scattering data and the properties of 2H. It has turned out to be
a very difficult task. Bethe (1953) estimated that during the preceding 25 years
more hours of human work had been devoted to this problem than to any other
scientific problem.
Present phenomenological NN potentials fit very precisely a few thousand of NN
scattering data in the energy range up to 350 MeV (in laboratory reference
frame). At higher energies, non-elastic processes of pion production switch on and
the potential model represented by a Hermitian operator becomes meaningless.
For an ij pair of interacting nucleons these quantities are represented by the
following operators: the relative position vector rij = ri − rj ; spins σi and σj (in
the units of ~/2); isospins τi and τj (in the units of 1/2); the relative momentum

p̂ij = p̂i − p̂j ; the total orbital angular momentum L̂ = rij × p̂ij and its square

L̂2 in the center-of-mass system. Let us introduce also the operators of the total
spin Ŝ = 1

2 (σi + σj) (in units of ~) and the total isospin T̂ = 1
2 (τi + τj), which

act in spin and isospin spaces, respectively.
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Phenomenological NN interaction - 2

The tensor coupling enters via the tensor operator

Ŝij = 3(σi · nij)(σj · nij)− σi · σj , (3)

where nij = rij/rij , and the spin-orbit coupling enters via L̂ · Ŝ. Both couplings
are necessary for explaining experimental data.
The NN potential acting between a nucleon pair ij is a Hermitian operator v̂ij in

coordinate, spin, and isospin spaces. The operator v̂ij commutes with Ĵ = L̂ + Ŝ,

T̂ 2, and Ŝ2, which leads to vanishing matrix elements of v̂ij between states with
different (JST ). However, because of the tensor force, the S = 1 (spin triplet)
states with different L = J ± 1 can mix. The Pauli exclusion principle allows only
for two-nucleon states with an odd value of the sum L + S + T .
The form of v̂ij , which is sufficiently general to reproduce the wealth of NN
scattering data, is

v̂ij =
18∑

u=1

vu(rij)Ôu
ij , (4)

where the first fourteen operators are charge-independent, i.e., invariant with
respect to rotation in the isospin space.
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Phenomenological NN interaction

These operators have the form

Ôu=1,...,14
ij = 1, τi · τj ,σi · σj , (σi · σj)(τi · τj) , Ŝij , Ŝij(τi · τj) ,

L̂ · Ŝ , L̂ · Ŝ(τi · τj) , L̂2 , L̂2(τi · τj) , L̂2(σi · σj) ,

L̂2(σi · σj)(τi · τj) , (L̂ · Ŝ)2 , (L̂ · Ŝ)2(τi · τj) . (5)

The form of v̂ij , Eq. (4), is still quite restrictive, because apart from the
angular-momentum dependent terms, the interaction is local, i.e., depends only on
rij . The terms with Ôu=15,...,18

ij are small and break charge independence; they
are not invariant with respect to a rotation in the isospin space. The charge
independence corresponds to vnp(T = 1) = vnn = vpp, while the charge symmetry
implies only that vnn = vpp. Modern fits to very precise nucleon scattering data
indicate the existence of charge-independence breaking.
One-pion exchange + the rest. One splits NN interaction

v̂ij = v̂π
ij + v̂IS

ij , (6)

where v̂π
ij is a one-pion exchange part and v̂IS

ij is a phenomenological intermediate-
and short-range (IS) component.
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Three-body (NNN) interaction

Calculations show that the two-body interactions which satisfactorily
reproduce NN scattering and 2H properties, give the binding energies
of 3H and 4He systematically lower than experimental ones =⇒
necessity of introducing three-body interaction into the nuclear
Hamiltonian.

The underbinding of light nuclei can be corrected by introducing
three-body forces.

V̂ijk = V̂ 2π
ijk + V̂ IS

ijk , (7)

V̂ 2π
ijk - longest range 3-body, resulting from exchange of two pions.

Can be calculated theoretically.
V̂ IS

ijk - phenomenological Intermediate-Short (IS) range component, its
parameters are to be obtained by fitting experimental data on
many-nucleon systems.

Four and more-body interactions seems to be not needed.
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Meson-exchange nucleon-nucleon interaction - 1

NN interaction results from exchange of virtual mesons. Lightest meson -
postulated by Yukawa (1935). Range ~/mπc ' 1.4 fm. Lowest order: one pion
exchange (OPE) =⇒ one pion exchange potential (OPEP). Contemporary model
- nucleon fields coupled to meson fields: meson exchange model (MEM; modern
review in Machleidt (1989).
Mesons involved:

pseudoscalar (ps) mesons π, η (JP = 0−)

scalar (s) mesons σ, δ (JP = 0+)

vector (v) mesons ρ, ω (JP = 1+)

where JP denotes the meson spin J and parity P.
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Meson-exchange nucleon-nucleon interaction - 2

The experimentally measured meson masses are: mπc2 = 138 MeV, mηc2 = 548
MeV, mρc

2 = 769 MeV, mωc2 = 783 MeV, and mδc
2 = 983 MeV. The scalar σ

meson plays a special role: it represents a scalar state of an exchanged pion pair
(ππ), and its mass is found from fitting the MEM to NN scattering data (in this
way, one gets mσc2 = 550 MeV).

