Weak Lensing

Yannick Mellier

IAP and Obs. de Paris / LERMA

II. Cosmic Shear

The Universe in one slide (for those who are not familiar with cosmology)

- Looks homogeneous and isotropic on very large scales (cosmological principle)
- Is flat (almost null curvature)
- Is expanding, with accelerating expansion
- Is composed of 70% of (unknown) dark energy, 25% of (unknown) dark matter, and 4% of ordinary (baryonic) matter
- Its present-day structuration results from gravitational instability
- The growth rate of structure depends on both its dark matter and dark energy content
- Its cosmic history is visible through its matter distribution: the dark matter power spectrum
- The evolution of the dark matter power spectrum can be recovered from observation of the high redsdhift universe (i.e. look-back time)
- Cosmologists characterise the universe by a serie of cosmological parameters:
 - H_o = expansion (Hubble constant)
 - Ω_m = amount of matter
 - Ω_{χ} = amount of dark energy (could be a cosmological constant Λ)
 - w = property of dark energy $P = w \rho$ (i.e. equation of state of dark energy)
 - σ_8 = normalisation of the dark matter power spectrum; initial P(*k*) = $\sigma_8 k^n$ (but P(*k*) change with time; *n* is the spectral index)

Structure formation as function of the dark matter and dark energy content

Dark energy and dark matter are revealed by the properties of the dark matter power spectrum How can we observe the dark matter power spectrum ?

Galaxy power spectrum ... but galaxies show light ...

Using gravitational lensing to observe the dark matter power spectrum

Structure Formation Theory

Structure Formation Theory Overview

- Very small perturbations are assumed to exist at high redshift (whatever ther origin)

- Perturbations then grow from gravity (gravitational instability)

- The growth of perturbation will modified by other physical effects : free streaming, pressure

- Because of pressure and free streaming,
 - . baryonic and non-baryonic matter grow differently
 - . Hot, warm and cold dark matter grow differently
- All components have their own equations, but they are coupled

Fluid equations

Contituity equation

$$\frac{\partial \rho\left(\vec{r};t\right)}{\partial t} + \nabla_{r}\left[\rho \vec{u}\left(\vec{r};t\right)\right] = 0 \tag{1}$$

Euler equation

$$\frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \nabla_r) \, \vec{u} = -\nabla_r \varphi \tag{2}$$

Poisson equation

$$\nabla_r^2 \varphi = 4\pi G \rho - \Lambda \tag{3}$$

Structure Formation in comoving coordinates

Euler equation becomes

$$\frac{\partial \vec{v}}{\partial t} + \frac{\dot{a}}{a}\vec{v} + \frac{1}{a}(\vec{v}.\nabla_x)\vec{v} = -\frac{1}{a}\nabla_x\Phi \qquad (1)$$

Defining the density contrast: $\delta(\vec{x};t) = \frac{\rho(\vec{x};t) - \bar{\rho}(t)}{\bar{\rho}(t)}$

Continuity
$$\rightarrow \frac{\partial \delta}{\partial t} + \frac{1}{a} \nabla_x \cdot \left[(1+\delta) \, \vec{v} \right] = 0$$
 (4)

And the Poisson equation writes:

$$\nabla_x^2 \Phi = \frac{3H_0^2}{2a} \Omega_m \delta$$

(5)

Linear perturbation equations

If we only consider terms linear in v and δ

$$\frac{\partial \delta}{\partial t} + \frac{1}{a} \nabla_x \cdot \vec{v} = 0 \tag{3}$$

$$\frac{\partial \vec{v}}{\partial t} + \frac{\dot{a}}{a}\vec{v} = -\frac{1}{a}\nabla_x\Phi \tag{4}$$

Linear perturbation equations

Fourier decompostion

$$\delta\left(\vec{x};t\right) = \int \frac{\mathrm{d}^{3}k}{\left(2\pi\right)^{2}} \tilde{\delta}\left(\vec{k};t\right) e^{i\vec{k}.\vec{x}} \tag{1}$$

$$\frac{\partial^2 \delta}{\partial t^2} + \frac{2\dot{a}}{a} \frac{\partial \delta}{\partial t} - \frac{3H_0^2}{2a^3} \Omega_m \delta = 0$$
 (2)

Usually written as

$$\ddot{D} + \frac{2\dot{a}}{a}\dot{D} = \frac{3H_0^2}{2a^3}\Omega_m D \tag{3}$$

The growing modes, D_+ , imply that δ grow as

$$\delta\left(\vec{x};t\right) = D_{+}(t)\delta_{0}(\vec{x}) \tag{4}$$

and it can be shown that

$$D_{+}(t) = D_{in} H(a) \int_{0}^{a} \frac{\mathrm{d}a'}{\left[a'H(a')\right]^{3}}$$
(5)

where D_{in} is such that $D_{+}(t_0) = D_{+}(a = 1) = 1$.

 D_+ is called the growth factor

IHP 28-29 Nov. 2006

Including pressure perturbation

$$\frac{\partial \vec{U}}{\partial t} + 2\frac{\dot{a}}{a}\vec{U} = -\frac{1}{a^2}\nabla_x\Phi - \frac{\nabla\delta p}{\bar{\rho}} \tag{1}$$

Using the same equations as before and Fourier-transform them lead to

$$\ddot{\delta} + 2\frac{\dot{a}}{a}\dot{\delta} = \left(4\pi G\bar{\rho} - c_s^2 \frac{k^2}{a^2}\right)\delta\tag{2}$$

where

$$c_s = \left(\frac{\partial p}{\partial \rho}\right)^{1/2} \tag{3}$$

The behavior of perturbations depends on the scale k:

- for small k, perturbation grow
- for large k, perturbations oscillate

Summary: Linear Structure Growth

- Relation to horizon scale
 - Comoving horizon size:

$$d_H = \frac{c}{H_0} \,\Omega_m^{-1/2} \,a^{1/2} \,\left(1 + \frac{a_{eq}}{a}\right)^{-1/2} \tag{266}$$

- If perturbation enters the horizon during the radiation dominated (R) period then:

The expansion timescale ~ (G $\rho_R)^{\text{-1/2}}$ < collapse time scale ~ (G $\rho_{DM})^{\text{-1/2}}$

 \rightarrow Radiation prevents growth of perturbation

Summary: Linear Structure Growth

- Relation to horizon scale
 - Comoving horizon size:

$$d_H = \frac{c}{H_0} \,\Omega_m^{-1/2} \,a^{1/2} \,\left(1 + \frac{a_{eq}}{a}\right)^{-1/2}$$

- If
$$\lambda = 2\pi/k \gg d_H$$
 then $* \, \delta \propto a^2$ if $a \ll a_{eq}$
 $* \, \delta \propto a$ if $a \gg a_{eq}$

- If $\lambda=2\pi/k\ll d_H$ then

* no growth if $a \ll a_{eq}$

 $* \, \delta \,{\simeq}\, a$ if $a \gg a_{eq}$

Summary: Linear Structure Growth

The Transfer Function

In the linear regime, for sub-horizon matter-dominated universe, we have

$$\delta_k(z) = D_+(z) \ \delta_k(z=0)$$

The transfer function is a way to account for deviation from the simple linear evolution.

$$T_k = \frac{D_+(z) \, \delta_k(z=0)}{\delta_k(z)}$$

Since at $z \gg 1$, almost no scale of interest entered the horizon yet, in absence of any alteration, $T_k = 1$ at all z

However pressure and free streaming produce modifications. They are modeled using fitting formula:

• For a CDM model:

$$T_k = \frac{\ln\left(1 + 2.34q\right)}{2.34q} \left[1 + 3.89q + (16.1q)^2 + (5.46q)^3 + (6.71q)^4\right]^{-1/4}$$

For a HDM model

$$T_k = \exp\left(-3.9q - 2.1q^2\right)$$

where

$$q = \frac{k}{\Omega_m h^2 \text{ Mpc}^{-1}} = \frac{k/(h \text{ Mpc}^{-1})}{\Gamma}$$
$$\Gamma = \Omega_m h$$

is the shape parameter It seems $\Gamma \simeq 0.2$ Note that for a CDM $T_k \propto k^{-2}$ for large k; while for a HDM T_k

decreases exponentially with k.

and

Shape parameter

 θ (degrees)

The Power Spectrum

The power spectrum of the density fluctuation, P_{δ} , is defined as

$$\langle \delta_{\vec{k}} \delta_{\vec{k}}^* \rangle = (2\pi)^3 \, \delta_D \left(\vec{k} - \vec{k'} \right) P_{\delta}(k)$$

The power spectrum at any time, $P_{\delta}(k,z)$ can be derived from the intitial power spectrum $P(k) = P_i(k,z_i)$ using the transfer function

$$P_{\delta}(k,z) = P_{i}(k) \frac{D_{+}^{2}(z)}{D_{+}^{2}(z_{i})} T_{k}^{2}$$

The Power Spectrum

For a simple power law, $P_i(k) \propto k^n$, with n = 1 the asymptotic behavior of the power spectrum is

 $P_{\delta}(k) \propto k$ for small k $P_{\delta}(k) \propto k^{-3}$ for large k

- The steep decrease at large k is due to the suppression os small scale perturbations with entered the horizon before matter radiation equality.
- The turn over depends on $d_h(a_{eq})$. It is the most characteristic scale in the dark matter power spectrum

The Power Spectrum... in Summary

In summary the power spectrum

- is determined with the spectral index, n, and
- the shape parameter, Γ .
- But the normalisation is missing...
- The non-linear evolution is not described (numerical simulation, relation between the linearly evolved power spectrum to the fully non linear power spectrum, use halo models..)

Normalisation of the power spectrum

3 ways of measuring it:

- Normalisation from CMB anisotropy on large scale

Degree of anisotropy=fluctuation spectrum: direct measure of normalisation

- Density fluctuation inside a sphere
- Local abundance of clusters of galaxies

Normalisation of the power spectrum

The observed variance of galaxy counts in a sphere of 8 Mpc Dispersion of the smoothed density field:

$$\sigma^2(R) = \langle \delta_R^2(\vec{x}) \rangle = \int \frac{\mathrm{d}^3 k}{\left(2\pi\right)^3} |\hat{W}_R(k)|^2 P(k)$$

The normalisation of the power spectrum can in principle be measured from observations.

From galaxies. Inside a sphere of radius 8 h^{-1} Mpc, galaxy catalogues show that

$$\frac{\Delta N}{N} = \frac{\left\langle (N - \langle N \rangle)^2 \right\rangle}{\left\langle N \right\rangle^2} = 1$$
(3)

Dispersion of a smooth density field

$$\sigma^{2}(R) = \left\langle \delta_{R}^{2}(\vec{x}) \right\rangle = \int W_{R}\left(|\vec{x} - \vec{y}| \right) \delta(\vec{y}) \, \mathrm{d}^{3}y \quad (4)$$

If the galaxies follow the dark matter then

$$\sigma_8 = \sigma^2 (8h^{-1} \text{Mpc}) = \frac{\Delta N}{N} = 1$$
 (5)

Structure Formation Theory

Normalisation of the power spectrum

BUT: galaxies may not trace the dark matter very well. However, one can assume that, to first order, there is a simple linear relation between the fluctuation of the number of galaxies and the mass density contrast:

$$\frac{\Delta n}{n} = b \, \frac{\Delta \rho}{\rho} \tag{1}$$

and b is the bias factor. In that case:

$$\sigma_8 = \frac{1}{b} \tag{2}$$

Normalisation of the power spectrum

A structure with density contrast that reaches $\sigma_8 = 1$ enters into the non-linear regime. Today, it correspond to mass such that:

$$M = \frac{4\pi}{3}\bar{\rho} \left[8 \ h^{-1} M pc \right]^3 \tag{3}$$

$$M = \frac{4\pi}{3} \Omega_m \frac{3H_0^2}{8\pi G} \left[8 \ h^{-1} M pc \right]^3 (4)$$

that is

$$M = 5 \times 10^{14} \ \Omega_m \ h^{-1} \ M_{\odot} \tag{5}$$

which corresponds to clusters of galaxies.

Pure CDM spectra, with differente shape parameters (0.1-0.5 with step 0.1).

