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The Relativity Mission ConceptThe Relativity Mission Concept
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Launch:  April 20, 2004 – 09:57:24
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Delta II Accuracy - 50%x

Boeing & Luck -- A Near Perfect Orbit

Orbit achieved ~100 m

from optimum  

Required Final Orbit Area 

Delta II Nominal Accuracy

One Month of orbit trim operations planned, none needed
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The Overall Space Vehicle
Redundant spacecraft
processors, transponders.

16 Helium gas thrusters, 0-10 mN
ea, for fine 6 DOF control.

Roll star sensors for fine pointing.

Magnetometers for coarse
attitude determination.

Tertiary sun sensors for very
coarse attitude determination.

Magnetic torque rods for coarse
orientation control.

Mass trim to tune moments of
inertia.

Dual transponders for TDRSS
and ground station
communications.

Stanford-modified GPS receiver
for precise orbit information.

70 A-Hr batteries, solar arrays
operating perfectly.
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Why go to space?

1 marcsec ~
width of a human hair seen from 10 miles

Anticipated leading error sources

 Gyroscope drift

 Readout error effect

 Guide star proper motion
uncertainty

)

Gyro Newtonian Drift Rates  GR Effects Under Test

==> GR effects manifest w/o modeling or subtraction of Gyro

Newtonian effects

Achieved by controlling “near zeros”     {

 Fundamental GP-B Requirement

1) rotor inhomogeneities

2) "drag-free"

3) rotor asphericity

4) magnetic field

5) pressure

6) electric charge

LS LASER GYRO

NAV
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GP-B:  The Main Systems

Gyroscope Telescope Science Instrument

Cryogenic Probe Payload Space Vehicle

Star

Probe

4 gyros

(inside)
Dewar

Telescope with

dual readout  (inside)
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GP-B Experimental Design I

Gyro suspension system keeps
the gyro at the center of the
housing by servo-controlled
electrostatic forces applied to
a set of 6 electrodes

Gyro is spun up to ~80 Hz with
helium gas

London magnetic moment is
aligned with gyro spin axis and
measured by superconducting
quantum interference device

Science instrument assembly
is placed in a non-magnetic
vacuum probe, which is then
placed in a dewar filled with
superfluid helium
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Spin axes of four
gyros are initially
aligned with a guide
star, IM Pegasi —
a reference in inertial
space

A telescope keeps
tracking the guide star

Long term drift in the spin axis
orientation of the gyros is
measured relative to inertial space

GP-B spacecraft rolls at a period of
77.5 s and runs in a near-polar,
near-circular orbit at an altitude of
~640 km

GP-B Experimental Design II
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Dewar and Probe
Dewar boiloff gas used for attitude and
translation control of vehicle

ATC back pressure controls dewar
temperature.

Porous plus phase separator allows Helium gas
to flow from dewar.

Dewar temperature of 1.82 K keeps science
instrument temperature stable.

Lifetime 17.3 months, 16 month requirement

• Largest flight dewar: 2524

liters.

Probe during assembly

Dewar

Gyro-

scopes
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The Science Gyroscopes

Material: Fused quartz, homogeneous

to a few parts in 107

Coated with Niobium

Diameter: 38 mm.

Electrostatically suspended.

Spherical to 10 nm – minimizes

suspension torques.

Mass unbalance: 10 nm – minimizes

forcing torques.

All four units operational on orbit.

Gyroscope rotor and housing halves

If a GP-B rotor was scaled to the size of the

Earth, the largest peak-to-valley elevation

change would be only 2 meters!

Demonstrated performance:

• Spin speed: 60 – 80 Hz.

• 1 Hz/hr spin-down.
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Self-aligning laps

Uniform rotation-rate, pressure

6 combinations of directions, reversed

2 & 2 every 6 seconds

Continuous-feed lapping compound

Controlled pH

Interested, skilled operators!