Apart from experimental meson masses, the MEM contains coupling constants
determined by fitting experimental data. Finally, in order to account for finite
sizes of interacting hadrons, one has to introduce form-factors at every
meson-nucleon vertex. The form-factors describe the effect of shortest-range
strong interactions, which depend on the quark structure of baryons and are not
calculable within the MEM.
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Meson-exchange nucleon-nucleon interaction - 3

Some Feynman diagrams describing the most important meson-exchange processes

which contribute to the NN interaction. Time goes upwards. Thin vertical lines:

nucleons. Thick vertical segments: ∆ (=Nπ) resonance in an intermediate state.
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Meson-exchange model - NNN and NNNN interaction

Many-body interactions arise naturally in the meson-exchange models: they are
represented by Feynman diagrams which cannot be reduced to a sequence of NN
interactions.

Some meson-exchange Feynman diagrams describing processes contributing to
NNN and four-nucleon interactions. Time goes upwards. Thin vertical solid lines:
nucleon states. Thick vertical segments: ∆ resonance in intermediate states.
Dashed horizontal lines: exchanged mesons.
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The hyperon interactions: NH, HH

New type of strong interactions - with conversion (new baryon in the final state -
not ”just an exchange” of baryons in the initial pair)

Two Feynman diagrams describing strong-interaction one-meson-exchange processes

accompanied by Λ–Σ conversion. Notice that K meson in the right-hand-side diagram

transfers strangeness. Examples

Λ + p −→ Σ+ + n, Λ + p −→ Σ0 + p. (8)
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Solving the many-body problem – an overview - 1

The basic formula for the ground-state energy per baryon of a system of Ab

baryons is

EB =

(
Ψ0|ĤB|Ψ0

)
Ab (Ψ0|Ψ0)

, (9)

where ĤB is a baryon (B) Hamiltonian operator and Ψ0 is a ground-state wave
function of the system. In our case EB should be calculated in the
thermodynamic limit (Ab −→∞, volume of the system −→∞).

In the simplest (”minimal model”) case of nucleon matter (B=N), the calculation
yields EN as a function of nn and np. The knowledge of EN(nn, np) is sufficient
for calculating the EOS of matter consisting of nucleons and leptons (the so called
npeµ matter). Leptons (e, µ) ≈ free Fermi gases. In a more general case of
hyperonic matter, one needs EB as a function of all baryon densities nB

(B = n, p,Σ−,Λ, . . .).
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Solving the many-body problem – an overview - 1

Perturbative expansions, summed to infinite order.
Systematic and convergent expansions of expression (9) for EB. Interaction is strong !
Brueckner-Bethe-Goldstone theory (BBG). Formulated in 1950s-1960s. Monumental
achievement. Reviewed in Baldo (1999), Baldo et al. (2001). Starts with NN in vacuum.
Suitable to treat strong and complicated interactions in dense baryon matter. Initially:
to explain properties of nuclear matter staring from NN interaction. Also - not so
popular but with great formal beauty - Green’s Function Theory (Martin & Schwinger
1958; reviewed in Weber 1999).

Variational calculations. Based on variational principle of Quantum
Mechanics (e.g., Schiff 1968):

E
(var)
B =

(
Ψvar|ĤB|Ψvar

)
Ab (Ψvar|Ψvar)

≥ E
(exact)
B , (10)

where Ψvar is a trial wave function. This method consists in minimizing the energy

functional E
(var)
B within a set of trial wave functions, which should be sufficiently rich in

their structure, reflecting the structure of ĤB. Monumental computational achievements

(Wiringa et al. 1988; Akmal et al. 1998; Morales et al. 2002).
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Solving the many-body problem – an overview - 2

Effective baryon Hamiltonians or Langrangians
Simple calculations, provided that effective Hamiltonian (or Lagrangian) is known.

Nonrelativistic. Effective Hamiltonian based partly on experimental data and
partly on selected many body results for pure neutron matter (see Chabanat et al.
1997, 1998 - SLy model; also Pandharipande & Ravenhall 1989 - FPS model).

