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Abstract:
We presentin a manifestlygauge-invariantform the theoryof classical linear gravitationalperturbationsin part I, and a quantumtheoryof

cosmological perturbations in part II. Part I includesapplicationsto severalimportant examplesarisingin cosmology:a universedominatedby
hydrodynamicalmatter, a universefilled with scalar-fieldmatter,andhigher-derivativetheoriesof gravity. The growth ratesof perturbationsare
calculatedanalytically in most interestingcases.Theanalysisis appliedto studytheevolution of fluctuationsin inflationary universemodels.PartII
includesa unified descriptionof thequantumgenerationandevolution of inhomogeneitiesaboutaclassicalFriedmannbackground.The methodis
basedon standardcanonicalquantizationof theactionfor cosmologicalperturbationswhich hasbeenreducedto anexpressionin termsof asingle
gauge-invariantvariable.The spectrumof densityperturbationsoriginating in quantumfluctuationsis calculatedin universeswith hydrodynamical
matter,in inflationary universemodelswith scalar-fieldmatter,and in higher-derivativetheoriesof gravity.

The gauge-invarianttheoryof classicaland quantizedcosmologicalperturbationsdevelopedin partsI and II is applied in part Ill to several
interestingphysicalproblems.It allows a simple derivationof therelationbetweentemperatureanisotropiesin thecosmicmicrowavebackground
radiation and the gauge-invariantpotential for metric perturbations.The generationand evolution of gravitationalwavesis studied. As another
example,asimpleanalysisof entropyperturbationsandnon-scale-invariantspectrain inflationary universemodelsis presented.Thegauge-invariant
theoryof cosmologicalperturbationsalso allows a consistentand gauge-invariantdefinition of statisticalfluctuations.



General introduction

The theoryof linearizedgravitationalperturbationsin an expandinguniverse— cosmologicalpertur-
bationsfor short— hasbecomea cornerstoneof moderncosmology.It is usedto describethe growth of
structurein the universe,to calculatethe predictedmicrowavebackgroundfluctuations,and in many
other considerations.

Over the past decade,new methods to study linearized gravitational perturbationshave been
developed,mostnotably a gauge-invariantapproachwhichis simpler andeasierto apply thanprevious
methods.The goal of this review article is to give a survey of the theoriesof classicaland quantum
cosmologicalperturbations,with particular emphasison the gauge-invariantapproach.We presenta
generaldiscussionof cosmologicalperturbationsand of the definition and meaningof gauge-invariant
metric perturbation.Further,a generalset of equationsof motion for thesequantitiesarederivedand
appliedto the studyof the evolutionof cosmologicalperturbationsin the most importantcosmological
models. The issue of initial conditionsis addressedwith particularcare. Both quantumgenerationand
evolution of the fluctuationsis discussedin a unified manner.

Thereis good observationalevidencethat the universewas very homogeneousand isotropic on all
scalesatearly times. It is ~suallyassumedthat thereexist smallprimordial perturbationswhich slowly
increasein amplitudedue to gravitationalinstability to form the structureswe observeat the present
time on the scalesof galaxiesand galaxy clusters. The growth of theseprimordial perturbationsis a
problemideally suited to be solved by applying linear gravitationalperturbationtheory.

The best evidencefor homogeneityand isotropy of the universe at early times comesfrom the
isotropy of the microwave backgroundradiation. The presentupper limits on the temperature
fluctuationsare less than 1 part in i04 on all angularscales [1]. In many cosmologicalmodels, the
presenttemperaturefluctuationsaredirectly relatedto the densityperturbationsat the time of recom-
bination, thusproviding an upper boundon the amplitudeof the densityfluctuationsat that time [2].

However, in order to explain nonlinearstructurestodayon the scaleof galaxies and clusters,we
require initial perturbations.It is rathernaturalto assume(andthis is indeedrealizedin mostmodelsof
structureformation) that the perturbationsstart out at a very early time with a small amplitudeand
graduallygrow in time.

Thegrowth of perturbationsin anexpandinguniverseis a consequenceof gravitationalinstability. A
small overdensitywill exert an extragravitationalattractiveforce on the surroundingmatter.Conse-
quently, the perturbationwill increase and will in turn produce a larger attractive force. In a
nonexpandingbackground,this would lead to an exponentialinstability. In an expandinguniverse,
however, the increasein force is partially counteractedby the expansion.This, in general,results in
power-law growth ratherthanexponentialgrowth of the perturbations.

Mathematically,the problem of describingthe growth of small perturbationsin the context of
generalrelativity reducesto solving the Einstein equationslinearizedaboutan expandingbackground.
In principle, this soundslike a straightforward(albeit mayberathertedious)task. However,thereare
complicating issues related to the freedom of gauge, i.e., the choice of backgroundcoordinates.
Physicalvariablesmustbe independentof thischoice. In this reviewwe developaformalismwhich uses
variablesthat are independentof the backgroundcoordinates,i.e., gauge-invariantvariables.In this
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framework the physical interpretationof the results is unambiguous.(In electromagnetismthis
correspondsto working with electric and magneticfields insteadof vectorpotentials.)

