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Introduction

Late Inspiral and Merger Epochs of ICB (NS or BH) are
the most important sources for LI GW Detectors like
LIGO and VIRGO.

The waveform is a chirp
Amplitude and Frequency increasing with Time

GW are WEAK SIGNALS buried in NOISE of detector

Require Matched Filtering (MF) Both for their Detection
or Extraction and Parameter Estimation

Success of MF requires
Accurate model of signal using Gen Rel;

Favours sources like ICB (NS-NS, BH-BH, NS-BH)
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Chirp, Matched Filtering

From Anand Sengupta (IUCAA)
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Stages of Binary Coalescence

Inspiral: well modelled by PN Approx methods in the
general two body case (3.5PN) and Pertbn Methods in
the test body approximation (5.5PN)

nPN means corrections of order (v2/c2)n relative to
leading order

Late Inspiral, Plunge: Extended approximation methods
like EOB (2PN/3PN)

Merger: Fully GR Soln of EE - Numerical Relativity

QNM Ringdown: BH Pertbn Theory

This Study is restricted to inspiral phase
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Standard Approach to Phasing

Grav Radn Reaction reduces eccentricity so that ICB
move in (quasi) circular orbits in the late epochs

Work in the Adiabatic Approximation:

ω̇orb/ω
2
orb � 1

Change in Orbital Frequency small compared to
Orbital frequency; Adiabatic Inspiral

Circular orbit may be characterised by a PN conserved
Energy

Inspiral characterised by the associated PN GW
Luminosity
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Standard ... Contd

GW Phasing follows from the Balance Eqn

Ė(v) = −F(v)

v =

(
Gmωorb

c3

)1/3

GW polarisations

h+,× =
2Gµ

c2R
v2 × {H(0)

+,× + vH
(1/2)
+,× + · · · + v5H

(5/2)
+,× }

H
(0)
+ = −(1 + c2

i ) cos 2φ,

H
(0)
× = −2ci sin 2φ, · · ·
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Newtonian Phasing Formula

Use E, the CM energy at Newtonian order and L, GW
luminosity or energy flux

E = −1

2
µc2x

L =
32

5

c5

G
ν2x5

c5

G
≈ 3.63 × 1052 W,

and heuristic Energy Balance equation

dE

dt
= −L.
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N Phasing ...Contd..

x(t) =
1

4
τ−1/4

τ =
c3ν

5Gm
(tc − t)

φ =

∫
ωdt = −5

ν

∫
x2/3dτ

Number of GW cycles N left until coalescence starting
at some frequency ω

N =
φc − φ

π
=

1

32πν
x−5/2

∝ (v/c)−5 (inverse of (v/c)5 the RR order)

BRI-IHP06-III – p.8/103



N Phasing ... Contd

∼ 16000 cycles for NS-NS binaries

Matched filtering requires accuracy to about fraction
of a cycle.

Formally (and detailed DA), indicate that one needs to
go to relative order 2.5PN or 3PN in L to achieve the
required accuracy.
(Damour, BRI, Sathyaprakash - 1998, 2000, 2001, 2002)
(Damour, BRI, Jaranowski, Sathyaprakash - 2003)
(Buonanno, Chen, Vallisneri - 2003)
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Current Status

Templates in Test Mass Limit: 5.5PN
Tanaka, Tagoshi, Sasaki (1996)

Templates: Phase - 3.5PN (2004)
Blanchet, G. Faye, BRI, Joguet (2002)
Blanchet, Damour, Esposito-Farese, BRI (2004)

Templates: Amplitude - 2.5PN (2004)
K. Arun, L. Blanchet, BRI and Moh’d S.S. Qusailah

Restricted Wave Approximation: Phase at best PN accuracy;
Amplitude Newtonian; Dominant Harmonic at Twice Orbital
Frequency

h(t) =
4Aηm

D
v2(t) cos[ϕ(t) + ϕC ],

Full Waveform - Fourier Domain -SPA
2.5 PN Amplitude, 3.5 PN Phase
Van Den Broeck and Sengupta 05, 06
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PART I

Comparison of Search Templates for GW from Binary
Inspiral

Based on

T. Damour, B.R. Iyer and B S Sathyaprakash
Phys. Rev. D 63, 044023 (2001)



GWDA Problem

In searching for GW from ICB one is faced with the following data
analysis problem: We have some (unknown) exact GWF hX(t;λk)

where λk, k = 1, . . . , nλ, are the parameters of the signal (e.g.,
masses m1 and m2). We have theoretical calculations of the motion
and gravitational radiation from binary systems consisting of (NS) or
(BH) giving the PN expansions of an energy function E(x ≡ v2),

which is related to the total relativistic energy Etot via
Etot = (m1 +m2)(1 +E), and a GW luminosity (or “flux”) function
F(v). The dimensionless argument v ≡ x

1
2 is an invariantly defined

“velocity” related to the instantaneous GW frequency F (= twice
the orbital frequency) by v ≡ (πmF )

1
3 .

Given PN expansions of the motion of and grav radn from a binary
system, one needs to compute the “phasing formula”, i.e. an
accurate mathematical model for the evolution of the GW phase
[within the “restricted” waveform approximation which keeps only
the leading harmonic in the GW signal] φGW = p[t;λi], involving the
set of parameters {λi} carrying information about the emitting
binary system. BRI-IHP06-III – p.11/103



Phasing formula - Adiabatic Approx

In the adiabatic approximation the phasing formula is easily derived
from the energy and flux functions. Standard energy-balance
equation dEtot/dt = −F gives the following parametric
representation of the phasing formula:

t(v) = tref +m

∫ vref

v

dv
E′(v)

F(v)
, φ(v) = φref + 2

∫ vref

v

dvv3 E
′(v)

F(v)
,

tref and φref are integration constants and vref an arbitrary reference
velocity.

From the view point of computation more efficient to work with the
following pair of coupled, non-linear, ordinary differential equations
(ODE’s) that are equivalent to the above parametric formulas:

dφ

dt
− 2v3

m
= 0,

dv

dt
+

F(v)

mE′(v)
= 0.

For massive systems, adiabatic approximation fails and one must
replace the two ODE’s by a more complicated ODE system. BRI-IHP06-III – p.12/103



T -approximants

Denote by ETn and FTn the nth-order. “Taylor” approximants
(as defined by the PN expansion) of the energy and flux functions.
(Label n refers to an approximant accurate up toa
vn = x(n/2) included)

ET2n(x) ≡ EN (x)

n∑

k=0

Êk(η)x
k,

FTn(x) ≡ FN (x)

[
n∑

k=0

F̂k(η)vk +

n∑

k=6

L̂k(η) log(v/v0)v
k

]
,

where, EN (x) = −1

2
ηx, FN (x) =

32

5
η2x5.

Subscript N denotes the “Newtonian value”, η ≡ m1m2/m
2 the

symmetric mass ratio, and v0 is a fiducial constant to be chosen
below.
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T -approximants

In the test mass limit, i.e. η → 0, E(x) is known exactly, from which the
Taylor expansion of ETn(v, 0), can be computed to all orders. In the
η → 0 limit, the exact flux is known numerically and the Taylor
expansion of flux is known up to order n = 11

(Poisson 93, Tanaka et al 96).

For η finite, the above Taylor approximants are known up to
seven-halves PN order, i.e. n = 7. (Damour, Jaranowski, Schäfer;
Blanchet, Faye, Iyer, Joguet; Blanchet, Damour, Esposito-Farese, Iyer)

Problem is to construct a sequence of approximate waveforms
hAn (t;λk), starting from the PN expansions of E(v) and F(v). In formal
terms, any such construction defines a map say T from the set of
the Taylor coefficients of E and F into the (functional) space of
waveforms

(ETn , FTn)
T→ hTn (t, λk) ,

obtained by inserting the successive Taylor approximants into the
phasing formula. For brevity, refer to these “Taylor” approximants as
“ T-approximants”.
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T -approximants

Beware: Even within this Taylor family of templates, there are at least
three ways of proceeding further, leading to the following three
inequivalent constructs:
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Taylor T1 Approximant

To compute v(t) and φ(t);
Std approach to Evoln of the GWF under RR:
Adiabatic approximation;
Cutler et al (1993)

E and F given as PN Expansions in v

Use E and F both to same relative PN order

Phasing of GW given by following coupled ODE

dϕ

dt
=

2v3

m
,

dv

dt
= − F(v)

mE′(v)
,

E′(v) = dE(v)/dv; m = m1 + m2

Retain the rational polynomial FTn/ETn as it appears above

Integrate the two ODE’s numerically.