E
(HF)
B =

(
ΨHF|Ĥeff

B |ΨHF

)
Ab (ΨHF|ΨHF)

' E
(exact)
B . (11)

Relativistic mean-field approximation. Correlations neglected. Usually Hartree
approximation only. Proud names: Relativistic Mean Field Theory or Relativistic
Hadrodynamics. Reviewed in Glendenning (2000). Parameters fixed by nuclear
matter saturation experimental data.
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The equation of state of the outer core - 1

The theoretical description of the matter at ρ . 2ρ0 is within the reach of the
modern nuclear theory. The nuclear Hamiltonian, albeit very complicated, is
known reasonably well. The calculation of the ground state of nucleon matter
requires big computing resources but can be carried out with a reasonable
accuracy. Consider the matter composed of nucleons, electrons, and possibly
muons (if µe > mµc2 = 106 MeV). Nucleons form a strongly interacting Fermi
liquid, while electrons and muons constitute nearly ideal Fermi gases. The energy
per unit volume is

E(nn, np, ne, nµ) = EN(nn, np) + Ee(ne) + Eµ(nµ) , (12)

where EN is the nucleon contribution. In what follows, we will assume full
thermodynamic equilibrium (= cold catalyzed matter). The pressure and
energy-density depend on a single parameter; best choice - baryon density nb. The
equilibrium at given nb corresponds to the minimum of E under the condition of
electrical neutrality.
We derive the equilibrium equations using a general method of Lagrange
multipliers, particularly suitable for calculating the minimum of a function of many
variables under additional constrains.
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The equation of state of the outer core - 2

The variables are the number densities nj , j = n, p, e, µ, and the constrains are

fixed baryon density: nn + np − nb = 0 , (13a)

electrical neutrality: ne + nµ − np = 0 . (13b)

Auxiliary function Ẽ , defined by

Ẽ = E + λ1(ne + nµ − np) + λ2(nn + np − nb) . (14)

λi are Lagrange multipliers to be determined from the unconstrained minimization
of Ẽ by requiring ∂Ẽ/∂nj = 0 for all j:

∂Ẽ/∂nn = µn + λ2 = 0 , (15a)

∂Ẽ/∂np = µp − λ1 + λ2 = 0 , (15b)

∂Ẽ/∂ne = µe + λ1 = 0 , (15c)

∂Ẽ/∂nµ = µµ + λ1 = 0 , (15d)

with ∂E/∂nj = µj= chemical potential of particles j..
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The equation of state of the outer core - 3

Eliminating λi from Eqs. (15) one gets the relation between the chemical potentials

µn = µp + µe , µµ = µe , (16)

which expresses the equilibrium with respect to the weak-interaction processes

n −→ p + e + νe , p + e −→ n + νe , (17a)

n −→ p + µ + νµ , p + µ −→ n + νµ . (17b)

We consider a neutron-star core transparent for neutrinos (which occurs, typically, as
soon as T . 109−1010 K). In this case neutrinos do not affect the matter
thermodynamics, and we can put µνe = µνe = µνµ = µνµ = 0.
Equations (16) supplemented by the constraints (13) form a closed system of equations
which determine the equilibrium composition of the npeµ matter.

nj = p3
Fj/(3π2)

Electrons are ultra-relativistic, so that µe = ~cpFe ≈ 122.1 (ne/0.05n0)
1/3 MeV

while muons are mildly relativistic

µµ = mµc2
√

1 + (~pFµ/mµc)2 . (18)

Muons are present only if µe > mµc2 = 105.65 MeV.
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The equation of state of the outer core - 4

Pressure is calculated from the first law of thermodynamics (at T = 0):

P = n2
b

d(E/nb)
dnb

. (19)

The derivative is taken at the equilibrium composition.

Comment: density-dependent particle composition =⇒ xj ≡ nj/nb depending
on nb give a non-vanishing contribution to the density derivative of the energy per
nucleon. Let us treat E as a function of nb, xp, xe, and xµ. Then

P = n2
b

(
∂(E/nb)

∂nb

)
eq

+
1
nb

∑
j=p,e,µ

(
∂E
∂xj

)
eq

(
dxj

dnb

)
eq

, (20)

where derivatives are taken at equilibrium. However, using Eqs. (13) and (16) one
can see that the second term on the right-hand-side of Eq. (20) vanishes in
equilibrium, i.e., both formulae for P give the same result.
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Symmetry energy and the proton fraction - 1

Many-body calculations of the energy per nucleon in an asymmetric nuclear
matter with realistic nucleon-nucleon interactions show that, to a very good
approximation, the dependence on the neutron excess δ = 1− 2xp is quadratic
(see, e.g., Lagaris & Pandharipande 1981c; Wiringa et al. 1988; Akmal et al.
1998):

EN(nb, δ) ' E0(nb) + S(nb) δ2 . (21)

Here, E0(nb) refers to the symmetric nuclear matter and S(nb) is the symmetry
energy. A very high precision of this formula, even for δ ' 1, indicates that the
higher-order terms of the expansion in δ are small.
In this context it is instructive to consider the free-Fermi gas (FFG) model of the
nuclear matter, where the energy per baryon is

EFFG(nb, δ) =
3
10

εF(nb)
[
(1 + δ)5/3 + (1− δ)5/3

]
. (22)

Here, m ≡ (mn + mp)c2/2 = 938.93 MeV is the mean nucleon mass and εF is the
Fermi energy in the symmetric nuclear matter at a given nb,

εF =
~2

2m

(
3
2

π2nb

)2/3

≈ 36.8
(

nb

n0

)2/3

MeV . (23)
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Symmetry energy and the proton fraction - 2