When the shape parameter is 0.2 it match both constraints

Non linear evolution

- On very small scale, linear approximation breaks down Structures are no longer described analytically
- Non linear models:
 - Assume the non-linear spectrum is a universal function of the linear spectrum

• Establish relation between the linear and non linear spectra (based on specific ansatz and numerical simulations):

- Peacock and Dodds
- Halo models
- Work well; but approximations

IHP 28-29 Nov. 2006

Cosmological Weak Lensing:

Theory

IHP 28-29 Nov. 2006

Cosmic shear : propagation of light through the cosmic web

Cosmological distortion field projected on the sky

IHP 28-29 Nov. 2006

Weak gravitational lensing and cosmology: Light propagation in inhomogeneous universes

IHP 28-29 Nov. 2006
Weak Lensing and Cosmology

- Express the light propagation in a homogeneous and isotropic universe
- Include the effects of (small) perturbations
- Compute of the deflection angle, κ, γ as a function of $\delta = \frac{\delta \rho}{\rho}$, Ω , λ
- ullet Then, infer $P_\kappa(k)$ and $P_\delta(k)$
- Analyse the sensitivity to cosmological quantities and propose an observational strategy

Light deflection in Inhomogeneous Universes

We show that

$$\frac{\mathrm{d}\vec{x}}{\mathrm{d}\omega} = \vec{\alpha} = -\frac{2}{c^2} \int \vec{\nabla}_{\perp} \Phi \mathrm{d}l \qquad (157)$$

Consider 2 close photon paths. We are interested in the differential light deflection. It is equivalent to the previous equation:

$$\frac{\mathrm{d}^2 \vec{x}}{\mathrm{d}\omega^2} = -\frac{2}{c^2} \vec{\nabla}_\perp \Phi(\vec{x}; \omega') \tag{158}$$

The solutions of this differential equation are given by the Green's function.

Light deflection in Inhomogeneous Universes

Solution using Green functions

$$\begin{cases} G(\boldsymbol{\omega} - \boldsymbol{\omega}') = f_K(\boldsymbol{\omega} - \boldsymbol{\omega}'), & \text{if } \boldsymbol{\omega} > \boldsymbol{\omega}' \\ 0 & \text{if } \boldsymbol{\omega} < \boldsymbol{\omega}' \\ \end{cases}$$
(160)

$$\vec{x}(\boldsymbol{\omega}) = \vec{x}(0) + f_{K}(\boldsymbol{\omega}) \frac{\mathrm{d}\vec{x}}{\mathrm{d}\boldsymbol{\omega}}(0) - \frac{2}{c^{2}} \int_{0}^{\boldsymbol{\omega}} f_{K}(\boldsymbol{\omega} - \boldsymbol{\omega}') \vec{\nabla}_{\perp} \Phi(\vec{x}; \boldsymbol{\omega}') \,\mathrm{d}\boldsymbol{\omega}'$$
(161)

As for a single deflection, we still have the boundary conditions:

$$\vec{x}(0) = 0 \ ; \ \frac{\mathrm{d}\vec{x}}{\mathrm{d}\omega}(0) \vec{\theta} \ ,$$
 (162)

then:

$$\vec{x}(\boldsymbol{\omega}) = \vec{\theta} f_K(\boldsymbol{\omega}) - \frac{2}{c^2} \int_0^{\boldsymbol{\omega}} f_K(\boldsymbol{\omega} - \boldsymbol{\omega}') \vec{\nabla}_{\perp} \Phi(\vec{x}; \boldsymbol{\omega}') d\boldsymbol{\omega}'$$
(163)

Where the integral is evaluated along the unperturbed light-path

The deflection angle is the difference between the perturbed and unperturbed path :

$$\vec{\alpha} = \frac{\vec{\theta} f_K(\boldsymbol{\omega}) - \vec{x}}{f_K(\boldsymbol{\omega})}$$
(164)

Using $\vec{x}(\boldsymbol{\omega}) = \vec{\beta} f_K(\boldsymbol{\omega})$, we can write the delection angle:

$$\vec{\alpha}\left(\vec{\theta};\omega\right) = \vec{\theta} - \vec{\beta} = \frac{2}{c^2} \int_0^\omega \frac{f_K(\omega - \omega')}{f_K(\omega)} \vec{\nabla}_\perp \Phi\left(f_K(\omega')\,\vec{\theta};\omega\right) \mathrm{d}\omega'$$
(165)

This is the deflection angle accumulated along a line path, propagating into direction $\vec{\theta}$ out to coordinate distance ω .

For a flat universe:

$$\vec{\alpha}\left(\vec{\theta};\omega\right) = \vec{\theta} - \vec{\beta} = \frac{2}{c^2} \int_0^{\omega} \left(1 - \frac{\omega'}{\omega}\right) \vec{\nabla}_{\perp} \Phi\left(\omega'\vec{\theta};\omega\right) d\omega'$$
(166)

But we are interested in κ and γ ...

$$\vec{\alpha}\left(\vec{\theta};\omega\right) = \vec{\theta} - \vec{\beta} = \frac{2}{c^2} \int_0^{\omega} \left(1 - \frac{\omega'}{\omega}\right) \vec{\nabla}_{\perp} \Phi\left(\omega'\vec{\theta};\omega\right) \mathrm{d}\omega'$$
(166)

we have shown that, from the lens equation:

$$\begin{cases} \vec{\theta} - \vec{\beta} = -\frac{D_{LS}}{D_{OS}} \vec{\alpha} = \vec{\nabla}_{\vec{\theta}} \varphi\left(\vec{\theta}\right) \\ \implies \vec{\nabla}_{\vec{\theta}}^2 \varphi\left(\vec{\theta}\right) = -\frac{D_{LS}}{D_{OS}} \vec{\nabla}_{\vec{\theta}} \cdot \vec{\alpha} \text{ (167)} \\ \implies 2\kappa = \frac{1}{2} \vec{\nabla}_{\vec{\theta}} \cdot \vec{\alpha} \left(\vec{\theta}\right) = \frac{1}{2} \frac{\partial \alpha_i(\vec{\theta})}{\partial \theta_i} \end{cases}$$

Define the cumulative effective convergence along a line of sight is:

$$\kappa_{eff} = \frac{1}{2} \vec{\nabla}_{\vec{\theta}} \cdot \vec{\alpha} \left(\vec{\theta}; \boldsymbol{\omega} \right) = \frac{1}{2} \int_{0}^{\boldsymbol{\omega}} \frac{f_{K}(\boldsymbol{\omega} - \boldsymbol{\omega}') f_{K}(\boldsymbol{\omega}')}{f_{K}(\boldsymbol{\omega})} \frac{\partial^{2}}{\partial \theta_{i} \partial \theta_{j}} \left[\Phi \left(f_{K}(\boldsymbol{\omega}') \vec{\theta}; \boldsymbol{\omega}' \right) \right]$$
(168)

Convergence and Mass Density Contrast

The Poisson equation is:

$$\nabla_r^2 \Phi = 4\pi G \bar{\rho} \ (1+\delta) \tag{169}$$

Decoupling the background from the perturbation, on can then write

$$\nabla_r^2 \Phi' = 4\pi G \bar{\rho} \,\delta \tag{170}$$

Using comoving coordinates, we have $\nabla_x = a \nabla_r$, so:

$$\nabla_x^2 \Phi = 4\pi G a^2 \bar{\rho} \,\delta \tag{171}$$

In the matter-dominated universe we have $ar{
ho} = a^{-3}
ho_0$.

$$\implies \vec{\nabla}_x^2 = 4\pi G a^2 \frac{3\Omega_0 H_0^2}{8\pi G a^3} = \frac{3H_0^2}{2a}\Omega_0 \delta \tag{172}$$

 κ_{eff} can therefore be expressed as function of the mass density contrast and cosmological parameters:

$$\kappa_{eff}\left(\vec{\theta};\omega\right) = \frac{3\Omega_0 H_0^2}{2c^2} \int_0^{\omega} \frac{f_K(\omega - \omega') f_K(\omega')}{f_K(\omega)} \frac{\delta\left[f_K(\omega') \vec{\theta};\omega'\right]}{a(\omega')} d\omega'$$

One can notice the distance ratio factor in the integration, that is similar to the distance ration $D_{ls}D_{ol}/D_{os}$ found for a single lens case.

Generalisation for a redshift distribution of sources.

Sources are no longer at distance ω , need to define a *mean effective* convergence

$$\langle \kappa_{eff}(\vec{\theta}) \rangle = \int p_{\omega}(\omega) \kappa\left(\vec{\theta};\omega\right) d\omega$$
 (174)

$$\begin{cases} \langle \kappa_{eff}(\vec{\theta}) = \int_0^{\omega_H} G(\omega) \kappa_{eff} \left(\begin{array}{c} \theta \\ \end{array}; \omega \right) d\omega \end{cases} \\ \text{where} \qquad G(\omega) d\omega = P(z) dz \end{cases}$$

where ω_H is the comoving horizon distance.

Generalisation for a redshift distribution of sources

We then have:

$$\begin{cases}
\left\langle \kappa_{eff} \left(\vec{\theta} \right) \right\rangle = \int_{0}^{\omega_{H}} \bar{W}(\omega) f_{K}(\omega) \frac{\delta \left[f_{K}(\omega') \vec{\theta}; \omega' \right]}{a(\omega')} \mathrm{d}\omega' \\
\bar{W}(\omega) = \int_{\omega}^{\omega_{H}} G(\omega') \frac{f_{K}(\omega'-\omega)}{f_{K}(\omega')} \mathrm{d}\omega'
\end{cases}$$
(176)

So essentially, the sources are weighted by the ratio D_{ls}/D_{os} for a density fluctuation located at distance ω .

2-Point Convergence Correlation Function and Limber Equation

We have:

$$\langle \kappa_{eff} \left(\vec{\theta} \right) \rangle = \frac{3H_0^2 \Omega_0}{2c^2} \int_0^{\omega_H} \bar{W}(\omega) f_K(\omega) \frac{\delta \left[f_K(\omega) \vec{\theta}; \omega \right]}{a(\omega)} d\omega$$
(189)

Puting

$$Z(\boldsymbol{\omega}) = \frac{3H_0^2 \Omega_0}{2c^2} \bar{W}(\boldsymbol{\omega}) \frac{f_K(\boldsymbol{\omega})}{a(\boldsymbol{\omega})}$$
(190)

$$\rightarrow \kappa_{eff}\left(\vec{\theta}\right) = \int Z(\omega) \,\delta\left[f_{K}(\omega)\,\theta;\omega\right] \mathrm{d}\omega$$
(191)

By definition, the 2-point convergence correlation function is:

$$\xi_{\kappa}\left(\vec{\theta}\right) = \langle \kappa^{*}\left(\vec{\phi}\right)\kappa\left(\vec{\phi} + \vec{\theta}\right)\rangle \tag{192}$$

$$\xi_{\kappa}\left(\vec{\theta}\right) = \int Z(\omega) \,\mathrm{d}\omega \int \int Z'(\omega') \,\mathrm{d}\omega' \langle \delta^{*}\left(f_{\kappa}(\omega)\,\vec{\phi};\omega\right) \delta\left(f_{\kappa}(\omega')\left(\vec{\phi}+\vec{\theta}\right);\omega'\right)\rangle \tag{193}$$

$$\xi_{\kappa}\left(\vec{\theta}\right) = \int Z(\boldsymbol{\omega}) \,\mathrm{d}\boldsymbol{\omega} \int \int Z'(\boldsymbol{\omega}') \,\mathrm{d}\boldsymbol{\omega}' \int \frac{\mathrm{d}^{3}k}{(2\pi)^{3}} \int \frac{\mathrm{d}^{3}k'}{(2\pi)^{3}} \langle \hat{\delta}\left(\vec{k};\boldsymbol{\omega}\right).\hat{\delta}^{*}\left(\vec{k}';\boldsymbol{\omega}'\right) \rangle e^{-if_{\kappa}(\boldsymbol{\omega})\vec{k}_{\perp}.\vec{\theta}} e^{if_{\kappa}\langle\boldsymbol{\omega}'\rangle\vec{k}'_{\perp}.\vec{\theta}'} \times e^{-ik_{3}\boldsymbol{\omega}} e^{ik'_{3}\boldsymbol{\omega}'}$$
(194)

where \vec{k}_{\perp} is the 2-dimension wavenumber vector perpendicular to the line of sight.

Assumptions

• Assume there is no power in mass density fluctuations on scales larget than a typical coherent scale L_{coh} . This is valid because the power spectrum P_{δ} decreases as k when $k \rightarrow 0$. This results from:

$$\begin{cases} P_{\delta} \propto k & \text{if } k << k_0 \\ k^{-3} & \text{if } k >> k_0 \end{cases} (195)$$

Assumptions

• Assume there is no power in mass density fluctuations on scales larget than a typical coherent scale L_{coh} . This is valid because the power spectrum P_{δ} decreases as k when $k \rightarrow 0$. This results from:

$$\begin{cases} P_{\delta} \propto k & \text{if } k << k_0 \\ k^{-3} & \text{if } k >> k_0 \end{cases} (195)$$

• On the other hand, though δ changes with time, we assume it is almost constant over a typical timescale L_{coh}/c .

