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Gravitational waves

e A crustal asymmetry in a rotating neutron star can

lead to a time varying quadrupole
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Astrophysical mountains

Isolated Pulsars Accreting Systems

Radiation

e assume spindown e assume accretion torque
entirely due to GW Is balanced by GWs
o PPS——2AeRemt & 107

for v, = 300hz
@ e~ 10~* (Crab)
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Standard accretion model
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e Interaction at magnetospheric radius R
e Spin up torque J = M+/GMR,
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Thecasefor gravitational waves L
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Thecasefor gravitational waves
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o Need an extra

spindown torque..

..gravitational waves
can do the job!

- crustal asymmetry
- r-modes
- magnetic mountains
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Do we need mountains?

o LMXBs are likely to be interesting sources of
gravitational waves
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Do we need mountains?

o LMXBs are likely to be interesting sources of
gravitational waves

o Need to model the spin equilibrium and spin
evolution to produce templates

o Need to understand what kind of “mountain” the crust
can sustain
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M aximum mountain

o Elastic matter in the crust

Neutron Star

Solid
crust

Heavy
liquid
interior
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M aximum mountain
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M aximum mountain

o Elastic matter in the crust

a perturb spherical background
Neutron Star 4 — 0 fa

— Q Tup = —PYab T HO ab

e e . depends on crustal composition
(accreted or non-accreted crust)

a solve Vir,, = pVpo

Heavy

s I a crustwill crack if ¢ > 0,0z
26 = o0 (Von Mises criterion)
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Accreted vs. non-accreted L

2.5e+30

o e i @ Composition determines
\ : EOS and shear modulus

i Y | 1/3 4/3

Ko b 3 1 - Xn 2
st | | u=0.1194 [ — n Ze

umonnn (2)7 (122,) " 2
: le+14 ‘ ‘ '; (g/cn‘13 )Se+13 I ‘ ‘ ‘ 0
Accreted crust | Non Accreted crust | Accreted crust

Mass 1.4M@ ]..4M® 1.6M®

Radius 12.56km 12.3km 12.3km
Crust Thickness | 1.76km 1.5km 1.5km
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Boundary Conditions

Two possibilities at the crust core interface:

o Assume unperturbed core
-0¢p = 0
£, =0
Can use Newtonian core or Relativistic core
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Boundary Conditions

Two possibilities at the crust core interface:
o Assume unperturbed core
-0 =0
£, =0
Can use Newtonian core or Relativistic core

a Perturb the core
-Continuity of the tractions
-4 = T%p,

Mountains on neutron stars — p.8/12



M aximum mountain

Is an accreted or a non-accreted crust stronger?

e ¢=2.410"° Non-Accreted crust
(Isolated Pulsar)

@ ¢=1.310"° Accreted crust
(Accreting Neutron Star)

M(Mg) R (km) crustthickness (km)
Accreted 1.4 12.56 1.76
Non-Accreted 1.4 12.3 1.5

=
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M aximum mountain
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M aximum mountain
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e accretion models can ex-
e e " plain LMXB spin equilib-
e ~ 10~ Y(theory) rium without GWs
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Detecting mountainswith L1GO L
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Conclusions

e LIGO is starting to collect astrophysically significant
data
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Conclusions

e LIGO is starting to collect astrophysically significant
data

o Detection?

a EXxotic states of matter..solid cores?
A deformation of the core could be a strong source of
GWs..

o Calculation in fully relativistic elasticity needed.

e Magnetic mountains
2 p4
€ ~ % ~ 10~ ! for B=10'?
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