The small-δ expansion of EFFG reads then

EFFG(nb, δ) =
3
5

εF(nb) +
1
3

εF(nb) δ2 , (24)

which gives the symmetry energy for the free Fermi gas model in the form

SFFG ≈ 12.3
(

nb

n0

)2/3

MeV . (25)

It is easy to check that the quadratic approximation, Eq. (21), is very precise even
at δ = 1. From Eq. (22) applied to a pure neutron matter we obtain
EFFG(nb, 1) = (3/5) 22/3 εF(nb) ≈ 0.9524 εF(nb), while Eq. (24) gives
14εF(nb)/15 ≈ 0.9333 εF(nb) which is only 2% smaller!
The simple form of the dependence of EN on xp enables us to clarify the relation
between the symmetry energy and the composition of the npe matter at
beta-equilibrium. Using Eq. (21) we can easily calculate the difference between
the chemical potentials of neutrons and protons,

µn − µp = 4(1− 2xp)S(nb) . (26)
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Symmetry energy and the proton fraction - 3

The beta-equilibrium in the npe matter (where xe = xp) implies, therefore,

x
1/3
p

1− 2xp
=

4S(nb)
~c (3π2nb)1/3

. (27)

Accordingly, the proton fraction at a given nb is determined by the symmetry
energy. Under typical conditions, the proton fraction is small, xp � 1, and

xp(n0) ≈
64 [S(nb)]3

3π2(~c)3 nb
≈ 4.75× 10−2

(
n0

nb

)(
S(nb)

30 MeV

)3

, (28)

As the experimental value of S0 is Sexp ' 30 MeV, the proton fraction in the
neutron-star matter at the normal nuclear density should be xp(n0) ' 5%,
independently of any specific EOS of dense matter. On the other hand, Eq. (28)
tells us that the actual value of xp(n0) for a given model of dense matter is very
sensitive to the value of S0 of that model. In particular, the free Fermi-gas model
yields a very small S0, Eq. (25), and gives an unrealistically low value
xFFG

p (n0) ≈ 0.0033.
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Table: 1. Selected EOSs of neutron star cores. Boldface - EOSs based on realistic NN+NNN; which yield good

saturation parameters for nuclear matter. BPAL12 and BGN2 are ”extremists”: extremely soft and stiff, respectively.

EOS model reference

BPAL12 npeµ energy density functional Bombaci (1995)

BGN1H1 npΛΞeµ energy density functional Balberg & Gal (1997)

FPS npeµ energy density functional Pandharipande & Ravenhall
(1989)

BGN2H1 npΛΞeµ energy density functional Balberg & Gal (1997)

BGN1 npeµ energy density functional Balberg & Gal (1997)

BBB2 npeµ Brueckner theory, Paris NN
plus Urbana UVII NNN potentials

Baldo et al. (1997)

BBB1 npeµ Brueckner theory, Argonne A14
NN plus Urbana UVII NNN potentials

Baldo et al. (1997)

SLy npeµ energy density functional Douchin & Haensel (2001)

APR npeµ variational theory, Argonne A18
NN plus Urbana UIX NNN potentials

Akmal et al. (1998)

APRb* npeµ variational theory, Argonne A18
NN with boost correction plus ad-
justed Urbana UIX* NNN potentials

Akmal et al. (1998)

BGN2 npeµ effective nucleon energy func-
tional

Balberg & Gal (1997)
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Outer and inner core - EOS - npeµ matter

Pressure vs. baryon density (left panel) and vs. mass density (right panel) for several

selected EOSs of the npeµ matter. Labels are the same as in Table 1.
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Selected models: proton fraction

xp in npeµ matter at beta equilibrium for different EOSs

(Table 1). Negative-slope segments for the APR and

APRb* models correspond to a mixed-phase region.

Dotted line: the threshold xp above which the direct

Urca process is allowed. See next slide

xp > xD direct Urca allowed;

xp < xD direct Urca prohibited

Compare the values of xp

given by different theories at
nb = n0. They range from
0.035 for the U14+UVII
model to 0.06 for the
APRb* one. A difference by
a factor ∼ 2 stems from
using S0 = 28 MeV and
S0 = 35 MeV, respectively;
see Eq. (28). These values
of the symmetry energy are
still within extreme
experimental values of S0.
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Proton fraction and the Direct Urca process

Direct Urca (Lattimer et al. 1991) processes are:

n −→ p + e + νe , p + e −→ n + νe , (29a)

n −→ p + µ + νµ , p + µ −→ n + νµ . (29b)