Assumptions

• Assume there is no power in mass density fluctuations on scales larget than a typical coherent scale L_{coh} . This is valid because the power spectrum P_{δ} decreases as k when $k \rightarrow 0$. This results from:

$$\begin{cases} P_{\delta} \propto k & \text{if } k << k_0 \\ k^{-3} & \text{if } k >> k_0 \end{cases} (195)$$

- On the other hand, though δ changes with time, we assume it is almost constant over a typical timescale L_{coh}/c .
- Finally, we assume Z is almost constant over a physical scale $\Delta \omega \leq L_{coh}$. \implies the correlation function $C_{\delta\delta} \neq 0$ only on a physical scale $|\omega \omega'| \leq L_{coh}$.

$$\implies f_K(\boldsymbol{\omega}) \simeq f_K(\boldsymbol{\omega}') \text{ and } Z(\boldsymbol{\omega}) \simeq Z(\boldsymbol{\omega}')$$

Therefore the correlation function writes:

$$\xi_{\kappa}\left(\vec{\theta}\right) = \int Z(\omega) \int Z'(\omega) \int \frac{\mathrm{d}^{3}k}{(2\pi)^{3}} P_{\delta}\left(|\vec{k}|;\omega\right) e^{if_{\kappa}(\omega)\vec{k}_{\perp}\cdot\left(\vec{\theta}-\vec{\theta}'\right)} \times e^{-ik_{3}\omega} \int e^{ik'_{3}\omega'} \mathrm{d}\omega'$$

Knowing that

$$\int e^{ik_3'\omega'}\mathrm{d}\omega' = 2\pi\delta_D(k_3)$$

For an isotropic universe, the correlation function writes:

$$\implies \xi_{\kappa}\left(\vec{\theta}\right) = \int Z\left(\omega\right) \int Z'\left(\omega\right) \frac{k \mathrm{d}k}{2\pi} P_{\delta}\left(k;\omega\right) J_{0}\left[f_{k}\left(\omega\right)\theta k\right]$$

The Convergence Power Spectrum

Can be derived from the inverse transfor of the correlation function:

$$P_{\kappa}(l) = \int d^2 \vec{\theta} \xi\left(\vec{\theta}\right) e^{i\vec{l}.\vec{\theta}}$$
(204)

Using the expression of Z, and Z = Z' we have

$$P_{\kappa}(l) = \frac{9H_0^4 \Omega_0^2}{4c^4} \int \frac{\bar{W}(\boldsymbol{\omega})^2}{a(\boldsymbol{\omega})} P_{\delta}\left(\frac{l}{f_K(\boldsymbol{\omega})}; \boldsymbol{\omega}\right)$$
(208)

• This is valid if the largest scales structures in δ are much smaller than the effective range $\Delta \omega$ in the projection.

- This is valid if the largest scales structures in δ are much smaller than the effective range $\Delta \omega$ in the projection.
- The expression above expresses the fact that the power of the connvergence at scale 1/l is obtained from the 3-dimensional power spectrum on the mass density fluctuation at scale $f_K(\omega)$ (1/l), integrated over *w*. This is what we could expect.

- This is valid if the largest scales structures in δ are much smaller than the effective range $\Delta \omega$ in the projection.
- The expression above expresses the fact that the power of the connvergence at scale 1/l is obtained from the 3-dimensional power spectrum on the mass density fluctuation at scale $f_K(\omega)$ (1/l), integrated over *w*. This is what we could expect.
- \bullet If one can observe the 2-D P_κ one can get constrints on the 3-D P_δ

Relation Between the Convergence and the Shear Power Spectrum

We have

$$\begin{cases} \kappa = \frac{1}{2} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y x^2} \right) \Psi \\ \gamma = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right)^2 \Psi \end{cases}$$
(209)

In Fourier space:

$$\begin{cases} \hat{\kappa} = \frac{1}{2} \left(l_x^2 + l_y^2 \right) \hat{\Psi} \\ \hat{\gamma} = \frac{1}{2} \left(l_x^2 - l_y^2 + 2il_x l_y \right) \hat{\Psi}^{(210)} \end{cases}$$

Therefore

$$\begin{cases} \langle \hat{\kappa} \left(\vec{l} \right) \hat{\kappa}^* \left(\vec{l} \right) \rangle = \frac{1}{4} \langle \left(l_x^2 + l_y^2 \right)^2 \rangle = |\vec{l}|^4 \\ \langle \hat{\gamma} \left(\vec{l} \right) \hat{\gamma}^* \left(\vec{l} \right) \rangle = \frac{1}{4} \langle \left(l_x^2 - l_y^2 \right)^2 + 4 l_x^2 l_y^2 \rangle = |\vec{l}|^4 \end{cases}$$
(211)

We then have two very important properties:

$$\begin{cases} \langle \hat{\kappa} \left(\vec{l} \right) \hat{\kappa}^* \left(\vec{l} \right) \rangle = \langle \hat{\gamma} \left(\vec{l} \right) \hat{\gamma}^* \left(\vec{l} \right) \rangle = (2\pi)^2 \, \delta_D \left(\vec{l} - \vec{l'} \right) P_\kappa(l) \\ P_\kappa(l) = P_\gamma(l) \end{cases}$$
(212)

Shear Correlation Functions

Consider the tangential and cross components of the shear with respect to a direction ϕ is

$$\gamma_t = -\Re \left[\gamma e^{-2i\alpha} \right] ; \quad \gamma_x = -Im \left[\gamma e^{-2i\alpha} \right]$$
 (213)

and define the correlation function of the tangential shear as

$$\langle \gamma_t \gamma_t' \rangle = \xi_{tt} \left(\phi \right) = \frac{1}{\left(2\pi \right)^2} \int \, \mathrm{d}l \, P_{\gamma_t} \left(l \right) e^{-i \, \vec{l} \cdot \vec{\phi}} \tag{214}$$

In Fourier space we have

$$\hat{\gamma}_{t} = -\frac{1}{2} \left(k_{1}^{2} + k_{2}^{2} \right) \hat{\psi} = \frac{k^{2}}{2} \left(\cos^{2} \left(\alpha \right) - \sin^{2} \left(\alpha \right) \right) \hat{\psi}$$
(215)

where ψ is the effective lensing potential.

The power spectrum is therefore

$$P_{\gamma_t} = \frac{k^4}{4} \left(\cos^2\left(\alpha\right) - \sin^2\left(\alpha\right) \right)^2 P_{\psi}$$
 (216)

Since we know that

$$P_{\kappa} = \frac{1}{4} \left(k_1^2 + k_2^2 \right)^2 P_{\psi}$$
 (217)

one can derive easily that

$$\langle \gamma_t \gamma_t' \rangle = \frac{1}{2} \int \frac{l \mathrm{d}l}{2\pi} P_\kappa(l) \left[J_0(l\phi) + J_4(l\phi) \right]$$
(218)

Likewise, for the cross component:

$$\langle \gamma_x \gamma'_x \rangle = \xi_{xx}(\phi) = \frac{1}{(2\pi)^2} \int dl P_{\gamma_x}(l) e^{-i \vec{l}.\vec{\phi}}$$
(219)

where

$$P_{\gamma_{x}} = k_{1}^{2} k_{2}^{2} P_{\psi} = 4\cos^{2}(\phi) \sin^{2}(\phi) P_{\kappa}$$
(220)

one can derive

$$\langle \gamma_x \gamma'_x \rangle = \frac{1}{2} \int \frac{l \mathrm{d}l}{2\pi} P_\kappa(l) \left[J_0(l\phi) - J_4(l\phi) \right]$$
(221)

Finally, one can also compute the mixed correlation function

$$P_{\gamma_t \gamma_x} = \frac{4}{k^4} \left(k_1^2 - k_2^2 \right) k_1 \, k_2 \, P_\kappa \tag{222}$$

$$P_{\gamma_t \gamma_x} = 2\left(\cos^2\left(\alpha\right) - \sin^2\left(\alpha\right)\right)\cos\left(\alpha\right)\sin\left(\alpha\right) P_{\kappa}$$
(223)

Because of the cross sincos terms , vanishes. Therefore

$$\xi_{tx}(\phi) = 0 \tag{224}$$

Using this property, it is useful to define two new correlation functions:

$$\xi_{\pm} = \langle \gamma_t \gamma_t' \rangle \pm \langle \gamma_x \gamma_x' \rangle \text{ and } \xi_x = \langle \gamma_t \gamma_x' \rangle$$
 (225)

so that

$$\begin{aligned} \xi_{+}\left(\varphi\right) &= \frac{1}{2} \int \frac{l dl}{2\pi} P_{\kappa}(l) J_{0}(l\phi) \end{aligned} \tag{226} \\ \xi_{-}\left(\varphi\right) &= \frac{1}{2} \int \frac{l dl}{2\pi} P_{\kappa}(l) J_{4}(l\phi) \end{aligned} \tag{227} \\ \xi_{x}(\varphi) &= 0 \end{aligned} \tag{228}$$

The last correlation function being zero, it can be used to control systematic errors on cosmic shear measurements.

The E- and B-modes of the Shear Field

Both the shear and the convergence are combination of the second derivatives of the projected scalar potential \implies they are related:

$$\vec{\nabla}\kappa = \begin{pmatrix} \partial_1\gamma_1 + \partial_2\gamma_2\\ \partial_2\gamma_1 - \partial_1\gamma_2 \end{pmatrix} = \vec{u}$$
(229)

that defines \vec{u} as the gradient of the "potential" κ .

Define the E- and B- components of the convergence field as function of the gradient and curl part of \vec{u} :

$$\vec{\nabla}^2 \kappa^E = \vec{\nabla}.\vec{u} \; ; \; \vec{\nabla}^2 \kappa^B = \vec{\nabla} \times \vec{u}$$
 (230)

And define also the E- and B-mode potentials, from the Poisson equation:

$$\vec{\nabla}^2 \psi^{E,B} = 2\kappa^{E,B} \tag{231}$$

And write the relation using complex quantities:

$$\Psi = \Psi^E + i\Psi^B$$
; $\kappa = \kappa^E + i\kappa^B$ (232)

In that case we still write de Poisson equation as $\vec{\nabla}^2 \psi = 2\kappa$, and the complexe shear, $\gamma = (1/2) (\partial_1 \partial_1 - \partial_2 \partial_2) \psi + i \partial_1 \partial_2 \psi$ writes:

(233)

$$\gamma = \gamma_1 + i\gamma_2 = \tag{233}$$

$$\frac{1}{2} \left(\partial_1 \partial_1 \psi^E - \partial_2 \partial_2 \psi^E \right) - \partial_1 \partial_2 \psi^B + i \left[\partial_1 \partial_2 \psi^E + \frac{1}{2} \left(\partial_1 \partial_1 \psi^B - \partial_2 \partial_2 \psi^B \right) \right]$$
(234)

These relations are consistent with the definitions of the lensing convergence and shear in absence of B modes.

This generalisation to any field turns out to be very useful to make clear assessments on the lensing nature of the distortion field and on systematics in the real data.

One can also define the E-, B- and cross power spectra as follows:

$$EE = \langle \hat{\kappa}^{E} \left(\vec{l} \right) \hat{\kappa}^{E} \left(\vec{l}' \right) \rangle = (2\pi)^{2} \, \delta_{D} \left(\vec{l} - \vec{l}' \right) P_{\kappa}^{E} \left(l \right) \quad (235)$$

$$BB = \langle \hat{\kappa}^{B} \left(\vec{l} \right) \hat{\kappa}^{B} \left(\vec{l}' \right) \rangle = (2\pi)^{2} \, \delta_{D} \left(\vec{l} - \vec{l}' \right) P_{\kappa}^{B} \left(l \right)$$
(236)
$$EB = \langle \hat{\kappa}^{E} \left(\vec{l} \right) \hat{\kappa}^{B} \left(\vec{l}' \right) \rangle = (2\pi)^{2} \, \delta_{D} \left(\vec{l} - \vec{l}' \right) P_{\kappa}^{EB} \left(l \right)$$
(237)

and the correlations of γ in Fourier space:

$$\langle \hat{\gamma}\left(\vec{l}\right) \hat{\gamma}^{*}\left(\vec{l}'\right) \rangle = (2\pi)^{2} \, \delta_{D}\left(\vec{l}-\vec{l}'\right) \left[P_{\kappa}^{E}\left(l\right)+P_{\kappa}^{B}\left(l\right)\right] \quad (238)$$

and

$$\langle \hat{\gamma}\left(\vec{l}\right) \hat{\gamma}\left(\vec{l}'\right) \rangle = (2\pi)^2 \,\delta_D\left(\vec{l}-\vec{l}'\right) \left[P^E_\kappa\left(l\right) - P^B_\kappa\left(l\right) + 2iP^{EB}_\kappa\left(l\right)\right]$$
(239)

For parity-symmetric shear fields, P^{EB} vanishes.