Denote the phasing formula so obtained as φ
(1)
Tn

(t) :
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Taylor T2-approximants

Re-expand the rational function FTn/ETnappearing in the phasing
formula and truncate it at order vn,

The integrals can be worked out analytically, to obtain a parametric
representation of the phasing formula in terms of polynomial
expressions in the auxiliary variable v

φ
(2)
Tn

(v) = φ
(2)
ref + φvN (v)

n∑

k=0

φ̂vkv
k, t

(2)
Tn

(v) = t
(2)
ref + tvN (v)

n∑

k=0

t̂vkv
k,

The superscript on the coefficients (eg. φv1) indicates that v is the
expansion parameter

The coefficient of φvk include in some cases, a log v dependence
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Taylor T3-approximants

Alternatively, the second of the polynomials in Eq. ( t as fn of v) can
be inverted to obtain a polynomial for v in terms of t

This can be substituted in φ(2)(v) to arrive at an explicit time-domain
phasing formula

φ
(3)
Tn

(t) = φ
(3)
ref + φtN

n∑

k=0

φ̂tkθ
k, F

(3)
Tn

(t) = F tN

n∑

k=0

F̂ tkθ
k,

θ = [η(tref − t)/(5m)]−1/8 and F ≡ dφ/2πdt = v3/(πm) is the
instantaneous GW frequency.

The coefficients in these expansions are all listed in DIS
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Padé Re-Summation

Padé re-summation, is a standard mathematical technique used to
accelerate the convergence of poorly converging power series.

Let Sn(v) = a0 + a1 v + · · · + an v
n be a truncated Taylor series.

A Padé approximant of the function whose Taylor approximant to
order vn is Sn is defined by two integers m, k such that m+ k = n.
If Tn[· · ·] denotes the operation of expanding a function in Taylor
series and truncating itto accuracy vn (included), the Pmk Padé
approximant of Sn is defined by

Pmk (v) =
Nm(v)

Dk(v)
; Tn[P km(v)] ≡ Sn(v),

Nm and Dk are polynomials in v of order m and k respectively. If one
assumes that Dk(v) is normalised so that Dk(0) = 1; i.e.
Dk(v) = 1 + q1 v + · · ·, one shows that Padé approximants are
uniquely defined by Eq. above. Most useful Padé approximants are
the ones near the “diagonal”, m = k, i.e. Pmm if n = 2m is even, and
Pm+1
m or Pmm+1 if n = 2m+ 1 is odd.
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Padé Re-Summation

We shall use the diagonal (Pmm ) and the “sub-diagonal” (Pmm+1)
approximants which can be conveniently written in a continued
fraction form. For example, given S2(v) = a0 + a1 v + a2 v

2 one looks
for

P 1
1 (v) =

c0
1 + c1v

1+c2v

=
c0(1 + c2v)

1 + (c1 + c2)v
.

A convenience of this form is that the n-th continued-fraction
coefficient cn depends only on the knowledge of the PN coefficients
of order ≤ n.

The continued fraction Padé coefficients of a series containing six
terms, i.e. S5(v), are given by

c0 = a0, c1 = −a1

a0
, c2 = −a2

a1
+
a1

a0
, c3 =

a0(a1a3 − a2
2)

a1(a2
1 − a2a0)

c4 = − c0c1(c2 + c1)
3 + c0c1c2c3(c3 + 2c2 + 2c1) − a4

c0c1c2c3
,

c5 = − ((c2 + c1)
2 + c2c3)

2

c2c3c4
− (c4 + c3 + c2 + c1)

2

c4
− a5

c0c1c2c3c4
.
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P - Approximants

Proposal: Re-sum the Taylor expansions (in powers of v) of the
energy and flux functions.

Starting from the PN expansions of E and F , construct a new class
of waveforms, called P-approximants, based on two essential
ingredients:

(i) the introduction, on theoretical grounds, of two new, supposedly
more basic and hopefully better behaved, energy-type and
flux-type functions, say e(v) and f(v), and

(ii) the systematic use of Padé approximants (instead of
straightforward Taylor expansions) when constructing successive
approximants of the intermediate functions e(v), f(v). Schematically,
our procedure is based on the following map, say “P”:

(ETn ,FTn) → (eTn , fTn) → (ePn , fPn) → (E[ePn ],F [ePn , fPn ]) → hPn (t, λk).
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P - Approximants

The new energy function e(x), where x ≡ v2, is constructed out of
the total relativistic energy Etot(x) using

e(x) ≡
(
E2

tot −m2
1 −m2

2

2m1m2

)2

− 1.

Function E(x) entering the phasing formulas is the total energy per
unit mass after subtracting out the rest mass energy:
E(x) = [Etot(x) −m]/m and is given in terms of e(x) by

E(x) =
[
1 + 2η

(√
1 + e(x) − 1

)]1/2
−1,

dE

dx
=

ηe′(x)

2 [1 +E(x)]
√

1 + e(x)
.

Note that the quantity E′(v), needed in the phasing formula, is
related to dE(x)/dx via E′(v) = 2vdE(x)/dx. In the test-mass limit e(x)
and dE(x)/dx are known exactly:

eη=0(x) = −x1 − 4x

1 − 3x
, Eη=0(x) = η

(
1 − 2x√
1 − 3x

− 1

)
,
dEη=0

dx
= −η

2

(1 − 6x)

(1 − 3x)3/2
.
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P - Approximants

The rationale for using e(x) as the basic quantity rather than Etot(x)

are the following two points:

(1) In the test mass case e(x) is meromorphic in the complex
x-plane, with a simple pole singularity, while the function E(x) is
non-meromorphic and exhibits a branch cut.

(2) Secondly, in the test mass case, the Padé approximant of
eT2n(x), for n ≥ 2, yields the known exact expression including the
location of the lso and the pole. Therefore, the function e(x) is more
suitable in analyzing the analytic structure than is E(x).

In the comparable mass case, under the assumption of structural
stability between the case η → 0 and the case of finite η, one can
expect the exact function e(x) to admit a simple pole singularity on
the real axis ∝ (x− xpole)

−1. We do not know the location of this
singularity, but Padé approximants are excellent tools for giving
accurate representations of functions having such pole singularities.
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P - Approximants

Proposal: Given some usual Taylor approximant to the normal
energy function, ET2n = − 1

2
η x (1 +E1 x+ E2 x

2 + · · · +En x
n), one

first computes the corresponding Taylor approximant for the e

function, say

eT2n(x) = −x
n∑

k=0

ekx
k.

Then, one defines the Padé approximant of eT2n(x) More precisely,
eP2n(x) is −x times the Padé approximant of −x−1eT2n(x).)

eP2n (x) ≡ −xPmm+ε

[
n∑

k=0

ek x
k

]

ε = 0 or 1 depending on whether n ≡ 2m+ ε is even or odd. We shall
call the continued fraction Padé coefficients of eP2n as c1, c2, · · · ,
(Note that c0 ≡ 1). They are given in terms of ek.
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P - Approximants

Given a continued fraction approximant eP2n(x) of the truncated
Taylor series eT2n of the energy function e(x) the corresponding
EP2n(x) and dEP2n(x)/dx functions are obtained using earlier
formulas by replacing e(x) on the right hand side with eP2n(x).

Apart from using it to improve the convergence of the PN series, it is
proposed to use the Padé-resummed function eP2n(x) to determine
the location of the lso, the Padé estimates of the lso being defined
by considering the minima of eP2n(x). In contrast, in the Taylor case
one must, for consistency, use the minima of ETn(v) to define the
locations of the lso.

One can check that in the test mass case this Padé-based method
yields the exact result at orders v4 and beyond while the
corresponding Taylor-based method [considering the minima of
ETn(v)] gives unacceptably high estimates of vlso, i.e. of the GW
frequency at the lso . In the finite η case, the Padé-resummed
predictions are in good qualitative, (and reasonable quantitative)
agreement with the more recent predictions based on the
“effective-one-body” approach. BRI-IHP06-III – p.25/103



P - Approximants

Having defined a new energy function, introduce a new flux
function. The aim is to define an analytic continuation of the flux
function to control its analytic structure as also to handle the
logarithmic terms that appear in the flux function. Factoring out the
logarithmic terms is what allows us to use standard Padé techniques
effectively in this problem.

