Mountains on neutron stars

Brynmor Haskell

Gravitational waves

 A crustal asymmetry in a rotating neutron star can lead to a time varying quadrupole

Gravitational waves

 A crustal asymmetry in a rotating neutron star can lead to a time varying quadrupole

Gravitational waves

 A crustal asymmetry in a rotating neutron star can lead to a time varying quadrupole

Astrophysical mountains

Isolated Pulsars

 assume spindown entirely due to GW

•
$$\dot{P}P^3 = -\frac{32G}{5c^5}\epsilon^2 I_0(2\pi)^4$$

• $\epsilon \approx 10^{-4}$ (Crab)

Accreting Systems

 assume accretion torque is balanced by GWs

•
$$\epsilon \approx 10^{-7}$$

for $\nu_e = 300 \mathrm{hz}$

Standard accretion model

- Interaction at magnetospheric radius R_0
- Spin up torque $\dot{J} = \dot{M}\sqrt{GMR_0}$

The case for gravitational waves

 Need an extra spindown torque..

The case for gravitational waves

- Need an extra spindown torque..
- ...gravitational waves can do the job!

The case for gravitational waves

- Need an extra spindown torque..
- ...gravitational waves can do the job!
- crustal asymmetry
 - r-modes
 - magnetic mountains

Do we need mountains?

 LMXBs are likely to be interesting sources of gravitational waves

Do we need mountains?

- LMXBs are likely to be interesting sources of gravitational waves
- Need to model the spin equilibrium and spin evolution to produce templates

Do we need mountains?

- LMXBs are likely to be interesting sources of gravitational waves
- Need to model the spin equilibrium and spin evolution to produce templates
- Need to understand what kind of "mountain" the crust can sustain

• Elastic matter in the crust

- Elastic matter in the crust
- perturb spherical background

 $x^a \longrightarrow x^a + \xi^a$

- Elastic matter in the crust
- perturb spherical background $x^a \longrightarrow x^a + \xi^a$

$$\bullet \ \tau_{ab} = -pg_{ab} + \mu \sigma_{ab}$$

- Elastic matter in the crust
- perturb spherical background $x^a \longrightarrow x^a + \xi^a$
- $\tau_{ab} = -pg_{ab} + \mu\sigma_{ab}$
- μ depends on crustal composition (accreted or non-accreted crust)

- Elastic matter in the crust
- perturb spherical background $x^a \longrightarrow x^a + \xi^a$

•
$$\tau_{ab} = -pg_{ab} + \mu\sigma_{ab}$$

• μ depends on crustal composition (accreted or non-accreted crust)

• solve
$$abla^a au_{ab} =
ho
abla_b \phi$$

- Elastic matter in the crust
- perturb spherical background $x^a \longrightarrow x^a + \xi^a$

•
$$\tau_{ab} = -pg_{ab} + \mu\sigma_{ab}$$

 µ depends on crustal composition (accreted or non-accreted crust)

• solve
$$\nabla^a \tau_{ab} = \rho \nabla_b \phi$$

• crust will crack if $\bar{\sigma} \ge \sigma_{max}$ $2\bar{\sigma} = \sigma_{ab}\sigma^{ab}$ (Von Mises criterion)

- Elastic matter in the crust
- perturb spherical background $x^a \longrightarrow x^a + \xi^a$

•
$$\tau_{ab} = -pg_{ab} + \mu\sigma_{ab}$$

 µ depends on crustal composition (accreted or non-accreted crust)

• solve
$$\nabla^a \tau_{ab} = \rho \nabla_b \phi$$

• crust will crack if $\bar{\sigma} \ge \sigma_{max}$ $2\bar{\sigma} = \sigma_{ab}\sigma^{ab}$ (Von Mises criterion)

•
$$\sigma_{max} \approx 10^{-5} - 10^{-2}$$

Accreted vs. non-accreted

Boundary Conditions

Two possibilities at the crust core interface:

• Assume unperturbed core

$$-\delta \phi = 0$$

 $-\xi_r = 0$
Can use Newtonian core or Relativistic core

Boundary Conditions

Two possibilities at the crust core interface:

• Assume unperturbed core

$$-\delta\phi = 0$$

$$-\xi_r = 0$$

Can use Newtonian core or Relativistic core

- Perturb the core
 - -Continuity of the tractions

 $-t^a = T^{ab}\hat{n}_b$

Is an accreted or a non-accreted crust stronger?

- $\epsilon = 2.4 \ 10^{-6}$ Non-Accreted crust (Isolated Pulsar)
- $\epsilon = 1.3 \ 10^{-6}$ Accreted crust (Accreting Neutron Star)

	M (M $_{\odot}$)	R (km)	crust thickness (km)
Accreted	1.4	12.56	1.76
Non-Accreted	1.4	12.3	1.5

GWs could balance accretion but:

 breaking strain poorly constrained

 $(\sigma_{max} \approx 10^{-5} - 10^{-2})$

GWs could balance accretion but:

- breaking strain poorly constrained $(\sigma_{max} \approx 10^{-5} 10^{-2})$
- accretion models can explain LMXB spin equilibrium without GWs

Detecting mountains with LIGO

 LIGO is starting to collect astrophysically significant data

- LIGO is starting to collect astrophysically significant data
- Detection?

- LIGO is starting to collect astrophysically significant data
- Detection?
- Exotic states of matter..solid cores?
 A deformation of the core could be a strong source of GWs..

- LIGO is starting to collect astrophysically significant data
- Detection?
- Exotic states of matter..solid cores?
 A deformation of the core could be a strong source of GWs..
- Calculation in fully relativistic elasticity needed.

- LIGO is starting to collect astrophysically significant data
- Detection?
- Exotic states of matter..solid cores?
 A deformation of the core could be a strong source of GWs..
- Calculation in fully relativistic elasticity needed.
- Magnetic mountains

 $\epsilon \approx \frac{B^2 R^4}{GM^2} \approx 10^{-11}$ for B=10¹²