Testing systematics and reliability of cosmic shear signal:

Gravitational lensing does not produce B-modes (Curl=0)

E projection Pure gravity signal

45 degrees rotated galaxies, E -> B

Relations Between $P^{E,B}$ and ξ_+

It is easy to show that

$$\xi_{+}(\theta) = \frac{1}{2} \int_{0}^{\infty} dl \, l \, J_{0}(l\theta) \left[P(l)^{E} + P(l)^{B} \right]$$
(240)
$$\xi_{-}(\theta) = \frac{1}{2} \int_{0}^{\infty} dl \, l \, J_{4}(l\theta) \left[P(l)^{E} - P(l)^{B} \right]$$
(241)

and

$$P(l)^{E} = \pi \int_{0}^{\infty} d\theta \ \theta \ [\xi_{+}(\theta)J_{0}(l\theta) + \xi_{-}(\theta)J_{4}(l\theta)] \quad (242)$$
$$P(l)^{B} = \pi \int_{0}^{\infty} d\theta \ \theta \ [\xi_{+}(\theta)J_{0}(l\theta) - \xi_{-}(\theta)J_{4}(l\theta)] \quad (243)$$

The Top Hat Shear Variance

Consider the mean shear inside a circular aperture of radius θ :

$$\bar{\gamma}_{i}(\theta) = \int_{0}^{\theta} \frac{\mathrm{d}^{2}\vec{\phi}^{2}}{\pi\theta^{2}}\gamma\left(\vec{\phi}\right) \tag{244}$$

The shear variance inside the aperture is therefore:

$$\langle |\gamma|^2 \rangle = \int_0^\theta \frac{\mathrm{d}^2 \vec{\phi}^2}{\pi \theta^2} \int_0^\theta \frac{\mathrm{d}^2 \vec{\phi}'^2}{\pi \theta^2} \langle \gamma \left(\vec{\phi} \right) \gamma^* \left(\vec{\phi}' \right) \rangle \tag{245}$$

$$\langle |\gamma|^2 \rangle = \frac{1}{(2\pi)^2} \int P_{\kappa}(l) \, \mathrm{d}^2 \vec{l} \int_0^{\theta} \frac{\mathrm{d}^2 \vec{\phi}^2}{\pi \theta^2} \int_0^{\theta} \frac{\mathrm{d}^2 \vec{\phi}'^2}{\pi \theta^2} \, e^{-i\vec{l}.\left(\vec{\phi} - \vec{\phi}'\right)}$$
(246)

That is:

$$\langle |\gamma|^2 \rangle = 2\pi \int P_{\kappa}(l) l dl \left[\frac{1}{\pi l^2 \theta^2} \int_0^{l\theta} J_0(x) x dx \right]^2$$
(248)

Using:

$$x^{n}J_{n-1}\mathrm{d}x = \mathrm{d}\left(x^{n}J_{n}\left(x\right) (249)\right)$$

$$\langle |\gamma(\theta)|^2 \rangle = 2\pi \int P_{\kappa}(l) l dl \left(\frac{J_1(l\theta)}{\pi l \theta}\right)^2$$

(250)

The Aperture Mass Statistics

As for the top hat shear variance, one can also compute the aperture mass variance.

 M_{ap} and M_{\perp} are simply defined with the tangential and cross component of the shear \implies relations with ξ_{\pm} and the E- and B-modes are

- Very simple
- Very useful !

We have

$$M_{ap}\left(\vec{\theta}_{0}\right) = \int Q\left(\left|\vec{\theta}\right|\right) \, \gamma_{t}\left(\vec{\theta};\vec{\theta}_{0}\right) \mathrm{d}^{2}\vec{\theta} \tag{251}$$

where

$$Q(\theta) = \frac{2}{\theta} \int_0^\theta d\theta' \, \theta' \, U(\theta') - U(\theta)$$
(252)

and

$$M_{\perp}\left(\vec{\theta}_{0}\right) = \int Q\left(\left|\vec{\theta}\right|\right) \, \gamma_{x}\left(\vec{\theta};\vec{\theta}_{0}\right) \mathrm{d}^{2}\vec{\theta} \tag{253}$$

One can show that:

$$\langle M_{ap}^2 \rangle \left(\theta \right) = \frac{1}{2\pi} \int dl \, l \, P_{\kappa}^E \left(l \right) \hat{U}^2 \left(l \theta \right) \tag{254}$$

$$\langle M_{\perp}^2 \rangle(\theta) = \frac{1}{2\pi} \int dl \, l \, P_{\kappa}^B(l) \hat{U}^2(l\theta)$$
 (255)

where \hat{U} is the Fourier transform of the filter function U.

- M_{ap} provides the E-modes and M_{\perp} provides the B-modes.
- Since the filter function \hat{U} is very narrow, the aperture mass statistics proovide a highly localized measure of the correponding power spectra.

Cosmic Shear Statistics and Power Spectrum

(Blandford el al 1991, Miralda-Escudé 1991, Kaiser 1992, 1998, Bernardeau et al 1997, Jain & Seljak 1997, Schneider et al 1998)

Top-hat shear variance at scale θ_c :

$$\langle \gamma^2 \rangle = \frac{2}{\pi \theta_c^2} \int_0^\infty \frac{\mathrm{d}\,k}{k} P_\kappa(k) \left[J_1(k\theta_c) \right]^2$$

Aperture mass (Map) variance at scale $\theta_{\rm c}$:

$$\langle M_{ap}^{2} \rangle = \frac{288}{\pi \theta_{c}^{4}} \int_{0}^{\infty} \frac{\mathrm{d} k}{k_{3}} P_{\kappa}(k) [\mathrm{J}_{4}(k\theta_{c})]_{2}$$

Shear correlation function at separation θ :

$$\langle \gamma(\mathbf{r})\gamma(\mathbf{r}+\theta)\rangle_{\mathrm{r}} = \frac{1}{2\pi} \int_{0}^{\infty} \mathrm{d}k \ k \ P_{\mathrm{k}}(k) \ \mathrm{J}_{0}(k\theta)$$

Convergence (projected mass) power spectrum:

$$P_{k}(k) = \frac{9}{4} \Omega_{0}^{2} \int_{0}^{\infty} dz \quad P_{3D}(\frac{k}{DL(z)};z) \quad F[z, z_{\text{source}}]$$

Assuming a single lens-plane and $P(k) \propto k^n$:

•
$$\langle \kappa^{2}(\theta) \rangle^{1/2} \approx 0.01 \sigma_{8} \Omega^{0.8} \left(\frac{\theta}{1 \text{ deg.}}\right)^{-\frac{n+2}{2}} z_{s}^{0.75}$$

• $\langle \kappa^{2}(\theta) \rangle = \langle \gamma^{2}(\theta) \rangle$

IHP 28-29 Nov. 2006

Shear Statistics : Theoretical Predictions

(Blandford el al 1991, Miralda-Escudé 1991, Kaiser 1992, 1998, Bernardeau et al 1997, Jain & Seljak 1997, Schneider et al 1998)

Bartelmann & Schneider 2001 : theoretical predictions from the gravitational instability scenario

See: Bacon et al 2000^{*}, 2001 ; Kaiser et al. 2000^{*} ; Maoli et al. 2000^{*} ; Rhodes et al 2001^{*} ; Refregier et al 2002 ; van Waerbeke et al. 2001, 2005 ; Wittman et al. 2000^{*} ; Hammerle et al. 2001^{*} ; Hoekstra et al. 2002 ^{*} ; Brown et al. 2003 ; Hamana et al. 2003 ^{*} ; Jarvis et al. 2003 ; Casertano et al 2003^{*} ; Rhodes et al 2004 ; Massey et al. 2004 ; Heymans et al 2004^{*} ; Semboloni et al 2006 ; Hoekstra et al 2005, Hetterscheidt et al 2006, Schrabback et al 2006, Fu et al 2006

Measuring and interpreting cosmic shear

Weak gravitational lensing and cosmology:

Both depend on the dark matter and dark energy content in the Universe

IHP 28-29 Nov 2000

MEASURING THE SHEAR ON A GIVEN SCALE Θ ON MANY UNCORRELATED FIELDS

Properties of cosmic shear signal

Simple case, assuming a single lens plane and $P(k) \sim \sigma_8 k^n$

$$= \langle \kappa^2(\theta) \rangle^{1/2} \approx \mathbf{C} \qquad \sigma_8 \Omega_{\rm m}^{0.8} \left(\frac{\theta}{1 {\rm deg.}}\right)^{-\frac{n+2}{2}} z_s^{0.75}$$

Properties of cosmic shear signal

Simple case, assuming a single lens plane and $P(k) \sim \sigma_8 k^n$

$$\langle \kappa^{2}(\theta) \rangle^{1/2} \approx C \quad \sigma_{8} \Omega_{m}^{0.8} \left(\frac{\theta}{1 \text{ deg.}}\right)^{-\frac{n+2}{2}} z_{s}^{0.75}$$

? ... Amplitude of the lensing signal ?

Amplitude of cosmic shear signal

- Net magnification= random cumulative in all directions,
- $N \approx \frac{D_{os}}{R},$ • After crossing N perturbations with typical size R

$$\kappa \approx \frac{3}{2} \left(\frac{H_o}{c}\right)^2 \ \Omega_o \ \frac{D_{ol} \ D_{ls}}{D_{os}} \ \times R \frac{\delta\rho}{\rho} \times \left(\frac{D_{os}}{R}\right)^{1/2}$$

$$<\kappa^2>^{1/2}\approx\frac{3}{2}\Omega_0 f_{fracHul}$$
 $\sqrt{\frac{R}{D_{Hubbl}}} \left\{ \left(\frac{\delta\rho}{\rho}\right)^2>^{1/2} \right\}$
~ 0.1 x ~ 0.1 for supercluster x ~ 1 : 1 %

1

Properties of cosmic shear signal

Simple case, assuming a single lens plane and $P(k) \sim \sigma_8 k^n$

$$\langle \kappa^{2}(\theta) \rangle^{1/2} \approx 0.01 \ \sigma_{8} \Omega_{m}^{0.8} \left(\frac{\theta}{1 \text{deg.}}\right)^{-\frac{n+2}{2}} z_{s}^{0.75}$$

Amplitude of the lensing signal

If shear = ellipticity, then the S/N is basically a comparison with the intrinsic ellpiticity distribution of galaxies (projected on the sky)

Intrinsic projected ellipticity distribution of galaxies

Beating intrinsic ellipticity distribution

Assume a shear amplitude of 1%

- Minimum number of galaxies
 - $n_g = (0.35/0.01)^2$
- About 10000 galaxies just for 3-sigma detection

Summary

Simple case, assuming a single lens plane and $P(k) \sim \sigma_8 k^n$

Width of intrinsic ellipticity distribution of galaxies : $\sim 30\%$

Is Cosmic Shear measurable?

$z_s = 1$, Top Hat Filter, $n = 30$ gal.arcmin ⁻²														
FOV	S/N V	S/N S	kewness											
(deg.×deg.)	$\Omega = 1$	$\Omega = 0.3$	$\Omega = 1$	$\Omega = 0.3$										
1.25×1.25	7	5	1.7	2										
2.5×2.5	11	10	2.9	4										
5×5	20	20	5	8										
10×10	35	42	8	17										

Measuring the distortion of galaxies induced by gravitational shear

Measuring weak lensing ⇒ measuring shape of galaxies

Unfortunately...

Ellipticity is contaminated

The MegaPrime Point Spread Function (PSF): star analysis over the 36 CCDs of Megacam field

PSF anisotropy

IHP 28-29 Nov. 2006

Non-gravitational PSF

PSF ID	PSF type	Ellipticity
0	no anisotropy	0.00
1	coma	~ 0.04
2	jitter, tracking error	~ 0.08
3	defocus	~ 0.00
4	astigmatism	~ 0.00
5	triangular (trefoil)	0.00

PSF smearing and anisotropy

Time varying PSF

- Optical aberrations
- Diffraction limit of the telescope
- Image sampling
- Thermal instability (defocus)
- Detector distortion
- Charge transfer efficiciency
- Charge diffusion
- Seeing

• Atmospheric refraction

0

 (\bigcirc)

PSF 0

6

PSF 3

0

Correction needed

But corrections mean

- Noise
- Systematic residuals after correction
- → Quality control and check the correction is robust and reliable

Correction : principle

- Find objects that
 - are not lensed
 - are distorted by all other effects

\rightarrow stars

- Find the corrections to apply to each star at each star position
- Interpolate the correction for any field position
- Apply the correction to galaxies

Using stars for the PSF correction

Fahlman et al 1994, Bonnet & Mellier 1994, Mould et al 1994, KSB 1995, Kuijken 1999, Refregier et al 2001, Bernstein et al 2001

IHP 28-29 Nov 2000

Correction : principle

- Since need to extrapolate, the more stars you have, the better the sampling of the field is, the more accurate the extrapolation and the correction are... so...
- Go to crowed star fields!! Choose the galactic bulge!
- Unfortunately, the more stars you have the more likely you will find very bright stars: CCD saturation, ghosts, scattering
- On an the less crowded fields: already one 8th-mag. star per deg²
- So... better to go to empty fields... at the expense of the star sampling... : noise
- Moreover, the star density is not totally uniform: noise

The PSF correction

- The key technical and most debated problem of weak lensing over the past 5 years
- Several methods used, more or less successful
- No brute force deconvolution possible (time consuming on Tera-bytes of images, no clear convergence criteria, very sensitive to the noise and PSF variation)

PSF corrections

Heuristic methods (early works)

Valdes & Tyson (1987): FOCAS shape analysis (subraction of second moments)

Bonnet & Mellier (1993): shape filtered in a annulus+cutoffs. Calibrated with simulations.