It has been pointed out that the flux function in the test mass case
F(v; η = 0) has a simple pole at the light ring v2 = 1/3. It has been
argued that the origin of this pole is quite general and that even in
the case of comparable masses we should expect to have a pole
singularity in F . However, as already pointed out, the light ring orbit
in the η 6= 0 case corresponds to a simple pole xpole(η) in the new
energy function e(x; η). Let us define the corresponding (invariant)
“velocity” vpole(η) ≡

√
xpole(η). This motivates the introduction of the

following “factored” flux function, f̂(v; η)

f̂(v; η) ≡ (1 − v/vpole) F̂(v; η).

F̂(v) ≡ F(v)/FN (v) = 5F(v)/(32η2v10), is the Newton-normalised flux.BRI-IHP06-III – p.26/103



P - Approximants

Multiplying by 1 − v/vpole rather than 1 − (v/vpole)
2 has the

advantage of regularizing the structure of the Taylor series of f̂(v)

introducing a term linear in v, which is absent in the flux function.

Three further inputs will allow us to construct better converging
approximants to f̂(v).

First, it is clear (if we think of v as having the dimension of a velocity)
that one should normalize the velocity v entering the logarithms in
the flux function to some relevant velocity scale v0. In the absence
of further information the choice v0 = vlso(η) seems justified (the
other basic choice v0 = vpole is numerically less desirable as v will
never exceed vlso and we wish to minimize the effect of the
logarithmic terms).

A second idea, to reduce the problem to a series amenable to
Padéing, is to factorize the logarithms. This is accomplished by
writing the f̂ function in the form
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P - Approximants

f̂Tn(v; η) =

(
1 +

n∑

k=6

l̂kv
k ln

v

vlso

)(
n∑

k=0

f̂kv
k

)
,

Coefficients f̂k are f̂0 = 1, f̂k+1 = F̂k+1 − F̂k/vpole and l̂k are constants
determined from the coefficients of F̂k. Variables are ‘hatted’ here as a
reminder that they represent coefficients of Newtonian-normalised
quantities.

Finally, we define Padé approximants to the factored flux function
f̂(v) as

f̂Pn(v; η) ≡
(

1 +

n∑

k=6

l̂kv
k ln

v

vPn
lso (η)

)
Pmm+ε

(
n∑

k=0

f̂kv
k

)
,

vPn
lso (η) denotes the lso velocity (≡ √

xlso) for the vn-accurate Padé
approximant of e(x), and where Pmm+ε denotes as before a diagonal
or sub-diagonal Padé with n ≡ 2m+ ε, ε = 0 or 1.
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P - Approximants

The corresponding approximant of the flux F̂(v) is then defined as

F̂Pn(v; η) ≡
(

1 − v

vPn
pole(η)

)−1

f̂Pn(v; η),

vPn
pole(η) denotes the pole velocity defined by the vn-Padé of e(x). In

the test mass case the exact location of the pole and the lso are
xpole = 1/3 and xlso = 1/6, respectively. We shall denote the
continued fraction Padé coefficients of f̂Pn(v) by dk.
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Frequency-domain phasing- Adiabatic Approx

Frequency-domain phasing uses the usual stationary phase
approximation for chirp signals. Consider a signal of the form,

h(t) = 2a(t) cosφ(t) = a(t)
[
e−iφ(t) + eiφ(t)

]
,

φ(t) is the implicit solution of one of the phasing formulas in the
phasing eqn for some choice of functions E′ and F .

Quantity 2πF (t) = dφ(t)/dt defines the instantaneous GW frequency
F (t), and is assumed to be continuously increasing. (We assume
F (t) > 0.) Fourier transform h̃(f) of h(t) is defined as

h̃(f) ≡
∫

∞

−∞

dte2πifth(t) =

∫
∞

−∞

dt a(t)
[
e2πift−φ(t) + e2πift+φ(t)

]
.

Above transform can be computed in the SPA. For positive
frequencies only the first term on the right contributes and yields the
following usual SPA:

h̃uspa(f) =
a(tf )√
Ḟ (tf )

ei[ψf (tf )−π/4], ψf (t) ≡ 2πft− φ(t),
BRI-IHP06-III – p.30/103



Frequency-domain phasing- Adiabatic Approx

tf is the saddle point defined by solving for t, dψf (t)/dt = 0, i.e. the
time tf when the GW frequency F (t) becomes equal to the Fourier
variable f . In the (adiabatic) approximation, the value of tf is given
by the following integral:

tf = tref +m

∫ vref

vf

E′(v)

F(v)
dv,

vf ≡ (πmf)1/3. Using tf from the above equation and φ(tf ) one finds
that

ψf (tf ) = 2πftref − φref + 2

∫ vref

vf

(v3
f − v3)

E′(v)

F(v)
dv.

Big computational [with respect to its time-domain counterpart]
advantage, is that, in the frequency domain, there are no equations
to solve iteratively; the Fourier amplitudes are given as explicit
functions of frequency.

In the Fourier domain too there are many inequivalent ways in which
the phasing ψf can be worked out. The most popular being
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F1 - Approximant

Substitute (without doing any re-expansion or re-summation) for the
energy and flux functions their PN expansions or the P-approximants
of energy and flux functions and solve the integral in Eq. numerically
to obtain the T-approximant SPA or P-approximant SPA, respectively.
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F2 - Approximant

Use PN expansions of energy and flux but re-expand the ratio
E′(v)/F(v) in Eq. in which case the integral can be solved explicitly.
This leads to the following explicit, Taylor-like, Fourier domain phasing
formula:

ψf (tf ) = 2πftref − φref + τN

5∑

k=0

τ̂k(πmf)(k−5)/3

τ̂k are the chirp parameters listed in the paper. The latter is one of
the standardly used frequency-domain phasing formulas. Therefore,
one uses that as one of the models in our comparison of different
inspiral model waveforms. Refer to it as “type-f2” frequency-domain
phasing.

Just as in the time-domain, the frequency-domain phasing is most
efficiently computed by a pair of coupled, non-linear, ODE’s:

dψ

df
− 2πt = 0,

dt

df
+
πm2

3v2

E′(f)

F(f)
= 0,

rather than by numerically computing the integral in Eqs. BRI-IHP06-III – p.33/103



Edge corrections...

One can correct the performance of the usual SPA by including
edge corrections arising as a consequence of modeling the
time-domain signal as being abruptly terminated at a time t = tmax

(time-truncated chirp) when the GW frequency reaches F = Fmax.

In practice, we expect that Fmax will be of order the GW frequency
at the lso. However, we prefer to leave unspecified the exact value
of Fmax. The idea is to use Fmax as a free model parameter, to be
varied so as to maximize the overlap between the tmax-truncated
template and the real signal. Such time-truncated signals can be
represented as:

h(t) = 2a(t) cosφ(t)θ(tmax − t),

θ denotes the Heaviside step function, i.e. θ(x) = 0 if x < 0 and
θ(x) = 1 when x ≥ 0.

Effect of this time-windowing has been modeled in DIS2 and the
result is that the Fourier transform of such a time-truncated signal
can be accurately represented in the two regions f ≤ Fmax and
f ≥ Fmax, by using complementary error function erfc BRI-IHP06-III – p.34/103



Time-domain - Beyond Adiabatic Approx

In the standard “adiabatic approximation”, one estimates the
phasing by combining the energy-balance equation dEtot/dt = −F
with some Taylor or resummed estimates for the energy and flux as
functions of the instantaneous circular orbital frequency.

Buonnano and Damour, 2000 introduced a new approach to GW
from coalescing binaries which is no longer limited to the adiabatic
approximation, and which is expected to describe rather
accurately the transition between the inspiral and the plunge, and
to give also a first estimate of the following plunge signal.

The approach is essentially a re-summation technique which
consists of two main ingredients:

(i) the “conservative” (damping-free) part of the dynamics
(effectively equivalent to the specification of the E(v) in the previous
approaches) is resummed by a new technique which replaces the
two-body dynamics by an effective one-body dynamics and
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Time-domain - Beyond Adiabatic Approx

(ii) the “damping” part of the dynamics [equivalent to the
specification of the F(v)] is constructed by the re-summation
technique discussed earlier.