Direct Urca reactions were not considered before 1991, see, e.g., Shapiro &
Teukolsky (1983)! They are allowed only at rather high nb at which xp(nb)
exceeds a threshold value xD(nb) ≈ 0.11− 0.14 (Lattimer et al. 1991). The
reason: neutrons, protons, and electrons form degenerate Fermi liquids, only the
states close to the Fermi surfaces (within a shell of the thickness ∼ kBT around
the Fermi are involved in the processes (29). Therefore, pj ≈ pFj (j = n, p, e, µ),
while the neutrino momentum pν ∼ kBT/c � pFj . Neglecting kBT/c � pFj =⇒
momentum conservation imposes the triangle rule:

pFn < pFp + pFe , (30)

which is satisfied for xp > xD. In the absence of muons, xD = 1/9; their presence
slightly increases xD above 1/9, and xD may become as large as 0.14. Replacing
electrons by muons in Eqs. (30) one can get the threshold proton fraction which
opens the muon direct Urca process. This process becomes allowed at a slightly
higher density than the electron one.
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Proton fraction, Direct Urca, and NS cooling

If xp < xD ' 0.11− 0.14 neutrino emission proceeds via
the so called modified Urca (Chiu & Salpeter 1964)
processes with an additional nucleon in initial and final
states of Eq. (29). N + n −→ N + p + e + νe etc. where N = n, p is a

”spectator nucleon” ”Spectator nucleon” does not participate in
weak beta processes but only opens it via a momentum
transfer mediated by strong interactions. This strongly
suppresses the neutrino emission rate. If direct Urca
processes operate, then a non-superfluid neutron-star core
cools to 109 K in a minute, and to 108 K in a year. If they
are not allowed, the timescales will be one year and 105

years, respectively.
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Adiabatic index

Adiabatic index of the npeµ matter versus

baryon density for selected EOSs. All but

three EOSs are from Table 1, the remaining

ones are the EOSs of Wiringa et al. (1988).

Calculated using analytic fits of P (nb) to tabulated EOSs.

Adiabatic index characterizes the
stiffness of the EOS with respect to
density perturbations

γ =
nb

P

dP

dnb
=

P + E
P

dP

dE
. (31)

Calculated at fixed (frozen) composition
γ enters the speed of sound:

vs

c
=
(

dP

dE

)1/2

fr

=
(

γfrP

E + P

)1/2

.

(32)
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Hyperons in the inner core

physics of baryons - see, e.g., Perkins (2000). A presupernova core at the brink of a collapse contains
atomic nuclei (of the Fe-Ni group), alpha particles, free nucleons, electrons and
positrons, but not hyperons. However, a huge gravitational compression can
initiate the transformation of nucleons into hyperons, as soon as such
transformation lowers the energy density at a given nb. This process is mediated
by the strangeness-changing weak interaction and may become possible at
ρ & 2ρ0 (Cameron 1959; Ambartsumyan & Saakyan 1960; Salpeter 1960). Energy
density EB({nB}), where {nB} is a set of number densities of baryon species {B},∑

B

nB = nb . (33)

At baryon densities nb . 10 n0, relevant for neutron-star cores, it is sufficient to
consider the octet of lightest baryons (next page).
The electric charge density and the strangeness per baryon are given by

qb =
∑
B

nBQB , sb =
∑
B

nBSB/nb . (34)
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Table: 2. Masses, electric charges, strangeness, and e-folding (mean) lifetimes of the
baryon octet, measured in laboratory. The baryon number, spin, and parity of all these
baryons are 1, 1/2, and +1, respectively.

baryon name mc2 (MeV) Q (e) S τ (s)

p 938.27 1 0 > 1032

n 939.56 0 0 886

Λ0 1115.7 0 −1 2.6× 10−10

Σ+ 1189.4 1 −1 0.80× 10−10

Σ0 1192.6 0 −1 7.4× 10−20

Σ− 1197.4 −1 −1 1.5× 10−10

Ξ0 1314.8 0 −2 2.9× 10−10

Ξ− 1321.3 −1 −2 1.6× 10−10
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Hyperons in the inner core

Consider electrically neutral matter composed of baryons B (nucleons and
hyperons) and leptons ` (electron and muons) at a given baryon number density
nb ∑

B

nB = nb . (35)

Charge neutrality condition is∑
B

nBQB −
∑

`=e,µ

n` = 0 , (36)

where QB is the electric charge of a baryon B in units of e. The energy density
depends on the number densities of baryons {nB} and leptons (ne, nµ),
E = E({nB}, ne, nµ). The equilibrium state has to be determined by minimizing E
under the constraints given by Eqs. (35) and (36). To this aim, we will use the
method of Lagrange multipliers (see section on npeµ matter).
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In analogy with Eq. (14) we define the auxiliary energy density Ẽ

Ẽ = E + λb

(∑
B

nB − nb

)
+ λq

∑
B

QBnB −
∑

`=e,µ

n`

 . (37)

Let NB be the number of the baryon species. Minimizing Ẽ , we get a set of
NB + 2 equations

∂Ẽ/∂nB = µB + λb + λq QB = 0 (B = 1, . . . , NB), (38a)

∂Ẽ/∂n` = µ` − λq = 0 (` = e, µ), (38b)

where λb and λq are Lagrange multipliers and µj = ∂E/∂nj .