 Asphericity: Near Zero – Making
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Gyro Asphericity Ground Verification

Talyrond sphericity

measurement resolution

~1 nm
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Near Zero: Mass Unbalance  &

Gyro # 1 @ 3 Hz

36-hour Polhode Period
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Initial Gyro Levitation and De-levitation

using analog backup system

GP-B Gyro On-Orbit Initial Liftoff
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Position Measurement Performance
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Near-Zero: Ultra-low Pressure
(after spoiling with helium)

Gyro spin-up: He gas at 7K thru channel)

Gyro1               ~ 50               15,800

Gyro2               ~ 40               13,400

Gyro3               ~ 40                 7,000

Gyro4               ~ 40               25,700

2300 yr requirement

before bakeout       after

bakeout

 Demonstrated

performance:

Pressure < 2 x 10-9 Pa

(1.5 x 10-11 Torr)

The Cryopump:  230 m2 area

Gyro spindown periods on-orbit (years)

Gyro1               79.4 Hz

Gyro2               61.8 Hz

Gyro3               82.1 Hz

Gyro4               64.9 Hz

Final spin speeds
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Establishing Initial Conditions:

Spin Axis Alignment

Start

Goal

Telescope Boresight Plot -

Prediction
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Coarse Alignment Rate:  2.0 arc-sec/hr

Telescope Boresight Plot - Actual

• Residual suspension torques on
rotor shape used to effect alignment.

• Provides an early calibration of a
primary error source – found to be
20% of pre-launch predicts!

Demonstrated performance: final

alignment to within 10 arc-sec of goal.
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Discharge of Gyro1

Ti Steering Electrode

 Near-Zero: Rotor Electric Charge
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Day of year, 2004

450mV

100mV

0 mV

UV Lamp Assembly

• Rotor charge controlled via UV excited electron
exchange with dedicated electrode.

• Charge rates ~ 0.1 mV/day

• Continuous measurement at the 0.1 mV level;
control requirement: 15 mV

70mV/hour

discharge
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          Satellite actively controls 9 interacting DOF:

3 in attitude of spacecraft to track guide star & maintain roll phase

3 in translation: drag-free about geometric center of gyro housing

3 in translation of gyroscope with respect to housing

Dynamics coupling is complex

GP-B Drag-Free & Attitude Control:
A 9 degree of freedom problem
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Flight Proportional Thruster Design

Propellant: Helium Dewar Boiloff

Supply: 5 to 17.5 torr

Re ~10 – Laminar flow!

• Thrust: 0 – 10 mN

• ISP: 130 sec

• Mdot:  6-7 mg·s 1

• Noise: 25 N·Hz 1/2

• Operates under choked flow

conditions

• Pressure FB makes thrust

independent of temperature
3.5mm ia

Thrust

Location of thrusters on Space Vehicle
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Drag-Free Control:  Near Zero Acceleration Environment

On Orbit Performance -

Cross track drag free  performance better than 4x10-12 g   0.01mHz to 0.1 Hz
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The London Moment Readout

Centering stability < 50 nm
DC trapped flux 10-6 gauss
AC shielding > 1012

1marcsec ~10–13 gauss

Requirement

“SQUID”            1 marc-s in 5 hours

72
1.14 10 Gauss

L s s

mc
M

e
= = ( )
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  Near Zero: Ultra-low Magnetic Field

Magnetic fields are kept from

gyroscopes and SQUIDs using a

superconducting lead (Pb) bag

Mag flux = field x area.

Successive expansions of four

folded superconducting bags give

stable field levels at ~ 10-7 G.

AC shielding at 10-12 [ =120 dB! ]

from a  combination of

cryoperm, lead bag, local

superconducting shields &

symmetry.
Lead bag in Dewar

Expanded

lead bag

On Orbit Performance Met Requirements

Trapped field: Gyro 1  3.0 MicroGauss

 Gyro 2  1.3 MicroGauss

Gyro 3  0.8 MicroGauss

Gyro 4  0.2 MicroGauss
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 Gyro Readout Performance On-Orbit

SQUID
 Output

(V)

Zero to peak ~ 100 arc/sec
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Guide Star & Telescope

Selection
Proper Motion Measurement

Telescope Design
Tracking Verification
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Telescope Field of View 

120 arc-sec

Guide Star Selection

Criteria:

Sufficiently close to equatorial
plane for maximum frame
dragging signal

Optically bright enough to meet
the pointing requirement.

Be a radio star to allow VLBI
proper motion measurement

IM Peg

Guide Star

HR Peg 

(0.4°)

HD 216635 

(1°)

0.5° radius

±60 arc-sec 

telescope FOV

Palomar star map

22h53’02” +16°50’28”  Mag 5.7

Optical diameter: ~1 marc-sec
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Physical length      0.33 m

Focal length           3.81 m

Aperture                 0.14 m

At focal plane

Image dia.               50 µm

0.1 marc-s            0.18 nm

Some dimensions

Beam splitter assembly (detail)

Star Tracker  Concept
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Star Tracking Telescope

Field of View: ±60 arc-sec.