Time-domain waveform is obtained as the following function of the
reduced time t̂ = t/m:

h(t̂) = C v2
ω(t̂) cos(φGW(t̂)) , vω ≡

(
dϕ

dt̂

) 1
3

, φGW ≡ 2ϕ .

Orbital phase ϕ(t̂) entering Eq. is given by integrating a system of
ODE’s:

dr

dt̂
=
∂Ĥ

∂pr
(r, pr, pϕ) ,

dϕ

dt̂
= ω̂ ≡ ∂Ĥ

∂pϕ
(r, pr, pϕ) ,

dpr

dt̂
+
∂Ĥ

∂r
(r, pr, pϕ) = 0 ,

dpϕ

dt̂
= F̂ϕ(ω̂(r, pr, pϕ)) . BRI-IHP06-III – p.36/103



Time-domain - Beyond Adiabatic Approx

Reduced Hamiltonian Ĥ (of the associated one-body problem) is
given, at the 2PN approximation, by

Ĥ(r, pr, pϕ) =
1

η

√√√√1 + 2η

[√
A(r)

(
1 +

p2
r

B(r)
+
p2
ϕ

r2

)
− 1

]
,

where A(r) ≡ 1 − 2

r
+

2η

r3
, B(r) ≡ 1

A(r)

(
1 − 6η

r2

)
.

3PN version of Ĥ is also available in Damour, Jaranowski and Schäfer
and its DA implication in Damour, Iyer, Jaranowski, Sathyaprakask

Damping force Fϕ is approximated by

F̂ϕ = − 1

ηv3
ω
FPn(vω) ,

FPn(vω) = 32
5
η2 v10

ω F̂Pn(vω) is the flux function used in
P-approximants.
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Time-domain - Beyond Adiabatic Approx

System allows one to describe the smooth transition which takes
place between the inspiral and the plunge. When the system
becomes spuriously singular at the lso, where E′(vlso) = 0 Buonnano
Damour advocated to continue using Eqs. after the transition, to
describe the waveform emitted during the plunge and to match
around the “light ring” to a “merger” waveform, described, in the
first approximation, by the ringing of the least-damped quasi-normal
mode of a Kerr black hole.

Technique is the most complete which is available at present. It
includes (in the best available approximation and for non-spinning
black holes) most of the correct physics of the problem, and leads
to a specific prediction for the complete waveform (inspiral +
plunge + merger) emitted by coalescing binaries. Because of its
completeness, we use it as our “fiducial exact” waveform in our
comparison between different search templates.

Initial data needed in computing this effective one-body waveform
are as follows:
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Time-domain - Beyond Adiabatic Approx

In GWDA we are normally given an initial frequency f0 (ω̂0 ≡ πmf0)
corresponding to the lower cutoff of a detector’s sensitivity window,
at which to begin the waveform. The initial phase of the signal will
not be known in advance but in order to gauge the optimal
performance of our approximate templates we maximise the
overlap over the initial phases of both the fiducial exact signal (EOB
WF) and the approximate template. In the terminology of DIS, these
fully phase-maximised overlaps are called the best overlaps.

There are two distinct measures of the closeness of two signals: the
best overlap (maximised over phases of both the template and the
exact signal), and the minimax overlap (maximised over the
template phase, with the worst possible exact phase).

In this investigation (where we are interested in the optimal
mathematical closeness between different signals), the best overlap
is the mathematically cleanest measure of closeness of two families
of templates In addition, we shall also maximise over the other
template parameters (in particular, the masses) to get an intrinsic
measure of the closeness of two families of templates. BRI-IHP06-III – p.39/103



Time-domain - Beyond Adiabatic Approx

Note that the resulting fully maximised overlaps are different from
the maximised ambiguity function of Sathyaprakash and
Dhurandhar and the fitting factor of Apostolatos. The latter
(identical, but given different names by different authors) quantities
are well-defined measures of the closeness of two signals only within
the (simplifying) approximation where signals in quadrature are
orthogonal. This is, however, not the case for the signals we consider,
and at the accuracy at which we are working.

For the computation of the best overlaps, it is sufficient to construct
two signal waveforms, and two template waveforms, one with
phase equal to 0 and another with phase equal to π/2.
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Time-domain - Beyond Adiabatic Approx

Rest of the initial data (r0, p0r, p
0
ϕ) are found using

r30

[
1 + 2η(

√
z(r0) − 1)

1 − 3η/r20

]
− ω̂−2

0 = 0, p0ϕ =

[
r20 − 3η

r30 − 3r20 + 5η

]1/2

r0,

p0r =
Fϕ(ω̂)

C(r0, p0ϕ)(dp0ϕ/dr0)

z(r) and C(r, pϕ) are given by

z(r) =
r3A2(r)

r3 − 3r2 + 5η
, C(r, pϕ) =

1

ηĤ(r, 0, pϕ)
√
z(r)

A2(r)

(1 − 6η/r2)
.

Plunge waveform is terminated when the radial coordinate attains the value
at the light ring rlr given by the solution to the equation,

r3lr − 3r2lr + 5η = 0.

Subsequent “merger” waveform is constructed as in Buonanno and Damour
2000.
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Overlaps

An important yardstick for comparing different waveforms is
the overlap: Given two waveforms h and g their overlap is
defined as

O(h, g) =
〈h, g〉

〈h, h〉1/2 〈g, g〉1/2
.

Scalar product 〈, 〉 is defined as

〈h, g〉 = 2

∫ ∞

0

df

Sh(f)
h̃(f)g̃∗(f) + C.C.

C.C. denotes complex conjugation and Sh(f) is the
one-sided detector noise spectral density
(Sone−sided

h = 2Stwo−sided
h )
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Overlaps

Overlaps greater than 96.5% indicate a good approximation
(Only 10% Loss in Events)

SNR when detecting an “exact” signal X by means of a
bank of templates A:

ρ ≡ S

N
=

|〈A, X〉|
〈A, A〉1/2

= |O(A, X)|〈X, X〉1/2.
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Faithfulness

Faithfulness: Overlap of A(t) with X(t) keeping intrinsic
parameters like masses the same for template and signal but
maximising over extrinsic parameters like time of arrival and
initial phase

Faithfulness: Measure of how good is the template waveform
in both detecting a signal and measuring its parameters
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Effectualness

Effectualness: Overlap of A(t) with X(t) computed by
maximising over both extrinsic parameters like time of arrival
and initial phase and intrinsic parameters like masses

Effectualness: How good is the template waveform only for
detection without reference to its use in estimating
parameters
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Results: Damour, Iyer, Sathyaprakash 01

Fully maximised overlaps of the fiducial exact (X) waveform
(effective-one-body signal) with: (1) the standard time-domain
post-Newtonian approximations of type t1 and t3 (T t1, T t3), (2) the
frequency-domain usual stationary phase approximations of type 1 and 2,
(T f1, T f2) and (3) the time-domain P-approximants (P ) – energy function, flux
function. The overlaps, which are computed using the LIGO noise curve, are
maximised not only over the time-lag and the initial phases of both the
fiducial exact signal and the approximate template (by using two signal and
two template waveforms, with phases equal to 0 and π/2 but also over the
two masses m1 and m2 of the approximate signal models. (The optimal
masses are given below the overlaps.) The time-domain T t3-approximants
are terminated when Ḟ = 0 and the other signals are terminated when
F (t) = flso, the lso frequency being determined consistently using E′

A(v) = 0

where EA(v) is the corresponding approximate energy function.
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Results

k
〈
X,T t1

k

〉 〈
X,T t3

k

〉 〈
X,T f1

k

〉 〈
X,T f2

k

〉
〈X,Pk〉

m1 = m2 = 15M�

4 0.8881 0.9488 0.8644 0.8144 0.8928
(15.2,14.1) (16.3, 16.4) (14.7, 14.9) (16.0,16.1) (14.7, 15.1)

5 0.8794 0.8479 0.7808 0.8602 0.8929
(17.3, 16.4) (17.6, 17.9) (16.8, 16.7) (15.2,14.4) (15.4,14.3)

m1 = m2 = 10M�

4 0.9604 0.9298 0.9581 0.9109 0.9616
(10.1,9.6) (10.5, 10.3) (10.0, 9.7) (10.5, 10.6) (10.0, 10.2)