Mould et al (1994): FOCAS shape analysis (subtraction second moments with regression)

Statistics on images and first order corrections

KSB (1994): perturbative method. Weighted second moment in circular Gaussian with adapted size. Linear decomposition of the isotropic and anisotropic PSF terms+filter+weightings

Kaiser (2000): PSF model and PSF circulation process

Kuijken (1999): multiple Gaussian decomposition

PSF model fitting + deconvolution

Réfrégier & Bacon (2002): shapelet decomposition and PSF model fitting deconvolution

Bernstein & Jarvis (2002): Laguerre expansion + adaptive elliptical weight

Bridle (2002): Gaussian decompostion

Kuijken (2005): shapelet decompostion

Example : Simulated cosmic shear survey analysed with KSB

Survey simul: No shear

Survey simul: With shear

IHP 28-29 Nov. 2006

PSF correction

Best techniques can measure weak lensing with enough accuracy (i.e. accuracy requested for today scientific goals)

But controls of systematics and the quality of PSF correction must be demonstarted for each survey

Minimum that MUST be done:

B-modes : curl terms

uncorrected stars/corrected galaxy cross correlations : check the extrapolation between stars (1 star per arc-min² only, but 20 galaxies per arc-min²)

Weak lensing : results

IHP 28-29 Nov. 2006

Analysing the galaxy ellipticity: 2-points statistics

Shear variance:

 $\langle e^2 \rangle \sim \gamma^2$

Shear correlation functions:

A look at the real data...

A look at the real data...

21			-	1.17.2		the set and	ana ta ta ta	l Varia		10.00	and	-	pres	Real	2000		a sitter	-		100	Largin		in the s	-			87 1			-	4/10	Harris	1000	1.10	12	No. Contraction	TRA A	Sec. 1	ur en en	10.2 T	1.17	- 915	-	a aliene		an east	117	
8	2-67		1994) 1994	a na sa			5 5 5		- 14 - 1	- 19- 	- 1 4	а. С	20	2	N 1	<u>, , , , , , , , , , , , , , , , , , , </u>	- 1	1.76	N .	<u>N 2</u>	n 74	2	N 1	а <u>н</u>	8	يو اللو ا			-	-	-	-				-	شور پالاند. د		1.1	-		-		Sec. Sec.	1999-199	10.000 	1000	
8	1949) -					ъ. т			- 1	1.1	÷.	2	2	÷.	<u>.</u>	<u>, </u>	- 7	1.75	<u>.</u>	5 B		1	÷.	2	<u> </u>				100	-	- 100				- 1990 - 1990 - 1990	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	-	1.00 M	-				- 10 C		deres de	مؤتجع	-1	<u>~</u>
1				ањ, 1	194 ₆	<u> </u>				1				÷.	<u>.</u>	5 F.	1	1.15	19. U	9 B	- 1 4	<u>_</u>	÷.	5	•	- e	e - 40			-	-					1000		1. Ale	-					1. Jan	1000		1.00	~ 1
		19 (M)	1				1					1				a		1.10	21	<u> </u>		2	2	7	τ	er 10	- 17			1997 - C.	100 - 1					1000 C	- 10 C		-						1999 B		وسروه	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	1944 - 19 				÷.,	<u> </u>	1			1			1	4	1.1					6 S	19	1	÷.,	-	ж	- e	e		-	-						a series a series de la construcción de la construc		Sec. 1		Section 201		1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -		1. A	- 19 A	ar ita	-27-2	
- 1	-	<u>, 1</u>	. *	2	÷.,	8.4	1				1		-	1	1					22		1		-	-	er 10	r					-			عبي عر	والشجور	-	a series and a series of the s	-	-		1997 (BANK)			an a	برزمير	- Carlor	<u>~ [</u>
	<i>e</i> - 1	e e	1	4	£.,	11	1		1	1 M	1	1		1	ь.							10		-	80 - A	20 A	e 20					-			а _с	برجعي	مير ، مع	t same	مير ، م	1,400 M		100 T 100	200 ₀ 0			ar fra	-22	~ [
1 F.	e 1	9.9	1	4	£.,	Ę i	14			1.1	1	1	1	÷.,	•		. 1	1				-					e		1			-			عين م	and the second second	ميرين المير ا	a series and a series of the s	-	a series and		1997 (B		تغير الغير	1999 B		1999	- <u>3</u>
§ 4.	11	(/	1	4	Ę.,	ĻI	1	. 1	1	18		. e.		4	а.			1				10			a 1	200 B	e 20	- 40	- 200	-	- 100 - 100				е _с е	and the second sec	an yan	والمعمول	مىر ^{ىم} ە	and the second		100 Million	2004 S		والجعيرة	and the	-22	~~-{
8 £.	61	((1,	Ι,	ι,	67	1		1	1.1	1	8	8	1	•	e 14		12	÷.,	e - 2	1			2	÷				1.00	- 1		-				والغيور	and a set	a series and a series of the	-	ميرية العير ال			Neg I				a series a s	
Μ.	ξ.Ι	l, I,	A_{i}	I_{i}	l_{r}	l, I	1	1	14	11	1	1	۴.	х.	a	e . e		- <i>1</i>	10	8 B		10	8	10	ат – с	200 IN	e	- 20	1.000	200	200 A	200 B	10 Mar		е <i>, 20</i> 17	, and the	art yan	, and a	ariyan	, marine a		a, 70,	2004 S		e sere a	ين المراجعين موركمين	elseens A	
8. L.	l, l	ί, Ι,	A_{i}	I_{i}	l_r .	1, 1	14	1	1	27	18	8	х,	8	٠.	· ·	1.1	1.1	÷.,	e . e	1.1	1	÷.	e.,	e	- - -	е <u>е</u>	مى		-	- 1 1					والقيورا	مين ^{يري} م	a series and a series of the s		شيرة القيررة			See 1				1999) 1997)	~
<i>I</i> ,	l_{f} (l, l,	d_{i}	l_{t}	l_r .	I, I	(I)	1	<u> </u>	17	1	1	۴.	1	÷.,	6 . F	- 1	1.15	<i></i>	8 B		10	10	а т .	<i>e</i> 1	27 B	÷	- 200	1.00	200	200 - S	20 U	19 M 19		r 201	and the	مير ان ي	والمعمول		and the second second		a. 792	795.1	100 YOM	والمعيام	مراجع	ومريد	
84	$l_{i}l$	6 I,	b	A_{ℓ}	l_{r} .	1, 1	14	1	11	11	1	4	2	<i>.</i>	۴.,	e . e	1	1.1	۴.	e . e		1	۰.	e.,	- P	- - -		مي ه	1. AN	-44	- 100	-	-			والتنبي	شور (¹⁹	a series and a series of the		يور (الجير)	1997 - 1994 - 1994	-	See 1	1999 (1999) 1999 - 1999	1. AN 1.		a series a series de la competencia de La competencia de la c	~ 1
66	h l	6 6	$\cdot h$	6	l_{t} .	l, I	10	1	11	1	1	1	1	۴.	£.,	e e	1	1.6	× .	e 1			10	۰.	e	er 1	r, 14		- 200	100	100 J	ar a	10 A 10 A		r 201	and a	مير ان ي	والمحمولة	ari par	and the second		a - 10	200 Y	nas Pro	ومعيده	ويراجعه	es.	
36	b l	h h	b	\mathbf{k}	ξ.,	l, l	1	. 1	11	14	1	1	٢.	8	£.,	6 . K	1	1.6	<i>.</i>	6.6		÷.	۴.	•	e	- e	- e		1	-	- -	-			مىر		مير (¹⁹⁶	1. Ale		مير المعرب ا	200 IN		1999 I S	1999 (MAR)		an a	a sa	
1 k	b l	6 6	ĥ	h.	ι.	61	11	1	1	1	1	1	8	1	£.,	1.1	1	1.8	8	e 1	1.0	e.	Υ.	÷.,	e*			107	100	100	107	1997 - 10 1				1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	er lant	بالمحمرة	مريا ^{يي} ن	Sec. 1	· •	a	998 S		والعصير	ويراجع	e e construction de la construcción	~ 8
61	M	6 B	- h	k.	ų.,	61	14		54	14	1	4	4	1	<i>*</i> -	e . e	1	18	P	е н		- ⁸⁶	÷.,	÷	e	ел у <u>с</u>	а , на 1		-	-		-		1		والتشير	and the second	dineral di	and the second	والمحك	2007 B	1. No.	20 6 1 (ر میں ہ	وراجو	a series a series de la competencia de La competencia de la c	<u> </u>
8 J.	k	k 7	- Å	ł,	ų.,	ι (1	1	5	[I]	1	1	4	1	1	e e	1	18	£.,	<u>e</u> 1	1.17		Υ.	÷.,	e			105		107	100		r 16	- 20			erivet.	and a second	-	Services.	- ·	19 M	2 9				1. A. A.	~ 1
17.	73	11	1	1	Γ.	1.1	1	1	1	1	1	1	1	1	<i>8</i> -	r . e	1	18	× .	e 1		- 10			•	е. е	а ус.		100	100	-	100 - 10 		-				areas a		and the second second		6. Ma		فين الغير	а ^{сел} и,	مي ^{مي} ر	a a sur a	~ {
1-1	$T_{\rm e}$	11	1	1	8	i.	c is	÷.,	e à		i e					a a				ai a															_	_												_
84	§ (11	1	<u>۶</u>	۶.	51	14	- 1		i s	i ji	÷.	5	ŝ.	а. А	с. н. х. ж.	بر	يىر. بر غ		с. А. 1			÷.			÷.										_							-	-				
	11	11	1	٩.	÷.	11	i â	- 7		í í	÷.	÷.	8	÷.	2		1	, i				÷.,	÷		i.	2										_												- I
韵	1	11	1	1	î.,	11	i i	÷	i î	ιř.	\hat{x}	÷.	\mathbf{i}	8	$\frac{1}{2}$	$\frac{1}{2}$	2	r ir	÷.	è è	i i	÷.	÷.	÷.	i.	÷.				÷.,			e e				e in	ر میں					-		с÷Г	÷.,	÷	$\langle 1$
F			1		1	11	L Î	- i	i i	ιĥ.	Ĵ,	1	÷.	1	\mathbf{r}	1.1	1	i k	÷.	è 1			1	ε.	é i		a .									-		. من ا		يد مند			100	a na		is. Is	. N.	~ 1
	1				1	11	11	- î	- î	ι į	÷È.	÷r	÷.	ŝ.	ì.	1.1	÷,	r in		1.1			÷.		8	2	μ.,					γ.	è e			÷ .		ر میں	ين م	ي مي			4			÷. •		
					٤.	11	10	i	i i	сi.	Ĵ.	÷.	i.	÷.	÷.	i i	1	i i	ġ.	1.1		1	÷.	÷.			÷					ж.				-	a la	i an i		And an	e 1	a 16	ж. 1	ы н.	i ni	6 A	εĥ.	1
C 4 -			1	1	£ .	11	11		Í	1	ТÌ.	÷.	i.	Ĵ.	ì.	i i	1	Ċ.		1.1			1	0		Υ.	•					\mathbf{r}^{1}	e 16			÷.,		ر میں ا	میں اس	بي الين ا	ж÷,		-	<u>ц. н</u>	- N.	55	÷ 6.	1.1
81	3.3		1	t	t.	11	11	1		1	. i.	÷i.	i.	i.	i.	i i	1	ίř.	÷.	i i	1.1	1	÷.	i.	i -	÷.,	ь	i i	÷.,			\mathbf{z}^{2}				an b				an a	÷ is	a 16		а в	16	8 - 8	÷ 6.	1
	83		1	1	۲.	53	t t			1	1	÷Ľ.	i.		i.	ΪĒ	1	i i		1.1	. 1		1								\mathbf{x}		e e			÷.,		ز جو ا	ين م	بي علي ا			-	- 1		66	1.	11
H.	11	11	1	1	Γ.	33	11			11		÷.			÷.	1.1	1	I I	1	1.1	1		Ъ.		1		1.1				2	\mathbf{z}^{-}		e i e		an 1			er ve	بر من			н.	e - e		s - 5	1.	
84	83	11	3	Υ.	3.	<u>8</u>	12		1	11	1	1	1	1	í -	ίi.	1	1	8	1.1	1.1	1	\mathbf{k}	а.	e 1	4	•			÷			e ie			÷.,	ير ال		ين م	ي مي	e i e					8.19	1.	Ń
	łŻ	11	3	1	Ϋ.	83	1 8		15	, Ť.	11	1	1	÷.	١.	ίĹ	1	÷ i	N.	1.1	1	З.	\mathbf{x}_{i}	н.	8			. T				\mathbf{r}	2.2	i i	1	10 A			e p	an a	e 1	с. р.	а.	e i e		6 B	ιŇ.	$\sqrt{1}$
68.	łł	11	1	2	8.	33	1 3	- 1	15	11	10	S.,	Υ.	1	£1	ίí	- 5	i bi	Ν.	5. 5	i s	8	\mathbf{x}_{i}	6			•						e e			ж÷,	а. н		مر ام	بر ابنی ا	e .		•	- 4		5.5	εŃ.	١T
KĐ.	ð i	12	2	2	3.	33	l R	1	13	i Ť	11	1	Υ.	1	$\sum_{i=1}^{n}$	ſί	- 5	ŝ,	Χ.	٩. 1	i k	\mathbf{x}	\mathbf{x}_{i}	\mathbf{v}^{-}		а.	a - 1	e i e				\mathbf{r}		ė. 1				ar i	e a		e 1	i i		e i e		8 - 8	ιŃ.	ŃΪ
68.	ð i	12	1	2	${\mathbb R}$.	33	1 X	- 3	X	13	18.	1	Υ.	Υ.	$\int dt dt$	ίí	1	ιŃ.	X.	η, ή	1	×.	${\bf x}_{i}$	ъ.	•	а.	• •	e i e				+	e è		÷.	ы,	ہے ک	العي ا	ہے م	ير اير ا				i a		8. 5	ίŃ.	ŃН
H. (6)	8 i	12	18	2	2.	82	l R	13	t 3	1 X	I	<u>.</u> <u>y</u>	Χ.	Υ.	\mathbf{V}	11	1	ς Ν.	\mathbf{A}^{\dagger}	٩.	ČN.	х.	\mathbf{x}_{i}	ъ.	÷1	π.	•					\mathbf{r}	1.1	÷ .		an (e et		er se	ar ar	e i	÷ 1				6.5	ιX.	Ń
11 - 6	₿ }	88	8	8	8.	83	l R	1 3	tX	t X	(X)	<u>. X</u> .	X_{-}	Σ	X^{\prime}	17	$-\delta$	ŝ Ń	\mathbf{N}	N 19	÷ 4	Ν.	\mathbf{v}_{e}	$\mathbf{x}_{\mathbf{r}}$	6	φ.	6 B	e i e	÷		\sim	${\bf a}^{\pm}$				ж,	ير م	. en 1	a a	بر مر	e				. 6	1.5	ιŃ.	I
11-76	₿ ł	Q	8	8	8.	83	1 X	1	e X	13	X	Υ.	Х.	X_{-}	X^{2}	ſΎ	1	٠Ń	N.	5	ŝ	. N.	${\bf v}_{\rm b}$	\mathbf{s}_{i_1}	÷.,	\mathbf{x}_{i}	s i s	6 A					e ie			$ \sigma_{i} $	ي م	сer',	ين بن	ی انہے ا	, a	÷,		e i e	•	8 A	١Ň.	
8 R.	$\{ \}$	Q Q	19	Υ.	ų.	۴ Y	28	1	88	l $%$	$\{N\}$	$\langle N \rangle$	\mathcal{X}_{1}	χ	X^{*}	17	- 5	į٩,	Ň	Ń٨	. N	. N.	${\bf v}_{\rm e}$	$\mathbf{s}_{\mathbf{s}_{1}}$	÷.,	\mathbf{x}_{i}	a 1	6 B	• •			•	• •			ы,		ar i	ہے جو	نے جنے	e - 1	. i			ъ.	5.5	١Ň,	N B
200	10.013	άs.ċ	221	CINER O	uje	alug	200	305	ann	last l		100			and the	1000			Cline St		-	No. 1					No the	1.1		1949 Lan	10.00		and the second	-	12.20	Constant	- 15	195	Sec.	1907.00	anen.	1.798	1	1910.0	D.Conto	CHARGE AND	ALC: NO.	