Measurement noise: ~ 34 marc-s/ Hz

All-quartz construction.

Cryogenic temperatures make a very stable
mechanical system.

Detector Package

Telescope in Probe

Image divider

Integrated Telescope

At focal plane:

Image diameter     50 µm

0.1 marc-s  =         0.18 nm

Physical length      0.33 m

Focal length           3.81 m

Aperture                 0.14 m
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IM Peg

Probe windows
Top Plate

Primary 

Mirror

Secondary

Mirror

Tertiary

Mirror

 Beam

Splitter

Detectors

Detectors
Roof

prisms

200K 70K 30K150K 3.4K

Star Tracking Telescope Optical Path
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Telescope Detector Signals 

from IM Peg Divided by Rooftop Prism
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Acquiring Star
Drive-in time ~ 110 s

RMS pointing ~ 90 marc-s
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Guide Star Verification

Acquisition of
proper star
verified by:

Neighbor star
visits

Photometry
comparisons
with ground
based
measurements

     Over 1 year of
observations, IM
Peg has become
one of the most
observed stars in
the heavens

Comparison of ground and flight photometry
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IM Peg (HR 8703) Guide Star Identification

IM Peg

Guide Star

HR Peg

(acquired)

NhS1

(acquired)

Palomar Star Map

Preliminary HR 8703 Positions for Peak of Radio Brightness
Solar System Barycentric, J2000 Coordinate System
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Very Large Array, Socorro, New Mexico

• Optical & radio binary star

• Magnitude - 5.7 (variable)

• Declination - 16.84 deg

• Proper motion measured by
   SAO using VLBI
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Mission Operations Center

Anomaly Room

On-Orbit:  GP-B Mission Operations
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GP-B Communications, Commands, and Telemetry

TDRSS Network
20-40 minutes/contact
~12 contacts per day
1-2 Kbits/sec data rate

Ground Stations
10-12 minutes/contact
4 contacts per day
32 Kbits/sec data rate

1.5 Tbytes/year

TDRSS Satellite

Ground Station

GP-B Satellite

GP-B science signal 12.9 mHz
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gyro output

    scale factors matched for accurate subtraction

Aberration (Bradley 1729) -- Nature's calibrating signal for gyro readout

telescope output

Dither -- Slow 30 marc-s oscillations injected into pointing system

Dither & Aberration:  Two Useful Tools

         Continuous accurate calibration

of GP-B experiment

Orbital motion        varying apparent position of star
(vorbit/c + special relativity correction)

Earth around Sun -- 20.4958 arc-s @ 1 year period

S/V around Earth -- 5.1856 arc-s @ 97.5 min period

{
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Built-In Checks

Structure of Data
Predicted GR results:      6614.4 marc-sec Geodetic

40.9 marc-sec Frame-dragging

Orbital aberration:        5185.6 marc-sec

Annual aberration:         20495.8 marc-sec

Gravitational deflection of light:         21.12 marc-sec peak (11 Mar 2005)

Parallax:        ~ 10 marc-sec

Scaling Verifications
Magnitudes & planar relations of effects known

Robustness further confirmed
     by agreement with

Multiple data analysis approaches.

Gyro-to-gyro direct comparisons.

200 250 300 350 400 450 500 550 600 650
0

5

10

15

20

25

Jan.01,2005

Gravitational deflection of  starlight

Closest approach 16 degrees
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A.  Initial orbit checkout (121 days) Completed Aug. 2004

ATC setup

Gyro spin-up

Re-verification of ground calibrations [scale factors, tempco’s etc.]

Disturbance measurements on gyros at low spin speed

~10000 separate commands, virtual 24 hour contact thru GSN and

TDRSS

B.  Science Phase (350 days) Completed Aug. 2005

Exploiting the built-in checks

Completed approximately July 2005

C.  Post-experiment tests (56 days) Completed Sept. 29 2005

Refined calibrations through deliberate enhancement of

disturbances, etc.

 The GP-B Mission Timeline
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Data Ground Analysis

Anticipated completion April 2007

~ 1.5 Terabyte sof data

• ~ 700 sensors

• ~ 10,000 monitors

 • Nominal data rate: 0.1-1 Hz

 • Snapshots: 220-2200 Hz

> 99% data recovery

Data release on COBE/WMAP model

All data released to public coinciding with publication of

refereed papers

 The Final Phase of the GP-B Mission