5 0.8814 0.8490 0.8616 0.9529 0.9610
(11.4, 10.6) (11.4, 11.7) ( 10.7, 11.0) (10.3, 9.7) (10.4, 9.7)
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Results

k
〈
X,T t1

k

〉 〈
X,T t3

k

〉 〈
X,T f1

k

〉 〈
X,T f2

k

〉
〈X,Pk〉

m1 = 10M�,m2 = 1.4M�

4 0.9847 0.9673 0.9835 0.9721 0.9937
(1.27,11.1) (0.95,16.6) (1.27, 11.1) (0.96, 16.4) (1.35, 10.5)

5 0.9452 0.6811 0.9394 0.9922 0.9941
(0.82, 20.4) (1.11, 15.7) (0.82, 20.4) (1.34, 10.5) (1.37, 10.2)

m1 = m2 = 1.4M�

4 0.8828 0.8538 0.8830 0.8503 0.9719
(1.40, 1.39) (1.42, 1.39) (1.40, 1.39) (1.44, 1.37) (1.47, 1.34)

5 0.8522 0.7643 0.8522 0.9994 0.9945
(1.46, 1.35) (1.43, 1.38) (1.46, 1.35) ( 1.45, 1.35) (1.49, 1.32)
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Results
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Results

The frequency evolution (Ḟ /F 2) of the various approximate models
is compared with the fiducial exact (10, 10)M� model in the LIGO
band. To indicate the effect on the overlap, we also plot the
weighting function 1/hn(f) for initial LIGO (not to scale), which is a
measure of the detector’s sensitivity.
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Results

For approximate models we exhibit the frequency evolution of the
system that achieves the maximum overlap. The maximum overlap
is obtained for template parameters such that the intrinsic
frequency evolution of the template waveform is “tangent” to the
exact one, near the maximum sensitivity of the detector.

This can always be achieved by fitting the mass parameters. The
question is whether such a local “tangency” ensures a sufficiently
good “global” agreement.

T t1,3 2.5 PN models fare poorly in globally mimicking the frequency
evolution of the exact waveform. This is consistent with their
returning the worst overlaps of all.

Even though the T f2 models do not reproduce the exact model
over as large a range as the P -approximants, they achieve nearly
as large overlaps as the P -approximants, because they can be
made (by optimizing the masses) to agree well with the exact
model over most of the sensitive part of the LIGO band.
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Results

P -approximants are able to mimic the “exact” evolution the best
with little bias in the masses but, being based on the adiabatic
approximation, they fail to capture the smooth transition to plunge

Filters using the effective one-body approach go beyond the
adiabatic approximation and include a smooth transition to plunge
and merger. They, therefore, supersede the adiabatic-limited
P-approximants. This difference between the two re-summed
versions of binary signal models is important for masses larger than
about 20 M�.
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Results
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Results

Signal-to-noise ratios in GEO, LIGO-I and VIRGO when using as
Fourier-domain template the post-Newtonian model (T f2),
truncated at the test-mass Flso = 4400M�/m Hz (in thin lines),
compared to the optimal one obtained when the template
coincides with the fiducial “exact” (effective one-body) signal (thick
lines). As usual, we averaged over all the angles. The overlaps are
maximised over the time lags, the phases, and the two individual
masses m1 and m2. The plots are jagged because we have
computed the SNR numerically by first generating the fiducial
“exact” waveform in the time-domain and thenusing its discrete
Fourier transform. The greater SNR achieved by effective one-body
waveforms for higher masses, is due to the plunge phase present in
these waveforms. Observe that the presence of the plunge phase
in the latter significantly (up to a factor of 1.5) increases the SNR for
masses m > 35M�. Using the effective one-body templates will,
therefore, enhance the search volume of the interferometric
network by a factor of 3 or 4.
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Inspiral, Detector Span

Thick Lines: EOB WF
Thin Lines: Only Inspiral
From B.S. Sathyaprakash
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Buonanno, Chen Vallisneri 03

In connection with BH-BH where one needs to go as close to the
LSO as possible Buonanno Chen and Vallisneri constructed a
phenomenological template by a careful study of various possible
models

Post–Newtonian models of two-body dynamics defined by BCV are
given the Tables below. The notation X(nPN,mPN; θ̂) denotes the
model X, with terms up to order nPN for the conservative dynamics,
and with terms up to order mPN for radiation-reaction effects; for
m ≥ 3 they also needed to specify the arbitrary flux parameter θ̂.
Now this is no longer arbitrary. For n ≥ 3, the effective-one-body
models need also two additional parameters z̃1 and z̃2
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Buonanno, Chen Vallisneri 03

model shorthand evolution equation
adiabatic model with
Taylor-expanded
energy E(v) and flux
F(v)

T(nPN,mPN; θ̂) energy-balance equation

adiabatic model with
Padé-expanded energy
E(v) and flux F(v)

P(nPN,mPN; θ̂) energy-balance equation

adiabatic model with
Taylor-expanded
energy E(v) and flux
F(v) in the
stationary-phase
approximation

SPA(nPN ≡ mPN) energy-balance
equation in the freq.
domain

nonadiabatic
Hamiltonian model with
Taylor-expanded GW
flux

HT(nPN,mPN; θ̂) Hamilton equations
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Buonanno, Chen Vallisneri 03

model shorthand evolution equation
nonadiabatic
Hamiltonian model with
Padé-expanded GW
flux

HP(nPN,mPN; θ̂) Hamilton equations

nonadiabatic
Lagrangian model

L(nPN,mPN) F = ma

nonadiabatic
effective-one-body
model with
Taylor-expanded GW
flux

ET(nPN,mPN; θ̂; z̃1, z̃2) eff. Hamilton equations

nonadiabatic
effective-one-body
model with
Padé-expanded GW
flux

EP(nPN,mPN; θ̂; z̃1, z̃2) eff. Hamilton equations
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What is it about?

There are at least three different contexts in which one can examine the
performance of an approximate template family relative to an exact one.
Firstly, one can think of a mathematical family of approximants and examine
its convergence towards some exact limit.
Secondly, one can ask whether this mathematical family of approximants
correctly represents the GWs from some physical system.
Thirdly, how does this family of approximate templates converge to the exact
solution in the sensitive bandwidth of a particular GW detector.
In the context of GWDA, the third context will be relevant.
Although there is no direct application to GW data analysis, equally
interesting is the mathematical question concerning the behavior of different
approximations, and the waveforms they predict, in the strongly non-linear
regime of the dynamics of the binary. The latter obviously does not require
the details of the detector-sensitivity and it is enough to study the problem
assuming a flat power spectral density (i.e. a white-noise background) for the
detector noise.
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Issues Related to WF Modelling
Model for the orbit: Circular vs Elliptic

Ref: Arun (PhD Thesis 2006 - Unpublished)

We list the most important issues in modelling ICB and the progress
made in addressing them.

For nonspinning binaries in quasi-circular orbits of arbitrary mass
ratio, up to 3.5PN in the phase and 2.5PN in the amplitude. Though
the 1.5PN and 2PN phasing may not be good enough for an
accurate detection and parameter estimation, the 3.5PN should be
reasonably accurate for the purpose.
Data analysis strategies for the eccentric binaries are more involved.
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Issues Related to WF Modelling
Spin of the binary: Spinning vs Nonspinning

Though one may argue that the spin effects are more important for
binaries with large mass ratio, including the spin effects is an
important step towards constructing more realistic and general
templates. Theoretically, computation of waveforms with spin
effects is more complex. Till date spin effects are computed in the
phase up to 2.5PN order ( Apostolatos et al 94; Kidder Will Wiseman
93; Kidder 95; Blanchet Buonanno Faye 06) and in the amplitude up
to 2PN order ( Kidder 95,Ohashi Tagoshi Owen 98). Apostolatos et al
gave a prescription to incorporate orbital precession effects and
the consequent modulations in the model of the gravitational
waveform.
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Issues Related to WF Modelling
Restricted WF vs Full WF

GWDA uses ‘restricted waveform approximation’. Very high PN
accurate phasing of the binary, keeping the amplitude of the wave
to be at leading Newtonian order. This is justified by the argument
that matched filtering is more sensitive to the phase of the GW than
its amplitude.
There have been investigations by Van Den Broeck 06; Van Den
Broeck, Sengupta 06; about the validity of the restricted waveform
approximation in the detection as well as parameter estimation.
Evaluated the differences arising by the use of the non-restricted
waveform in both detection as well as parameter estimation. The
overestimation in SNR by the restricted waveform templates due to
the absence of higher harmonics have to be accounted for while
constructing the templates for data analysis
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Issues Related to WF Modelling
Late inspiral: Adiabatic vs Non-adiabatic

Computation of the waveforms for the inspiralling compact binary
systems are implemented using the PN approximation to general
relativity. One assumes here that though the orbital frequency of the
system changes with time, the change in frequency per orbital
period is negligible compared tothe orbital frequency itself, i.e.,
ω̇
ω2 � 1. Strictly speaking, this adiabatic approximation is valid only in
the early part of the inspiral and not during the very late inspiral and
merger phases. Hence the standard PN approximation is expected
to break down towards the very late part of the inspiral.