Pawe l Haensel (CAMK) EOS for compact stars - Lecture 2 IHP Paris, France 35 / 56



Thermodynamic equilibrium in hyperonic matter

Eliminating Lagrange multipliers, we get a system of NB relations for NB + 2
chemical potentials. We have two additional relations, Eqs. (35) and (36), so that
the total number of equations is equal to NB + 2. The relations involving the
chemical potentials of nucleons and leptons are equivalent to Eqs. (16) obtained
for the npeµ matter: µe = µµ, µn = µp + µe. However, we have now additional
equations which describe equilibrium with respect to weak interactions. The
equilibrium equations depend on QB . In our case QB = −1, 0, 1:

QB = −1 : µB− = µn + µe , (39a)

QB = 0 : µB0 = µn , (39b)

QB = +1 : µB+ = µn − µe . (39c)

The lightest baryons form an octet, containing nucleons and Λ, Σ, Ξ hyperons
(Table 2).

Pawe l Haensel (CAMK) EOS for compact stars - Lecture 2 IHP Paris, France 36 / 56



Thresholds for hyperons

One can calculate the threshold densities ρH of hyperons (H = Λ,Σ,Ξ) by
checking the threshold condition at various ρ. One can start at ρ = 0.5 ρ0, where
hyperons are certainly absent. Nevertheless, one can always calculate the
minimum increase of the energy of the matter produced by adding a single
hyperon H at a fixed pressure P . This can be done by considering the energy of
the matter with an admixture of given hyperons and by calculating numerically
the limit of the derivative

lim
nH−→0

(∂E/∂nH)eq ≡ µ0
H . (40)

To be specific, consider the lightest Λ hyperon. As long as µ0
Λ > µn, this hyperon

cannot survive because the system will lower its energy via an exothermic reaction
Λ + N −→ n + N . However, µn increases with growing nb and the functions
µ0

Λ(nb) and µn(nb) intersect at some nb = nΛ
c (the left panel in next slide). For

nb > nΛ
c , the Λ hyperons become stable in dense matter: their decay is blocked

by the Pauli principle (neutron, proton, and electron states are occupied).
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Threshold chemical potentials of neutral hyperons and neutron (left) and of negatively

charged hyperons and the sum µe + µn (right) versus baryon number density for model

C of Glendenning (1985). Vertical dotted lines mark the thresholds for the creation of

new hyperons; dashed lines show minimum enthalpies µ0
H of unstable hyperons before

the thresholds.
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Usually Λ is not the first one to appear in a neutron-star core, because Σ−

appears at lower density. This is visualized in figures on next three slides. The
threshold condition for the Σ− hyperon creation is

µ0
Σ− = µn + µe . (41)

µe adds to µn and the threshold condition is usually satisfied at lower density
(and at lower µn) than for Λ. However, this is not a strict rule, as one can see by
comparing the left and right panels of Fig. on the previous slide. The figure shows
also examples of the appearance of other hyperons (for Q = 0 and Q = −1).
Large µe may prohibit the appearance of Q = +1 hyperons in neutron-star cores.
For example, consider Σ+, the lightest positively charged hyperon. As follows
from the bottom line of Eqs. (39), the condition of its appearance is

µ0
Σ+ = µn − µe . (42)

The subtraction of µe can easily lead to µ0
Σ+ > µn − µe in dense matter, making

Σ+ unstable (because the process Σ+ + e → n + νe is exothermic). Accordingly,
Σ+ hyperons do not appear in neutron-star cores in some models. However, there
is no strict rule to forbid their presence.
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Fractions of particles xj = nj/nb versus baryon number density nb (in units of

n0 = 0.16 fm−3) calculated by Hanauske et al. (2001) for two relativistic models of

baryonic interactions. Left: Effective chiral model of Hanauske et al. (2001). Right:

Relativistic mean field model TM1 of Sugahara & Toki (1994).
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Particle fractions xj = nj/nb

versus nb as calculated by Vidana

et al. (2000) in the Brueckner

theory for two models of baryonic

interactions. Upper panel:

Nijmegen model E of Rijken et al.

(1999): only Σ− hyperon is present

in neutron-star cores. Lower panel:

APR model for the nucleon sector

(Table 1, Akmal et al. 1998) and

Nijmegen model E of Rijken et al.

(1999) for NH and HH interactions.

In contrast to the upper panel, Λ is

present in dense matter. Solid lines

in both panels: all baryon-baryon

(NN, NH, HH) interactions are

included. Dashed lines in the lower

panel: HH interaction is

(artificially) switched off.
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Effect of the three-body forces between nucleons on particle fractions xj = nj/nb in

dense matter; from Baldo & Burgio (2001). NNN forces in dense matter at ρ & 2− 3ρ0

are repulsive (in contrast to 3H, 3He,4He, and nuclear matter at ρ0 where they give an

additional binding of nucleons). Therefore NNN leads to lowering of threshold densities

for hyperons, compared with no NNN case.
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Direct Urca process in hyperon cores

Figures on the previous three slides show clearly that in the presence of hyperons
proton fraction xp = np/nb becomes very easily greater than 0.14, the triangle
condition pFn < pFp + pFe is satisfied, so that direct Urca process is open,
allowing for a very rapid neutrino cooling. Moreover, so called hyperon Urca
processes become easily open (Prakash et al. 1991). Examples of hyperon Urca
processes are

Σ− −→ n + e− + νe , Σ− −→ Λ0 + e− + νe , . . . (43)

However, neutrino emissivity from hyperon Urca processes is weaker than in the
direct Urca with nucleons only (because matrix elements for weak interactions
with strange baryons are smaller than for nucleons). Curiously, possibility of direct
Urca and hyperon Urca in hyperonic neutron star core was not considered
before 1991!
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Hyperon softening of the EOS

Softening of EOSs by the

presence of hyperons.