Measuring shear signal in practice

$$E[\gamma^{2}(\boldsymbol{\theta}_{i})] = \frac{\sum_{\alpha=1}^{2} \sum_{k\neq l}^{N_{i}} w_{k} w_{l} \ e_{\alpha}^{\text{gal}}(\boldsymbol{\theta}_{k}) e_{\alpha}^{\text{gal}}(\boldsymbol{\theta}_{l})}{\sum_{k\neq l}^{N} w_{k} w_{l}},$$

Measuring cosmic shear

Top-hat and shear correlation functions from recent space ou ground-based weak lensing surveys

An example:

The Canada France Hawaii Telescope Cosmic Shear Legacy Survey (CSLS)

K. Benabed (IAP), F. Bernardeau (CEA/SPhT), A. Benjamin (UBC, Vancouver), J? Coupon (IAP), L. Fu (IAP), S. Gwyn (U. Victoria), C. Heymans (UBC Vancouver), H. Hoekstra (U. Victoria), M. Hudson (U. Waterloo), R. Maoli (IAP), Y. Mellier (IAP), L. Parker (U. Waterloo), U.L. Pen (CITA), C. Schimd (CEA/SPP+IAP), E. Semboloni (IAP), I. Tereno (IAP), L. van Waerbeke (UBC, Vancouver), J.-P. Uzan (IAP)

CFHT telescope: built and operated by CNRS/INSU, CNRC et UH

MegaPrime: CNRS/INSU, CNRC, UH

Megacam: built by CEA

Data processed and released by Terapix. Archived at CADC

HP 28-29 Nov. 2006

+command line : skywatcher

Terapix/Skywatcher : all data 03A-05A : 20000 Megacam images

Terapix/Skywatcher : all data 03A-05A : 20000 Megacam images

+command line : skywatcher

CFHTLS Wide

И*	g	r	i	Z	
6000s	2500s	2000s	4300s	7200s	
26.40	26.60	25.90	25.50	24.80	

W1: 9x8

	1 deg.		tı t		ê.					- 32*
		w1+3+3	W1+2+3	W1+1+3	w1+0+3	W1-1+3	w1-2+3	W1-3+3	w1-4+3	w3+3-3
_	- 4'				- 4°		_		10 - 4'	
	W1+4+2	w1+3+2	W1+2+2	w1+1+2	w1+0+2	W1-1+2	W1-2+2	w1-3+2	W1-4+2	w2+3+
	w1+4+1 - 6"	w1+3+1	w1+2+1	W1+1+1	w1+0+1 = e^ -	W1-1+1	w1-2+1	w1-3+1	W1-4+1	N2+3+
	W1+4+0	w1+3+0	W1+2+0	W1+1+0	w1+0+0 +	w1-1+0	w1-2+0	w1-3+0 ==> ===	W1-4+0	₩2+3+1 **
ß	w1+4-1 7 8"	W1+3-1	w1+2-1	W1+1-1	W1+0-1	W1-1-1	w1-2-1	w1-3-1	W1-4-1	w2+3+1
	w1+4-2	w1+3-2	W1+2-2	W1+1-2	W1+0-2	w1-1-2	W1-2-2	W1-3-2	W1-4-2	1_ w2+3-
_	w1+4-3	w1+3-3	W1+2-3	W1+1-3	W1+0-3 	w1-1-3	w1-2-3	w1-3-3	W1-4-3	0°
	W1+4-4	w1+3-4	W1+2-4	w1+1−4 fi	w1+0-4	₩1-1-4	W1-2-4	W1-3-4	W1-4-4	พ2+3-:

W2: 7x7

ß

IHP 28-29 Nov 200

Reliability of Cosmic shear with CFHTLS data

- 2 independent pipelines:
 - One in Canada (UVic+UBC+Waterloo), one in France (IAP)
 - Each pipeline does astrometric calibration and image stacking differently
 - Two different IMCAT version used
- Both pipelines check B-modes .
- Both used 3 different cosmic shear statistics
- Cross-check: shapes and amplitudes are similar for the 2 pipelines.
- Deep: check achromaticity using *i* and *r* data independently
- Check with past results (VIRMOS-Descart)

Cosmic shear in CFHTLS Deep fields

(Terapix release T0001)

✓ Area about 2.1 degrees²

✓ Magnitudes objects: 21.5<R<25.5

✓ Density of 23 gal /arcmin²

Semboloni et al 2006

Cosmic shear in CFHTLS Deep fields (Terapix release T0001)

- ✓ Area about 2.1 degrees²
- ✓ Magnitudes objects: 21.5<R<25.5
- ✓ Density of 23 gal /arcmin²

Semboloni et al 2006

Comparing signal in *r* and *i* bands: achromatic effect confirmed

- *i* and *r* band processed independently
- Comparison catalogues contain the same galaxies

Signal evolution with redshift: cosmological nature of the lensing signal

IHP 28-29 Nov. 2006

Cosmic shear with CFHTLS Wide

Total: ~25 deg²

Cosmic shear in CFHTLS wide:

2 independent pipelines same results

Data processed and stacked in 3 different ways, cosmic shear analysed by 2 different pipelines

Comparison with the VIRMOS-Descart survey

IHP 28-29 Nov. 2006

Summary

- 2 independent pipelines provide the same results ; same results as the previous survey Virmos-Descart: <u>robust and reliable measurements</u>
- No B-modes, no <e* γ_g > cross-correlation: no systematics residuals after PSF correction
- No B-mode at all scales (30"; 50'): <u>likely signal from gravity</u> (Curl-free)
- Achromatic: gravitational lensing
- Signal
 - has the <u>amplitude and the shape</u> predicted from theory of structure formation in a CDM-dominated scenario
 - <u>increases with redshift</u> as expected from cosmological structure formation and weak lensing theory

Cosmological weak lensing

Weak lensing :

cosmological intepretation

I. The shape and amplitude of the signal is in very good agreement with gravitational instability paradigm in a CDM-dominated universe.

IHP 28-29 Nov. 2006

Redshift distribution HDF optical+NIR used

•
$$\langle \kappa^2(\theta) \rangle^{1/2} \approx 0.01 \ \sigma_8 \Omega^{0.8} \left(\frac{\theta}{1 \text{deg.}}\right)^{-\frac{n+2}{2}} \overset{0.75}{z_s}$$

FIG. 10.— Effective redshift distribution of galaxies with 21.5 < $I_{AB} < 24.5$ determined from the Hubble Deep Field North and South. The error bars are the Poisson errors from the finite number of galaxies in each bin. The smooth solid curve represents the best fit model with a mean source redshift of $\langle z \rangle = 0.81$. The dashed histogram corresponds to the redshift distribution when the adopted weighting scheme is not taken into account.

Fig. 12. Plot of mean weight per galaxy as function of magnitude 21.5 $< R_{AB} < 25.5.$

Fig. 13. The histogram shows the photometric redshift distribution of 21.5 $< R_{AB} < 25.5$ galaxies of Hubble Decep Field North and South. The central solid line represents the best fit model, and the two other lines the \pm ' σ fits.

II. CSLS in good agreement with the « concordance model »

• Line: σ_8 =0.85 ; Ω_m =0.27 ; Λ =0.73 ; h=0.71 ; <z_s>=0.85 ; σ_{ϵ} =0.36 ; n_{gal}=15 gal/arcmin² • Errors: Poisson+cosmic variance included

Concordance model overplot: no fit

Constraints on Models

Assume we measured the correlation functions $\xi_{\pm}ig(ec{ heta}ig)$.

Cosmological parameters can then be derived by minimising:

$$\chi^{2}(p) = \sum_{ij} \left(\xi_{i}(p) - \xi_{i}^{obs} \right) \operatorname{Cov}_{ij}^{-1} \left(\xi_{j}(p) - \xi_{j}^{obs} \right)$$
(280)

where p is a set of cosmological parameters and Cov_{ij}^{-1} the inverse covariance matrix.

The covariance matrix is derived from the error budget analysis.

$$\operatorname{Cov} = C_O \sigma_{\varepsilon}^4 + C_1 \sigma_{\varepsilon}^2 \,\xi + C_2 \xi \,\xi \tag{281}$$

if intrinsic systematics are discarded.