Alternatives have to be explored to include the effects of
non-adiabaticity and to model the plunge and merger phases.
Effective one body (EOB) approach first proposed by Buonanno
and Damour is one of the most important among them. This
method, for the first time, does not assume adiabaticity anymore
and provides an analytical description of the transition from plunge
to merger and subsequent ‘ringing’. 3PN: Damour Jaranowski
Schäfer; Spin EOB: Damour 01

BRI-IHP06-III – p.63/103



Issues Related to WF Modelling
Late inspiral: Adiabatic vs Non-adiabatic

Other approaches to go beyond the adiabatic approximation,
have been made by Buonanno, Chen, Vallisneri, Pan.. and Ajith ,
Iyer, Robinson, Sathyaprakash

With the recent progresses in numerical relativity, there is hope that
one will have better waveforms for the late inspiral and merger parts
of the binary evolution which can be used for constructing
templates as well as to test the robustness of the analytical
adiabatic and non-adiabatic models. Pretorius 05, Baker et al 06,
Campanelli et al 06, Herman et al 06; Sperhake 06; Buonanno,
Cook, Pretorius 06; Damour, Nagar 06......
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To ReSum or not ReSum? Padé vs Taylor
Is the two-body problem in GR Schwarzschild like?

While advocates of Resummation are convinced of its necessity and the
inadequacy of a simple PN expansion near the ISCO critics of these
approximants have a different view
The usual objection raised is ‘It accelerates convergence..But how does one
know it converges to the correct limit of GR?’

The only concrete discussion of this is by Blanchet .. See Living review for an
updated discussion..Some arguments e.g. are:
Values of the ambiguity parameter predicted by convergence arguments of
resummed approximants were incorrect
The ratio of diff PN order coeffs is related to the Radius of convergence of the
PN series which is determined by the location of the light ring
The two-body interaction in GR may not be Schwarzschild-like. There may be
no light ring unlike the test mass case and hence the resummed
approximants based on this implicit closeness to the test mass case, could
predict very different higher order PN coeffs from resummation than the true
GR ones
PN series is an asymptotic series and 3PN is accurate enough even at the
ISCO
Talks by Damour, Nagar for the opposite viewpoint BRI-IHP06-III – p.65/103



Issues Related to WF Modelling
Non-Restricted Full Waveform

Recently Van Den Broeck and Sengupta have looked at the implications of
the Full Waveform rather than the Restricted WF for DA
The waveforms in the two polarizations take the general form

h+,× =
2Mη

r
x

{
H

(0)
+,× + x1/2H

(1/2)
+,× + xH

(1)
+,× + x3/2H

(3/2)
+,× + x2H

(2)
+,× + x5/2H

(5/2)
+,×

}

Coefficients H(n/2)
+,× , n = 0, . . . , 5, are linear combinations of various

harmonics with prefactors that depend on the inclination angle ı of the
angular momentum of the binary with respect to the line of sight as well as
on η(ABIQ). Measured signal also depends on the polarization angle and the
position in the sky through the detector’s beam pattern functions F+,×:

h(t) = F+h+(t) + F×h×(t).

For ground-based detectors, it is reasonable to approximate F+,× as being
constant over the duration of the signal. They depend on angles (θ, φ, ψ),
where (θ, φ) determine sky position while ψ is the polarization angle. The
signal is a linear combination of harmonics of the orbital phase Ψ(t) with
offsets ϕ(k,m/2):
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Issues Related to WF Modelling
Non-Restricted Full Waveform

h(t) =

Np∑

k=1

2p∑

m=0

A(k,m/2)(t) cos(kΨ(t) + ϕ(k,m/2)),

Coefficients A(k,m/2) are functions of (r,M, η, θ, φ, ψ, ı) multiplied by x(m+2)/2.
Orbital phase Ψ(t) is a series in x, which for non-spinning binaries is known to
3.5PN order. The number of harmonics Np depends on the PN order in
amplitude, p; at 2.5PN one has Np = 7.
The SPA for the (p, 3.5)PN waveform is then

h̃SPA(f) =

Np∑

k=1



∑2p

m=0
A(k,m/2)

(
t
(

1
k
f
))

e−iϕ(k,m/2)

2

√
kḞ
(
t
(

1
k
f
))




p

exp

[
i

(
2πftc − π/4 + kψ

(
1

k
f

))]
,

[ . ]p denotes consistent truncation to pth post-Newtonian order (i.e., the
“Newtonian” prefactor f−7/6 is taken outside and the remaining expression is
expanded in (2πMf)1/3 up to (2πMf)2p/3).
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Issues Related to WF Modelling
Non-Restricted Full Waveform

If h is (p, 3.5)PN Full WF and h0 the correspg restricted (0, 3.5)PN WF they get

NS–NS NS–BH BH–BH
p ρ[h0] ρ[h] ρ[h0] ρ[h] ρ[h0] ρ[h]

0 6.465 6.465 13.492 13.492 30.928 30.928
0.5 ” 6.465 ” 13.932 ” 30.928
1 ” 6.286 ” 12.563 ” 28.135
1.5 ” 6.286 ” 12.421 ” 28.135
2 ” 6.249 ” 12.090 ” 26.373
2.5 ” 6.247 ” 12.002 ” 26.285

Table 1: Change in signal-to-noise ratios with increasing p in (p, 3.5)PN waveforms,
for three different systems at 20 Mpc. (Angles were chosen arbitrarily as θ = φ =

π/6, ψ = π/4, ı = π/3.)

Though ρ(h) or ρ(h0) depend on the choice of angles their relative difference
has only a weak dependence on angles
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Non-Restricted Full Waveform - Mass reach
Advanced LIGO
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Non-Restricted Full Waveform - Mass reach
EGO
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Non-Restricted Full Waveform - Mass reach

Plots of ρ[h] and ρ[h0] as functions of total mass for Advanced LIGO and EGO.
Distance is fixed at 100 Mpc, and we assume m1/m2 = 0.1. Angles are as ear-
lier. At low masses one has 2fLSO � fs and ρ[h0] dominates. For sufficiently high
masses, 2fLSO ≤ fs, so that the dominant harmonic no longer enters the de-
tector’s bandwidth and the SNR for the restricted waveform vanishes. For such
masses, higher harmonics in the amplitude-corrected waveform will continue to
enter the bandwidth and can lead to significant SNRs. As a result, at the given
distance the use of amplitude-corrected waveforms approximately doubles the
mass reach of Advanced LIGO and triples that of EGO.
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Non-Restricted Full Waveform - Mass reach
Advanced LIGO
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Non-Restricted Full Waveform - Mass reach
EGO
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Non-Restricted Full Waveform - Mass reach

The redshift reach of Advanced LIGO and EGO as functions of (physical) total
mass for fixed SNRs of 10 with amplitude-corrected and restricted waveforms. We
have fixed m1/m2 = 0.1, and angles are as before
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Issues Related to WF Modelling
Non-Restricted Full Waveform

For initial detectors modelling signals as restricted generally leads to
overestimates of SNR
This is because of ‘destructive’ interference between harmonics
Advanced detectors will be sensitive at lower frequencies and higher
harmonics may enter BW even if the dominant one does not. Detector’s
mass reach may increase by factors of two (adv LIGO) or three (EGO). Allow
for detection of inspirals with higher total mass.
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PART II

New Class of post-Newtonian Waveform Templates for
Inspiralling Compact Binaries

Based on

P. Ajith, B. R. Iyer, C. A. K. Robinson and
B S Sathyaprakash

Phys. Rev. D 71, 044029 (2005)



Standard Adiabatic Approximnts

The standard adiabatic approximation to phasing uses the
energy and flux functions to same relative PN accuracy

Including the radiation reaction at dominant order, however,
is not a first order correction to the dynamics of the binary,
but rather the 2.5PN order correction