Each panel shows an EOS

with (thick line) and

without (thin line)

hyperons.Left: model EOSs of

Glendenning (1985). Right: the BGN1 and

BGN1H1 EOSs of Balberg & Gal (1997)

(labeled as in Table 1)

The formation of hyperons softens the EOS because high-energy neutrons are replaced

by more massive low-energy hyperons (producing lower pressure). The softening is a

generic effect independent of models of NH and HH interactions, as illustrated in the

figure above, but its magnitude is model-dependent.
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Adiabatic index for hyperonic matter

γ versus nb . Calculations for an

EOS of Glendenning (1985). γhyp -

hyperonic matter (vertical dotted

lines indicate thresholds for the

appearance of muons and

hyperons); γnuc corresponds to the

EOS in which the appearance of

hyperons is artificially forbidden.

From Haensel et al. (2002).

Adiabatic index defines the linear response of local pressure P to the local perturbation

of baryon number density, δP/P = γ × δnb/nb. If the perturbation is quasistatic, then

γ = nb
P ( dP

dnb
)eq = P+E

P ( dP
dE )eq .
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However, neutron star pulsations have periods ∼ 0.1 ms,
and therefore the hyperon matter is partially
off-equilibrium during pulsations, because full equilibration
requires weak processes which are too slow.

Notice: equilibration between Λ0 and Σ− is produced by
strong interaction, because n + Λ0 � Σ− + p is
sufficient (no leptons, no strangeness change). However,
other processes are so slow that γpuls > γeq. See Haensel
et al. (2002b).
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Problem with Mmax, NH, HH, and HHH forces

With vNH and vHH used for hypernuclei and for NH

scattering etc. one gets very often Mmax < 1.44 M� -
which contradicts observations. Also recently neutron star
mass was measured with M > 1.6 M� (at 97% confidence
level) in WD(=white dwarf)+NS binary (the central value
of NS mass is 2.1 M�!).

Maybe (unknown) HHH, NNH, NHH are sufficiently
repulsive to support M > 1.6 M� ? But if NH etc. are so
repulsive, then hyperons will have no chance to appear in
NS! =⇒ neutron star core have plain npeµ composition.
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Superluminal and ultrabaric equations of state

Bludman & Ruderman (1968,1970); Caporaso & Brecher (1979); Olsson (2000) Since the EOS at nb � n0

is very uncertain, it is important to impose
model-independent bounds. The basic requirement is that
any EOS should respect Lorentz invariance and causality.
These requirements can be formulated in different (and
not equivalent) ways. For instance, it has been claimed
that a physically correct EOS can be neither superluminal
nor ultrabaric, where

ultrabaric EOS: P > E ; (44)

superluminal EOS: dP/ dE > 1 . (45)

An excited medium can be superluminal without breaking Lorenz invariance.
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Selected model EOSs of

neutron-star cores (denoted as in

Table 1). Filled circles show

maximum densities in stable

neutron stars, while asterisks

indicate the densities above which

EOSs are superluminal (vs > c).

Superluminal beyond a point indicated by an asterisk: BGN2, SLy. For the SLy EOS, the

superluminality occurs at densities which are not realized in stable neutron stars. BGN2:

most massive neutron stars have a superluminal central core with vs > c. Both EOSs are

derived within a non-relativistic many-body theory - superluminality results from the lack

of Lorentz invariance.
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Effect of baryon superfluidity on the EOS

nn = k3
F/3π2, E - energy density. For neutron matter nn = nb. Critical

temperatures are Tc ∼ 109−1010 K, superfluidity occurs soon after the neutron
star birth (about one year if direct Urca processes are not allowed). Consider the
simplest model of a superfluid neutron gas and use the Bardeen-Cooper-Schrieffer
(BCS) model with an isotropic 1S0 neutron pairing (see, e.g., §51 of Fetter &
Walecka 1971). T � Tc =⇒ ∆(T ) ' ∆(0) ≡ ∆0, where ∆0 ≈ 1.76 kB Tc. Gain
in E

En − Es =
mkF

4π2~2
∆2

0 , (46)