For angular scale reasonnably large, the error on the power spectrum is given by

$$\Delta P_{\kappa}(l) = \sqrt{\frac{2}{(2l+1)f_{sky}}} \left(P_{\kappa}(l) + \frac{\sigma_{\varepsilon}^2}{2n}\right)$$
(282)

28-29 Nov. 2006

III. Constraints on models

- Analysis of $\sigma_{8}~~\text{and}~\Omega_{m}$, then DE
- Input data vector: d_i = top-hat shear variance at scale θ_i
 - *n*=16 number of angular scale bins
 - **C**=16x16 covariance matrix: $C_{ij} = \langle (d_i m_i)^T (d_j m_j) \rangle$
- $\mathbf{C} = \mathbf{C}_{n} + \mathbf{C}_{s}$ = statistical noise + cosmic variance matrix
 - **C**_s from Schneider et al 2002 with:
 - the deep: 2.1 deg², 23 gal/arcmin, σ_e =0.3 per component
 - the wide (W1 and W3 only): 13.5+8.5 deg², 12 gal/arcmin, σ_e =0.3 per component
 - Cosmic variance assuming Gaussian statistics: wrong on small scales but dominated by statistical noise
 - Matrix components derived from the best fit of WMAP-1: Ω_m =0.3, σ_8 =0.88 Ω_Λ =0.7, *h*=0.7, Γ =0.21
- B mode calibrated by marginalising around B=0 within 1- σ
- Source redshift from HDF , $\mathit{n}(z)$ analytic form and marginalising over 2- σ from best fit

+ 0.6 < h < 0.8 (+ $0.7 < \sigma_8 < 1.0$ for w₀)

• NL power spectrum : P&D or Halo fit (P&D only for DE)

Power spectrum; Dark Matter

IHP 28-29 Nov. 2006

CSLS: constraints on Ω_{m} - σ_{8}

Deep+Wide assuming Ω_m =0.3 :

 σ_8 = 0.89 +/-0.06 (P&D) σ_8 = 0.86 +/-0.05 (Halo fit)

> Deep effective area: 2.1 deg² Wide effective area : 22 deg²

σ_8 with CSLS

Van Waerbeke et al 2005 (Virmos-Descart):

 $\sigma_8 = 0.83 + - 0.07$

Hoekstra et al 2003 (RCS):

 $\sigma_8 = 0.85 + / - 0.07$

Sembolini et al (2005, CFHLS-Deep) +

Hoekstra et al (2005, CFHTLS-Wide):

 $\sigma_8 = 0.89 + / -0.06 (P&D)$

 $\sigma_8 = 0.86 + / -0.05$ (Halo fit)

... internal uncertainty agree within 5%

 $\Omega_{\rm m}$ - σ_8 :

CFHTLS DEEP+WIDE / shallow CTIO 75 deg²

Cosmological parameters from weak lensing surveys: present status

Survey	Telescope	Sky	n	Mag	σ_8	w_0	Ref.
		coverage	gal/amin ²		$(\Omega_m = 0.3)$		
VLT-Descart	VLT	0.65 deg^2	21	$I_{AB} = 24.5$	1.05 ± 0.05		Maoli et al 2001
Groth Strip	HST/WFPC2	$0.05 \ \mathrm{deg}^2$	23	I=26	0.90+0.25		Rhodes et al 2001
MDS	HST/WFPC2	0.36 deg ²	23	I=27	0.94±0.17		Réfrégier et al 2002
RCS	CFHT CTIO	16.4 deg ² + 7.6 deg ²	9	R=24	0.81 ^{+0.14} -0.19		Hoekstra et al 2002a
Virmos-Descart	CFHT	$8.5~{ m deg}^2$	15	$I_{AB} = 24.5$	0.98 ±0.06	-	van Waerbeke et al 2002
RCS	CFHT CTIO	45.4 deg ² + 7.6 deg ²	9	R=24	0.87 ^{+0.09} -0.12		Hoekstra et al 2002b
COMBO-17	2.2m	1.25 deg ²	32	R=24.0	0.72 ±0.09		Brown et al 2003
Keck + WHT	kECK WHT	0.6 deg ² 1.0 deg ²	27.5 15	R=25.8 R=23.5	0.93 ±0.13		Bacon et al 2003
CTIO	CTIO	$75~{ m deg}^2$	7.5	R=23	0.71 + 0.06 - 0.08		Jarvis et al 2003
SUBARU	SUBARU	$2.1~{ m deg}^2$	32	R=25.2	0.78 ^{+0.55} -0.25		Hamana et al 2003
COMBO-17	2.2m	1.25 deg ²	R	R=24.0	0.67 ± 0.10		Heymans et al 2004
FIRST	VLA	$10000 \ \mathrm{deg}^2$	0.01	1 mJy	1.0 ± 0.2		Chang et al 2004
GEMS	HST/ ACS	0.22 deg^2	60	I=27.1	0.68 ± 0.13		Heymans et al 2005
WHT + COMBO-17	WHT 2.2m	4.0 deg ² + 1.25 deg ²	15 32	R _{AB} =25.8 R=24.0	1.02 ±0.15		Massey et al 2005
Virmos-Descart	CFHT	$8.5~{\rm deg}^2$	12.5	$I_{AB} = 24.5$	0.83 ±0.07		van Waerbeke et al 2005
CTIO	CTIO	75 \deg^2	7.5	R=23	$0.71 \substack{+0.06 \\ -0.08}$		Jarvis et al 2006
CFHTLS Deep+ Wide	CFHT	2.1 deg ² + 22 deg ²	22 13	i _{AB} =25.5 i _{AB} =24.5	0.89 ±0.06 0.86 ±0.05		Semboloni et al 2006 Hoekstra et al 2005
GaBoDS	2.2m	$15~{ m deg}^2$	12.5	R=24.5	0.80 ±0.10	-	Hetterscheidt et al 2006
ACS parallel + GEMS+GOODS	HST/STIS HST/ACS	0.018 deg ² 0.027 deg ²	63 96	R=27.0 ? V=27.0	0.52 ^{+0.13} -0.17		Schrabback et al 2006

IHP 28-29 Nov. 2006

σ_8 derived from WL (blue) or clusters of galaxies (red)

Why so much dispersion?

Why so much dispersion?

- Cosmic shear problem?
- Lyman alpha problem?
- Cluster of galaxies problem?
- Redshift survey LSS problem?
- WMAP3 problem?

From ellipticity to cosmology : not so obvious

Ellipticity badly measured (PSF anisotropy corrections, shape measurement)

Redshift of sources badly estimated (photo-z, too deep for spectroscopy)

1

$$\langle e^{2} \rangle_{\theta}^{1/2} = \langle \gamma^{2} \rangle_{\theta}^{1/2} \sim 0.01 \quad \sigma_{8} \ \Omega_{m}^{0.8} \ z_{s}^{0.75} \ \theta^{-(n+2)/2}$$

Shear is contaminated by non-
lensing signal (instrinsic alignment of $\qquad \theta < 15'$: Non-linear evolution of dark matter
power spectrum unknown , extrapolation on

galaxies)

small scales uncertain

Several issues may produce systematic errors

Errors and systematics uncertainties

- Poisson noise (galaxy number density)
- Cosmic variance (see Schneider et al 2002)
- PSF correction
- Biased galaxy sample
- Instrinsic systematics (astrophysics)

$$<\gamma(\theta)^{2}>_{limit}^{1/2} = 1.2\% \left[\frac{A_{T}}{1 \ deg^{2}}\right]^{-\frac{1}{4}} \times \left[\frac{\sigma_{\epsilon_{gal}}}{0.4}\right] \times \left[\frac{n}{20 \ gal/arcmin^{2}}\right]^{-\frac{1}{2}} \times \left[\frac{\theta}{10'}\right]^{-\frac{1}{2}} \times \left[\frac{\theta}{10'}\right]^{-\frac{1}{2}} \times \left[\frac{\theta}{10'}\right]^{-\frac{1}{2}} \times \left[\frac{\theta}{10'}\right]^{-\frac{1}{2}}$$

Weak lensing and the dark universe

systematics and errors could kill the cosmic shear signal?

Errors and systematics uncertainties

- PSF corrections
- Redshift distribution
- Clustering
- Contamination by overlapping galaxies
- Intrinsic alignement
- Intrinsic foreground/backgound correlations
- Sampling variance
- Non-linear variance
- Non-linear dark matter power spectrum
- + cosmic variance (survey size, survey topology, depth)

Systematics: intrinsic correlations

Assume we measure an ellipticity

$$\varepsilon = \varepsilon^{S} + \gamma$$

and we cross-correlate signal from 2 objects, with $z_1 < z_2$ Then

$$\langle \boldsymbol{\varepsilon}_{1} \boldsymbol{\varepsilon}_{2}^{*} \rangle = \langle \boldsymbol{\varepsilon}_{1}^{S} \boldsymbol{\varepsilon}_{2}^{S*} \rangle + \langle \boldsymbol{\varepsilon}_{1}^{S} \boldsymbol{\gamma}_{2}^{*} \rangle + \langle \boldsymbol{\gamma}_{1} \boldsymbol{\varepsilon}_{2}^{S*} \rangle + \langle \boldsymbol{\gamma}_{1} \boldsymbol{\gamma}_{2}^{*} \rangle$$
Intrinsic ellipticiy correlation (=0 if $z_{1} \ll z_{2}$)

(Correlation may exist if tidal effect on galaxy 1 produced by a massive lensing halo is also reponsiable for the shear of galaxy2 (need redshift to control it)

Cosmic shear signal

=0!

WMAP3 and CFHTLS cosmic shear

WMAP3 and CFHTLS cosmic shear

If cosmic shear problems:

Underestimated errors?

Systematic effects overlooked?

... n(z) ? Non linear evolution of structures at small scales. Large scales needed.

Or... WMAP3 analysis also wrong?

- Similar tension exists with Ly-alpha

Lewis et al 0603753, Seljak et al 2006

But WL also has uncertainties

I. sampling n(z)

HST/HDF FOV as compared to CFHTLS

Sensitivity to redshift of sources

Photometric redshift

Bernardeau & Mellier 2003

The uncertain n(z)

Photo-z in CFHTLS deep 550000 galaxies with photo-z

HDF size too small as compared to CFHTLS: sampling variance increases error by 10% (van Waerbeke et al 2006)

We use CFHLTS Deep photometry + ESO / VLT / VVDS spectroscopic survey of CFHTLS D1 field

Photo-*z* from CFHTLS-Deep + VVDS: Seem to peak at higher *z* than our HDF *z*-calibration? Need to be confirmed. If so, it will decrease σ_8

The uncertain n(z)

HDF size too small as compared to CFHTLS: sampling variance increases error by 10% (van Waerbeke et al 2006)

Photo-*z* from CFHTLS-Deep + VVDS: Seem to peak at higher *z* than our HDF *z*-calibration? Would decrease σ_8

IHP 28-29 Nov. 2006

Is the correction method good enough ?

The Shear TEsting Program (STEP)

All teams measuring weak lensing involved All techniques blindly tested using public simulations Then evaluation criteria

$$\gamma - \gamma^{true} = \mathbf{q}(true)^2 + \mathbf{m}(true) + \mathbf{C}$$

q = linearity of the correction

m = calibration bias

c = PSF systematics and shot noise

Best method reach 1% accuracy

Largest error: calibration bias m

IHP 28-29 Nov. 2006

PSF : correction techniques tested with STEP1

006	Heymans et al 2006
V K	SB+
S K	SB+ <u>Erben et al.</u> (<u>2001</u>) + modifications]
N <u>B</u> D	ernstein & Jarvis (2002) econvolution fitting method
м <u></u>	/ittman et al. (2001)
K S <u>K</u>	hapelets to 12^{th} order uijken (2006)
IJ <u>B</u> R	ernstein & Jarvis (2002) ounding kernel method
H K	SB+
H K	SB+
IH K	SB+ [<u>Erben et al.</u> (<u>2001</u>) pipeline]
D K	2K (<u>Kaiser 2000</u>)
1 & C2 K	SB+
IB K	SB+ [<u>Bacon et al.</u> (<u>2000</u>) pipeline]
B Ir	n2shape (<u>Bridle et al. 2001</u>)
	3 Ir B K 1 & C2 K D K H K H K J B K S M M N B J K S K V K

<m>

The Shear TEsting Program (STEP)

 $\gamma - \gamma^{true} = q(true)^2 + m(true) + c$

- q = linearity of the correction
- m = calibration bias
- c = PSF systematics and shot noise

Best method reach 1% accuracy

Largest error: calibration bias m

The PSF anisotropy correction revisited

IHP 28-29 Nov. 2006

Cosmic Shear

- Virmos-Descart +

CFHTLS Deep+Wide

- Much better n(z)

VIRMOS-Descart + CFHTLS-T0001 WIDE+Deep

Benjamin et al 2006 In preparation

WMAP 3 year

Is WMAP-3 that accurate?