Thus the phasing of the GW, when viewed in terms of the
underlying dynamics is described as motion under the
dominant Newtonian force and a perturbation/correction at
order (v/c)5, neglecting the intermediate conservative force
terms at 1PN (v/c)2 and 2PN (v/c)4 orders
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Standard Non-Adiabatic Models

Latter Point more Transparent in phasing models constructed
explictly from the EOM: Non-Adiabatic Approximants

Lagrangian templates studied by Buonanno, Chen and
Vallisneri (BCV) can be thought of as examples of standard
non-adiabatic approximants since to reproduce standard
phasing it only retains associated ‘acceleration’ terms as
mentioned earlier resulting in ‘gaps’ in the acceleration

BRI-IHP06-III – p.77/103



Standard Non-Adiabatic ... Contd

The Lagrangian models studied by BCV are specified by the
relative acceleration of the binary system

dx

dt
= v ;

dv

dt
= a

dφ

dt
= ω ; v2 = r2ω2; ϕ = 2φ

Accn is given as a PN expansion

0PN: a = aN + a2.5PN

1PN: a = aN + a1PN + a2.5PN + a3.5PN

Missing intermediate PN terms in the acceleration
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Complete Non-Adiabatic Models

Consistently includes all acceleration terms up to relevant PN
order

0PN: a = aN + a1PN + a2PN + a2.5PN

1PN: a = aN + a1PN + a2PN + a2.5PN + a3PN + a3.5PN
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Complete Adiabatic Approxmts

In the adiabatic approximation the Energy function codes
information about PN conservative dynamics while the Flux
function codes the dissipative dynamics due to GRR

A new and simple complete adiabatic approximant is
proposed constructed from the Energy and Flux functions

Given the 0PN flux (leading to a2.5PN), we choose the Energy
function at 2PN (∼ 2PN conservative dynamics) rather than
to the standard choice of 0PN (∼ 0PN or Newtonian
dynamics).
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Complete Adiabatic Approxmts

Given the Flux at n-PN, a corresponding complete adiabatic
approximant is constructed by choosing the Energy Fn at
order [n + 2.5]PN, where [p] denotes the integer part of p.

The complete adiabatic approximant in spirit corresponds to
dynamics where there are no missing PN terms in the
acceleration

Caveat: Unique only without Further re-expansions of the
Energy and Flux functions during evaluation of Phasing
Formula
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Test Mass Exact Waveform

For a test-particle orbiting the Schwarzschild BH the Energy
function and Flux function are known Exactly (former
analytically, latter numerically (Poisson)).
A natural fiducial ‘signal’ or ‘ Exact’ waveform is thus
available to compare different template models

The Flux function is also analytically known to a very high
5.5PN order (Tanaka, Tagoshi and Sasaki) making possible
construction of many standard and complete adiabatic
approximant templates
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Present Work

Using the exact/approximate energy and flux functions, the
exact/approximate waveforms are constructed by the
relevant phasing formula

Overlaps of the standard and complete adiabatic
approximant templates with the Exact waveform are
compared to gauge their their performance

Performance is quantified by twin notions of effectualness
and faithfulness

Binaries studied:
(1M�, 10M�), (1M�, 50M�) (1M�, 100M�)
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Present Work ... Contd

Overlaps first calculated assuming a flat power spectral
density for detector noise (white noise):
a mathematical question concerning convergence
properties of the PN waveform family independent of
detector properties

Overlaps next calculated for initial LIGO, VIRGO and
Advanced LIGO
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Effectualness: White N (Adiabatic)

(1M�, 10M�) (1M�, 50M�) (1M�, 100M�)

TaylorT1 TaylorF1 TaylorT1 TaylorF1 TaylorT1 TaylorF1
Order (n) S C S C S C S C S C S C

0PN 0.6250 0.8980 0.6212 0.8949 0.5809 0.9726 0.5917 0.9644 0.8515 0.9231 0.8318 0.9017
1PN 0.4816 0.5119 0.4801 0.5086 0.4913 0.9107 0.4841 0.5871 0.8059 0.9169 0.7874 0.8980

1.5PN 0.9562 0.9826 0.9448 0.9592 0.9466 0.9832 0.9370 0.9785 0.8963 0.9981 0.7888 0.9788
2PN 0.9685 0.9901 0.9514 0.9624 0.9784 0.9917 0.9719 0.9872 0.9420 0.9993 0.9178 0.9785

2.5PN 0.9362 0.9924 0.9298 0.9602 0.7684 0.9833 0.7326 0.9772 0.8819 0.9858 0.8610 0.9730
3PN 0.9971 0.9991 0.9677 0.9713 0.9861 0.9946 0.9821 0.9886 0.9965 0.9959 0.9756 0.9792

3.5PN 0.9913 0.9996 0.9636 0.9688 0.9902 0.9994 0.9858 0.9914 0.9885 1.0000 0.9690 0.9800
4PN 0.9937 0.9973 0.9643 0.9663 0.9975 0.9996 0.9903 0.9914 0.9968 0.9992 0.9769 0.9795

4.5PN 0.9980 0.9999 0.9671 0.9690 0.9967 1.0000 0.9902 0.9913 0.9996 1.0000 0.9787 0.9801
5PN 0.9968 0.9979 0.9661 0.9667 0.9994 0.9994 0.9913 0.9914 0.9992 0.9991 0.9790 0.9797
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Results: White Noise (Adiabatic)
Complete adiabatic approximants lead to a
remarkable improvement in the effectualness
(i.e. larger overlaps with the ‘exact’ signal) at
lower PN (< 3PN) orders

However, standard adiabatic approximants of
orders ≥ 3PN are nearly as good as the complete
adiabatic approximants for construction of
effectual templates

In general faithfulness of complete approximants
is also better than that of standard approximants.

There do exist anomalous cases where the
complete approximant performs worse than the
standard BRI-IHP06-III – p.87/103



Effectualness: LIGO (Adiabatic)

Percentage biases σm and ση in determining parameters m and η are given in
brackets.

(1M�, 10M�)

TaylorT1 TaylorF1
Order (n) S C S C

0PN 0.5910 (12, 5.7) 0.9707 (36, 45) 0.5527 (31, 28) 0.8395 (48, 53)
1PN 0.5232 (22, 105) 0.8397 (125, 69) 0.4847 (18, 9.7) 0.8393 (147, 74)

1.5PN 0.9688 (52, 51) 0.9887 (8.3, 15) 0.8398 (61, 57) 0.8606 (4.7, 10)
2PN 0.9781 (18, 25) 0.9942 (0.4, 0.6) 0.8485 (32, 40) 0.8693 (15, 22)

2.5PN 0.9490 (96, 68) 0.9923 (26, 32) 0.8963 (123, 75) 0.9071 (49, 50)
3PN 0.9942 (0.3, 1.1) 0.9989 (3.7, 6.2) 0.8713 (16, 23) 0.8822 (12, 18)

3.5PN 0.9940 (6.9, 11) 0.9998 (0.6, 1.4) 0.8685 (23, 31) 0.8834 (17, 25)
4PN 0.9974 (6.2, 11) 0.9996 (3.9, 6.9) 0.8746 (23, 30) 0.8817 (21, 28)

4.5PN 0.9988 (3.3, 5.5) 1.0000 (0.8, 1.6) 0.8795 (19, 27) 0.8868 (18, 26)
5PN 0.9992 (4.0, 6.9) 0.9997 (3.5, 5.7) 0.8792 (21, 29) 0.8825 (20, 28)
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Faithfulness: LIGO (Adiabatic)

(1M�, 10M�) (1M�, 50M�)

TaylorT1 TaylorF1 TaylorT1 TaylorF1
Order (n) S C S C S C S C

0PN 0.2186 0.6272 0.2108 0.5879 0.2134 0.3498 0.2145 0.3593
1PN 0.1342 0.1615 0.1308 0.1563 0.1511 0.2196 0.1527 0.2210

1.5PN 0.3788 0.4492 0.3449 0.6471 0.2915 0.9223 0.2956 0.9195
2PN 0.7449 0.7633 0.6279 0.7782 0.3613 0.8157 0.3674 0.8318

2.5PN 0.3115 0.3970 0.2905 0.3532 0.2608 0.4233 0.2606 0.4161
3PN 0.9633 0.7566 0.7913 0.8297 0.7194 0.9686 0.7057 0.9323

3.5PN 0.8385 0.9984 0.6582 0.7464 0.4941 0.9273 0.5046 0.9442
4PN 0.8356 0.8909 0.6527 0.6725 0.5960 0.7934 0.5864 0.8131

4.5PN 0.9395 0.9851 0.6967 0.7195 0.7594 0.9644 0.7605 0.9614
5PN 0.8960 0.9129 0.6770 0.6821 0.7344 0.8350 0.7432 0.8579

BRI-IHP06-III – p.89/103



Fixed PN Flux, Varying PN Energy
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Figure details

Effectualness (left) and faithfulness (right)
TaylorT1 and TaylorF1 templates
Initial LIGO noise PSD
Different lines ∼ different orders of flux function
Each line∼ overlaps as fn of accuracy of energy fn
Standard adiabatic approximants T (E[n],Fn)
are marked with thick dots.
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Results: Initial LIGO, VIRGO ..
Complete adiabatic approximants lead to a
remarkable improvement in the effectualness at
lower PN (< 3PN) orders.