The relative change in E resulting from superfluidity is therefore

En − Es

En
=

5
8

(
∆0

εF

)2

≈ 1.83× 10−4

(
∆0

MeV

)2(
n0

nb

)2/3

, (47)

where εF is the neutron Fermi energy. One can also show that
Pn − Ps = −En + Es. For gaps ∆ . 1 MeV, the relative effect of superfluidity on
the EOS at supranuclear density is less than 10−4−10−2.
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Effect of strong magnetic field on the EOS

Magnetic field strongly affects the EOS if particles occupy only a few lowest energy
Landau states. Otherwise, the effects of the magnetic field on the EOS are minor.
Most affected by B are electrons. Pe significantly affected if

B & (3.8× 1019 G) (xenb/fm−3)2/3, (48)

where xe is the number of electrons per baryon. We have nb ∼ 3n0 ≈ 0.5 fm−3,
xe ∼ 0.05 =⇒ Pe affected if B & 3× 1018 G. However, Pe � PN .
One can easily generalize Eq. (48) for other fermions (µ-mesons, nucleons). In
this case, xe should be replaced by the number of given particles per baryon, and
the right-hand side should be multiplied by mµ/me = 206.77 (muons) and ∼ 103

(protons). Accordingly, the nucleon pressure of the npeµ gas in the core cannot be
affected by a magnetic field unless B & 1021 G - but such fields in neutron stars
are out of question (hydrostatic equilibrium impossible!) Conclusion: effects of
B become important well above maximum allowable Bmax(NS) = 1018 G.
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Speculations - meson condensates, quark matter cores

Meson condensations, quark deconfinement could lead to
phase transitions in the inner neutron star core

hadronic Bose-Einstein condensation

A B-E condensate does not contribute to pressure (macroscopic occupation of a
single quantum state).

π-condensation Migdal 1972, Sawyer 1972, Scalapino 1972

K-condensation Kaplan & Nelson 1986

Question: do they occur at all?

quark deconfinement

Collins & Perry 1975 Simplicity of the EOS for ρ −→∞ - free Fermi gas of quarks -
results from the Asymptotic Freedom property of QCD.

Question: does it occur at ρ < ρc,max?

Generic effect: softening of the EOS =⇒ decrease of Mmax
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Speculations - Quark Stars

Strange matter hypothesis Self-bound state of quark matter - true
ground state of hadronic matter Bodmer 1971; Terasawa 1979; Witten 1984

quark stars = strange stars Haensel et al. 1986, Alcock et al. 1986

huge bags containing ∼ 1058 u− d− s quarks

EOS P ' ac2ρ−B = ac2(ρ− ρs) , a = 0.3− 0.5

quark matter at the surface
ρs = ρ(R) ' B/ac2 ∼ 1015 g cm−3

B = EQCD
vac − Eour

vac

Mmax ∝ ρ
−1/2
s ∝ B−1/2

for “experimental” B one gets Mmax ∼ 2 M�
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Speculations: abnormal matter, Q-stars, . . .

Abnormal matter. A superdense self-bound state of huge binding
energy, in which nucleons become ≈ massless Lee & Wick 1974

Q-stars Bahcall et al. 1991

A solution for the ground state of hadronic matter, with a self-bound state of
large binding energy, which could have subnuclear energy density! Q-stars of small
ρs ∼ 5× 1013 g cm−3. Are we really so ignorant about the actual structure of
matter at ρ ∼ 1013 g cm−3?

It is easy to see that ”sensationally high” Mmax ∼ 10M� are just a simple
consequence of nearly maximally stiff EOS of Q-stars P ≈ ac2(ρ− ρs) , with
a ≈ 1, combined with ρ ∼ 1013 g cm−3.

We have a scaling Mmax ≈ 3M� × (ρs/5× 1014 g cm−3)−1/2 (write hydrostatic
equilibrium for Q-stars in dimensionless form, and you get this scaling; see Shapiro
& Teukolsky 1983) so that: ρs ∼ 5× 1013 g cm−3 =⇒ Mmax ∼ 9 M�
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Measured masses - summary 2006

Rotation: Pmin = 1.4 ms
(716Hz) Increases Mmax by
∆Mmax ∼ 3%. Static
approximation is OK.

Condition on EOS:
Mmax(EOS) > Mmax

obs

Haensel, Potekhin, & Yakovlev

2007 −→
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What do we get from NS mass measurements in October 2006?

Very precise neutron star masses in three NS-NS binaries with a radio pulsar
and in one binary with two pulsars. Hulse - Taylor pulsar still the most
massive. Evolutionary bias =⇒ not helpful to constrain EOS.

NS-WD are promising, and their number will increase rapidly. Different
formation than that of NS-NS. Significant accreted mass. PSR J0751+1807
2.1+0.4

−0.5 M� Luck needed ...

Three X-ray binaries: Cyg X-2, Vela X-1, 4U 1700-37 contain good
candidates for high-mass (∼ 2M�) neutron stars. If only the errors could be
lower ...

If 2.1 M� is confirmed then hyperons and phase
transitions seem to be unlikely, while most realistic
“minimal model” (npeµ) survives. Is Nature so
simple?
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