 σ_8 derived from WL (blue) or clusters of galaxies (red) and

Lyman-alpha forest (right)

Is WMAP-3 that accurate? WMAP-3 + most recent ACBAR data

- Black: WMAP-3 only
- Red: WMAP-3+ACBAR
- Green: CMBall
- Blue: CMBall+LSS

Kuo et al 2006

Dark Energy

Projected matter distribution and dark energy

The Universe with Dark Energy

Cosmic shear surveys and dark cosmological models : exploring the power spectrum

IHP 28-29 Nov. 2006

Modeling dark energy

- Amount ?: Ω_x
- Modeling its nature :
 - equation of state : w
 - theoretical dark energy model (CFHLS: see Schimdt et al 2006)
- Modeling evolution with time?

$$w = P/\rho \ll cosmic equation of state »Dark energy as a scalar field with a shallow self interactingpotential: V(Φ)$$

$$V(\phi) = rac{\Lambda^{4+lpha}}{\phi^{lpha}}$$
 RP, (e.g. Schimd et al 2006)

$$V(\phi) = \frac{\Lambda^{4+\alpha}}{\phi^{\alpha}} \exp(4\pi G \phi^2) \quad SUGRA$$

- Or a simple description: $w = w_0 + w_1$ (z)

IHP 28-29 Nov. 2006

Flat universe

SNLS+CSLS

Cosmlogical parameters from weak lensing surveys: present status

Survey	Telescope	Sky	n	Mag	σ_8	w_0	Ref.
		coverage	gal/amin ²		$(\Omega_m = 0.3)$		
VLT-Descart	VLT	0.65 deg ⁴	21	$I_{AB} = 24.5$	1.05 ± 0.05		Maoli et al 2001
Groth Strip	HST/WFPC2	$0.05 \ \mathrm{deg}^2$	23	I=26	0.90+0.25 -0.30		Rhodes et al 2001
MDS	HST/WFPC2	0.36 deg^2	23	I=27	0.94±0.17		Réfrégier et al 2002
RCS	CFHT CTIO	16.4 deg ² + 7.6 deg ²	9	R=24	0.81 ^{+0.14} -0.19		Hoekstra et al 2002a
Virmos-Descart	CFHT	$8.5 \mathrm{deg}^2$	15	$I_{AB} = 24.5$	0.98 ±0.06	-	van Waerbeke et al 2002
RCS	CFHT CTIO	45.4 deg ² + 7.6 deg ²	9	R=24	0.87 ^{+0.09} -0.12		Hoekstra et al 2002b
COMBO-17	2.2m	1.25 deg ²	32	R=24.0	0.72 ±0.09		Brown et al 2003
Keck + WHT	kECK WHT	0.6 deg ² 1.0 deg ²	27.5 15	R=25.8 R=23.5	0.93 ±0.13		Bacon et al 2003
CTIO	CTIO	$75~{ m deg}^2$	7.5	R=23	0.71 + 0.06 - 0.08		Jarvis et al 2003
SUBARU	SUBARU	$2.1~{ m deg}^2$	32	R=25.2	0.78 ^{+0.55} -0.25		Hamana et al 2003
COMBO-17	2.2m	$1.25 \ \mathrm{deg}^2$	R	R=24.0	0.67 ± 0.10		Heymans et al 2004
FIRST	VLA	$10000 \ \mathrm{deg}^2$	0.01	1 mJy	1.0 ± 0.2		Chang et al 2004
GEMS	HST/ ACS	0.22 deg^2	60	I=27.1	0.68 ± 0.13		Heymans et al 2005
WHT + COMBO-17	WHT 2.2m	4.0 deg ² + 1.25 deg ²	15 32	R _{AB} =25.8 R=24.0	1.02 ±0.15		Massey et al 2005
Virmos-Descart	CFHT	$8.5~{\rm deg}^2$	12.5	$I_{AB} = 24.5$	0.83 ±0.07	-	van Waerbeke et al 2005
CTIO	CTIO	75 \deg^2	7.5	R=23	$0.71 \substack{+0.06 \\ -0.08}$	$-0.89^{+0.16}_{-0.21}$	Jarvis et al 2006
CFHTLS Deep+ Wide	CFHT	2.1 deg ² + 22 deg ²	22 13	i _{AB} =25.5 i _{AB} =24.5	0.89 ±0.06 0.86 ±0.05	<u>≤</u> −0.80	Semboloni et al 2006 Hoekstra et al 2005
GaBoDS	2.2m	$15 \ deg^2$	12.5	R=24.5	0.80 ±0.10	-	Hetterscheidt et al 2006
ACS parallel + GEMS+GOODS	HST/STIS HST/ACS	0.018 deg ² 0.027 deg ²	63 96	R=27.0 ? V=27.0	0.52 ^{+0.13} -0.17		Schrabback et al 2006

IHP 28-29 Nov. 2006

COMBO-17 Kitching et al 2006

w = -1.27 + 0.64

w = -1?

+LENS

CMB

 $\Omega_M + \Omega_X = 1$

SNIS & Jean

0.4 0.5 0.6

0.0

0.8

0.7

0.3 Ω_M

0.2

0.6 Ω_{DE}

CSLS+SNLS +COMBO-17 CTIO cosmic shear+SNIa+CMB -0.5 -0.4 SNSL 1yr CSLS 1yr -0.6 Deep+Wide ≩ -1 22/170 deg² -0.8 -1.6 -1 0.4 0.6 Jarvis et al 2005 ≥ -1.2 -0.4 99,7 % 95 % -0.6 -1.4 -0.8 -1.6 ≥-1.2 -1.4 BAO (SDSS) -1.8 -1.6 -1.8 -2₀ -20 0.1 0.2 0.3 0.4 0.5 0.6 0.1 Astier et al 2005 $\Omega_{\mathbf{M}}$ Astier et al 2005+ Semboloni et al 2006+Hoesktra et al 2005

Exploring physical models of dark energy with CFHTLS cosmic shear data: quintessence models

- Physical models:
 - Less general than the « empirical » and more conservative P=wp, but can challenge physical models to data
 - Can explore eolution with redshift. Avoid pivot redshift problems on joint data or in case w(z) evolved at high z
 - Can be used in a coherent model with description of the evolution of perturbations and CMB data (normalisation , no use of σ_8)

PB: non linear evolution unknown for these models:

Peacock & Dodds and Halo models used

Cosmology with physical Dark Energy models

Exploring quintessence models

Cosmic shear Deep+Wide + SNIa gold set + WMAP-1

IHP 28-29 Nov. 2006

... not sure ... This is not the end of the story

• Previous plots: assume *w* is constant

• Still missing precision to get a detailled description of dark energy properties

• Still concerns with systematics

Synergy CFHTLS: SNLS+CSLS 5 years (expectations): still far from getting w_a

CSLS+SNLS

What next?

Beyond 1 deg. angular scale:

- far beyond non-linear scales
- CFHTLS Wide field-to-field calibration
- Need to have an excellent wide field corrector for the image quality.

0.850**

0855

Group CFHTLS: W1 field

asheet.

0200

W1, W2, W3 (T0003): consistency

Fu et al 2006

IHP 28-29 Nov. 2006

Beyond 1 degree scale.

Cosmological interpretation of **CFHTLS** data less and less sensitive to non-linear structures

CFHTLS cosmic shear: on-going or not done yet

- Photo-*z* for the full Wide survey
- 2-D/3-D power spectrum reconstruction
- Mass reconstruction and projected dark matter maps of the CFHTLS fields
- Real 3-D tomography
- Decoupling geometry and power spectrum
- Galaxy (light)-Mass-Map cross correlation: biasing
- Galaxy-galaxy lensing (Parker et al 2006)
- Exploring w(z)

3D dark matter reconstruction

Still in a early phase, but

- Very promising for next generation surveys
- Evolution with photo-z +spectro-z likely feasible

(see also, Heavens 2003, Taylor et al 2003)

Join Analysis

Assumed: w=-1

Jarvis, Jain, Bernstein, Dolney 2005

Join Analysis

w free

Jarvis, Jain, Bernstein, Dolney 2005
Breaking degeneracies with tomography

IHP 28-29 Nov. 2006

Tomography:

$\Omega_{\rm m}$ - σ_8 degeneracy with higher order statistics: Skewness of the convergence

Assuming a single lens-plane and $P(k) \propto k^n$:

- $\langle \kappa^2(\theta) \rangle^{1/2} \approx 0.01 \sigma_8 \Omega^{0.8} \left(\frac{\theta}{1 \text{deg.}}\right)^{-\frac{n+2}{2}} z_s^{0.75}$
- $\langle \kappa^2(\theta) \rangle = \langle \gamma^2(\theta) \rangle$ • $S_3(\kappa) \approx 40 \ \Omega^{-0.8} \ z_s^{-1.35} \overset{\text{Bernardeau, van Waerbeke, Mellier 1997,}}{\underset{\text{Need mass maps for skewness}}{}^{\text{Bernardeau, van Waerbeke, Mellier 1997,}}$

- Distribution increasingly skewed by gravity that will produce non-linear structures (clusters, groups, galaxies):
- $S_3(\kappa)$ will provide a statistical description of these non-linear systems

MASS MAP Skewness of the convergence measured in VIRMOS-Descart data

High-order statistics: Probing non-Gaussian signatures

- At least: confirm the signal is of cosmological nature with CDM + gravitational instability model
- But still too noisy to separate cosmological models
- Need to get E/B modes

Alternative ?

- kurtosis? (Takada & Jain 2002)
- Skewness of M_{ap}? (Schneider et al 1998)
- 3PCF of the shear field

Using high-order statistics and 2 redshift bins

Decoupling geometry and power spectrum:

Decoupling geometry and power spectrum

$$\begin{split} P_{\mathrm{g}\gamma}(\ell;f,b) &= \frac{3\Omega_{\mathrm{m}0}H_0^2}{2c^2}\int \frac{d\chi_{\mathrm{f}}}{a(\chi_{\mathrm{f}})}W_f(\chi_{\mathrm{f}})\int d\chi_{\mathrm{b}}W_b(\chi_{\mathrm{b}}) \\ &\cdot \\ &\times \frac{\chi_{\mathrm{b}}-\chi_{\mathrm{f}}}{\chi_{\mathrm{b}}\chi_{\mathrm{f}}}P_{\mathrm{g}\delta}(\frac{\ell}{\chi_{\mathrm{f}}},\chi_{\mathrm{f}})\,\Theta(\chi_{\mathrm{b}}-\chi_{\mathrm{f}}) \end{split}$$

f= foreground ; *b*=background If overlap between the 2 population is small:

$$\begin{split} P_{\gamma\gamma}(\ell;f;b) &= \left(\frac{3\Omega_{\rm m0}H_0^2}{2c^2}\right)^2 \\ &\times \int d\chi_{\rm f} W_f(\chi_{\rm f}) \int d\chi_{\rm b} W_b(\chi_{\rm b}) \\ &\times \int \frac{d\chi}{a(\chi)^2} \frac{\chi_{\rm b}-\chi}{\chi_{\rm b}} \frac{\chi_{\rm f}-\chi}{\chi_{\rm f}} P_{\delta\delta}\left(\frac{\ell}{\chi},\chi\right) \Theta(\chi_{\rm b}-\chi) \,\Theta(\chi_{\rm f}-\chi). \end{split}$$

$$P_{g\gamma}(\ell; f, b) \approx F(\ell; f) + G(\ell; f) / \chi_{\text{eff}}(b)$$

$$P_{\gamma\gamma}(\ell; f, b) \approx A(\ell; f) + B(\ell; f) / \chi_{\text{eff}}(b)$$

Scaling of lensing signal independent of the power spectrum but only depends on geometry

 $\frac{P(\ell; f, b) - P(\ell; f, b')}{P(\ell; f, b'') - P(\ell; f, b''')} = \frac{\chi_{\text{eff}}(b)^{-1} - \chi_{\text{eff}}(b')^{-1}}{\chi_{\text{eff}}(b'')^{-1} - \chi_{\text{eff}}(b''')^{-1}}$

Need at least 3 source planes

Zhang, Hui, Stebbins 2003: 4000 deg² Error on photo-z: 0.01, 0.02, 0.05

Next Generation Cosmic Shear Surveys

Goal: dark energy properties know to 5%-1% (50%-20% today)

Larger field of view

Multiple lens planes (tomography)

Accurate 3D positions of lensed galaxies and lenses

Better accuracy on galaxy shape measurements

Future Progress

Survey	Sq. Degrees	Filters	Depth	Dates	Status
CTIO	75	1	shallow		published
VIRMOS	9	1	moderate		published
COSMOS	2 (space)	1	moderate		complete
DLS (NOAO)	36	4	deep		complete
Subaru	30?	1?	deep	2005?	observing
CFH Legacy	170	5	moderate	2004-2008	observing
RCS2 (CFH)	830	3	shallow	2005-2007	approved
VST/KIDS/ VISTA/VIKING	1700	4+5	moderate	2007-2010?	50%approved
DES (NOAO)	5000	4	moderate	2008-2012?	proposed
Pan- STARRS	~10,000?	5?	moderate	2006-2012?	~funded
LSST	15,000?	5?	deep	2010-2020?	proposed
JDEM/SNAP	1000+ (space)	9	deep	2013-2018?	proposed
VST/VISTA	5000?	4+5	moderate	2010-2015?	proposed
DUNE	20000? (space)	2+1?	moderate	2012-2015?	proposed

Sky coverage and depth (Assuming NO lens planes)

Gains:

> A factor of 2 on $\sigma(w)$ from 100 to 1000 deg²

Another factor of 2 from 1000 to 5000 deg²

> A factor of 2 on $\sigma(\Omega_x)$ from 100 to 1000 deg²; few beyond.

> A factor of 2 on $\sigma(w)$ from R=25 (present survey) to R=27; few beyond.

Sensitivity to critical parameters: shear calibration and z-calibration

IHP 28-29 Nov. 2006

M_{ap} for CFHT-LS and SNAP-Lensing

Baseline:

- 1.2m telescope
- FOV 0.5 deg²
- WL survey: 20000 deg^2 in 1 red broad band,

35 galaxies/amin² with median $z\sim 1$, ground based follow-up for photo-z's

- SNe survey: $2 \times 60 \text{ deg}^2$, observed for 9 months each every
- 4 days in 6 bands, 10000 SNe out to $z\sim1$
- launch target: 2012

DUNE

Dark UNiverse Explorer

PI: Réfréaier

The ultimate step ?

IHP 28-29 Nov. 2006