However standard adiabatic approximants are
nearly as good as the complete adiabatic
approximants for construction of effectual
templates

Faithfulness of complete approximants is almost
always better than that of standard approximants
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Effectualness: (Non-Adiabatic)

Initial LIGO noise PSD.
Percentage biases σm and ση in determining parameters m and η are given in
brackets.

(10M�, 10M�)

TaylorT1 TaylorF1
Order (n) S C S C

0PN 0.8818 (14, 0.0) 0.9503 (3.6, 0.0) 0.8813 (11, 0.0) 0.9485 (3.9, 0.0)
1PN 0.8453 (59, 0.1) 0.8944 (45, 10) 0.8088 (52, 0.0) 0.8627 (37, 0.2)

1.5PN 0.9535 (3.9, 0.3) 0.9735 (22, 29)
2PN 0.9846 (0.1, 0.6) 0.9757 (0.7, 0.1)

2.5PN 0.8803 (9.4, 0.1) 0.9412 (35, 35)
3PN 0.9838 (1.4, 0.0) 0.9751 (1.2, 0.1)

3.5PN 0.9832 (1.3, 0.0) 0.9751 (1.2, 0.1)
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Faithfulness: (Non-Adiabatic) -
Test Mass

Initial LIGO noise PSD.
(1M�, 10M�) (1M�, 50M�)

Order (n) S C S C

0PN 0.2463 0.1216 0.5048 0.1747
1PN 0.4393 0.1823 0.3650 0.3119
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Effectualness: NonAdiabatic -
Comparable Masses

Initial LIGO noise spectrum.
Percentage biases σm and ση in determining parameters m and η are given in
brackets.

(10M�, 10M�)

TaylorT1 TaylorF1
Order (n) S C S C

0PN 0.8818 (14, 0.0) 0.9503 (3.6, 0.0) 0.8813 (11, 0.0) 0.9485 (3.9, 0.0)
1PN 0.8453 (59, 0.1) 0.8944 (45, 10) 0.8088 (52, 0.0) 0.8627 (37, 0.2)

1.5PN 0.9535 (3.9, 0.3) 0.9735 (22, 29)
2PN 0.9846 (0.1, 0.6) 0.9757 (0.7, 0.1)

2.5PN 0.8803 (9.4, 0.1) 0.9412 (35, 35)
3PN 0.9838 (1.4, 0.0) 0.9751 (1.2, 0.1)

3.5PN 0.9832 (1.3, 0.0) 0.9751 (1.2, 0.1)
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Faithfulness: NonAdiabatic - Comparable Mases

Initial LIGO noise spectrum.

(10M�, 10M�) (1.4M�, 1.4M�)

TaylorT1 TaylorF1 TaylorT1 TaylorF1
Order (n) S C S C S C S C

0PN 0.5590 0.8590 0.5595 0.8403 0.3848 0.1627 0.4148 0.1634
1PN 0.3022 0.3487 0.3025 0.3500 0.1519 0.1612 0.1518 0.1612

1.5PN 0.7866 0.7771 0.7044 0.6900
2PN 0.9795 0.9640 0.5650 0.5955

2.5PN 0.5736 0.5736 0.5962 0.5922
3PN 0.9525 0.9505 0.9915 0.9275

3.5PN 0.9522 0.9508 0.9914 0.9276
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Total (Useful) Cycles

Ntot ≡
1

2π
(ϕlso − ϕlow) =

∫ F lso

Flow

dF
N(F )

F
,

N(F ) ≡ F 2/Ḟ

Nuseful ≡
(∫ F lso

Flow

df

f
w(f)N(f)

)(∫ F lso

Flow

df

f
w(f)

)−1

,

w(f) ≡ a2(f)/h2
n(f);

h2
n(f) ≡ fSn(f);

|H(f)| ' a(tf )/[Ḟ (tf )]1/2
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Total (Useful) Cycles - Test Mass

Initial LIGO noise spectrum.
Low frequency cutoff of 40Hz.

(1M�, 10M�) (1M�, 50M�) (1M�, 100M�)

Order (n) S C S C S C

0PN 481 (92.3) 424 (74.6) 118 (110) 77.8 (64.4) 13.6 6.7
1PN 560 (117) 526 (102) 180 (186) 124 (104) 25.7 10.6

1.5PN 457 (81.7) 433 (71.8) 88.8 (76.3) 58.5 (38.2) 8.4 2.3
2PN 447 (77.7) 440 (74.0) 77.0 (61.8) 62.5 (41.5) 6.1 2.6

2.5PN 464 (84.5) 454 (79.6) 96.8 (85.5) 74.5 (50.5) 9.7 2.9
3PN 442 (74.7) 440 (73.3) 64.5 (45.2) 58.1 (35.5) 3.4 1.6

3.5PN 445 (76.1) 442 (74.5) 68.7 (49.7) 60.6 (36.8) 4.0 1.4
4PN 445 (75.8) 443 (75.2) 66.4 (45.1) 62.9 (39.0) 2.9 1.6

4.5PN 443 (75.1) 442 (74.5) 63.7 (42.0) 60.0 (35.6) 2.5 1.2
5PN 444 (75.3) 443 (75.0) 63.8 (40.9) 62.2 (37.8) 2.1 1.4

Exact 442 (74.1) 59.1 (34.3) 0.9
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Anomalous Cases
Anomalous cases can be understood in terms of
comparison of E ′(v)/F(v) of the approximant with
that of the ‘Exact’ WF together with the
best-sensitivity BW of the detector

In these cases though complete approximant
better in modelling late inspiral, standard
approximant is better in modelling early inspiral

Since binary spends mores cycles in early inspiral,
overlaps heavily influenced by accuracy of early
inspiral model

Comparison of various anomalous Detector results
can be qualitatively understood in these terms
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Conclusion

Standard Adiabatic approximation to the phasing of GWs
from ICB based on PN expansions of conserved energy and
GW flux truncated at the same relative PN order.

In terms of the dynamics of the binary, standard treatment
equivalent to neglecting certain conservative terms in the
acceleration.

New complete adiabatic approximant is proposed which, in
spirit, corresponds to a complete treatment of the
acceleration accurate up to the respective PN order.
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Conclusion .. Contd

Test-mass: Effectualness of the templates improves
significantly in the complete adiabatic approximation at
lower (< 3PN) PN orders.

However, Standard adiabatic approximants of order ≥ 3PN
are nearly as good as the complete approximants.

Faithfulness of complete adiabatic approximants is generally
better at all PN orders.

There are some cases of anomalous behavior. In these cases
early inspiral is better modelled by the standard
approximants than the corresponding complete
approximants
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Conclusion .. Contd

Complete adiabatic approximants are far superior to the
standard adiabatic approximants in modelling the final
inspiral.

Complete adiabatic approximants generally less ‘biased’ in
estimating the parameters of the binary.
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Conclusion .. Contd

Comparable-mass: Standard adiabatic approximants of
order ≥ 1.5PN provide a good lower-bound to the complete
adiabatic approximants for the construction of both
effectual and faithful templates.

Comparable-mass: Standard adiabatic approximants of
order 2PN/3PN produce the target value 0.965 in
effectualness (corresponding to 10% event-loss) in the case
of the BH-BH/NS-NS binaries.

Only the inspiral phase of the binary is considered. Plunge
and quasi-normal ring down phases are neglected
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