Althoughthereis no consistentquantumtheoryof gravity, gravitationalwavescan be quantizedin a
consistentmanner.In this review we generalizethis constructionto linearizeddensity perturbations.
The resultingtheorycan be usedto describethe origin of structureandits earlyevolutionin inflationary
universemodels.

The review article is organizedin threeparts.Eachpart hasan abstract,an introduction,the main
part, a conclusionandis reasonablyself-contained.PartI is devotedto the formulationandsolutionof
the classicalequationsfor cosmologicalperturbations.In part II, the quantumorigin of fluctuationsis
studied,andthe spectrumof perturbationsis calculatedin modelsof cosmologicalinterest.In the third
part we apply the theory to variousimportantcosmologicalproblems.The entire analysisusesagauge
invariant formalism.

The goalof the first partof this reviewarticle is to providea new expositionof gauge-invariantlinear
perturbationtheory and to find the solutionsof the gauge-invariantequationsof motion in the most
interestingcases.The derivationof the equationsof motion in a new andsimple form is presented.The
formalism is applied to a hydrodynamicaluniverse, to a universe dominatedby scalarfields (with
application to inflationary universe models), and is extendedto analyzeperturbations in higher-
derivativetheoriesof gravity. The growth rateof perturbationsis calculatedanalytically in manycases.

Our aim in part II is to developthe quantumtheory of cosmologicalperturbations,andto calculate
the spectrumof metric anddensityperturbations,startingwith initial quantumfluctuations,in general
cosmologicalmodels and, in particular, for the casesanalyzedin part I. The theory developedhere
provides the initial conditionsfor the classicalevolution of inhomogeneities.

In part III, we apply the theory developedin partsI and II to problemsin physicalcosmology. We
consider four importantphysicalapplicationsof cosmologicalperturbationtheory: microwaveback-
ground anisotropies,gravitationalwaves,entropyperturbationsandstatisticalfluctuations.All of these
topics addressissueswhich directly relate primordial perturbationsto observablequantities,hence
providing constraintson modelsof the early universe.The gauge-invariantapproachsimplifies and
clarifies the analysisin all four cases.

In the appendixwe explain some general rules, give units and define constantsthat are used
throughoutthe article. In tables1 and 2 we summarizethe most importantequations.

PART I. CLASSICAL PERTURBATIONS

1. Introduction

In this part of the review article we developthe classicaltheory of cosmologicalperturbationsin a
manifestly gauge-invariantframework. We then apply the formalism to the three modelsof greatest
interestfor cosmology:hydrodynamicalperturbations,fluctuationsin ascalar-fielddominateduniverse
and inhomogeneitiesin higher-derivativegravity models. Most other cosmological theoriescan be
reducedto the abovethreemodels.

Mathematically,the problem of describingthe growth of small perturbationsin the context of
generalrelativity reducesto solving the Einstein equationslinearizedaboutan expandingbackground.
In principle, this soundslike a straightforward(albeit mayberathertedious)task. However, thereare



208 V.F. Mukhanovetal., Theoryof cosmologicalperturbations

complicatingissuesrelatedto the freedomof gauge.Not all perturbedmetricscorrespondto perturbed
space—times.It is possibleto obtainan inhomogeneousform for the metric ~ (x, t) in ahomogeneous
andisotropicspace—timeby aninconvenientchoiceof coordinates.Hence,it is importantto be ableto
distinguishbetweenphysical (geometrical)inhomogeneitiesandmerecoordinateartifacts.

Thereareseveralapproachesto this problem.Onemayfix the coordinatesystemuniquelybasedon
somespecific geometricalrequirements.Onemaypick simple coordinateconditions(which in general
do not totally lix the coordinates)and keepcareful track of physical modesand coordinateartifacts
(gaugemodes)— the usual synchronousgauge approachis an example of this procedure.However,
most convenientis the gauge-invariantapproachin which one considersmetric variableswhich are
independentof the choiceof coordinates.

As we hope to demonstratein thisreview, the gauge-invariantapproachis easierto work with than
other methods.Further,all physical quantitiesare gaugeinvariant.Thus,our framework hasa clear
physicalinterpretationwhich is particularlyapparentin the derivationwe follow. The Newtonianlimit
of relativistic gravitational perturbationtheory follows in a natural way. Finally, when using a
gauge-invariantapproachwe avoid the dangerof mistaking coordinateartifacts as physical effects— a
dangerwhich is particularly greatwhen working with approximatesolutions.

The methodof working with gauge-invariantvariablesis well known from otherphysical theories.
For example, in classical electrodynamicsit is usually more physical to work in terms of the
gauge-invariantelectric and magneticfields ratherthan in terms of the gauge-dependentscalar and
vector potentials. However, the mathematicalstructure of electrodynamicssometimesmakes the
equationssimpler usingthe potentials.This is becauseby introducingpotentialswe haveautomatically
solvedthe homogeneousMaxwell equations.For linearizedgravity, thereis no suchsimplification and
it is both more physical and moreconvenientto usegauge-invariantvariables.

As for electrodynamics,also for linearizedgravity thereare an infinite numberof gauge-invariant
variables.We will choosea basisof gauge-invariantvariablesfor which the equationsof motion takeon
a particularly simple form. This is similar to choosingthe electric and magneticfields as the basic
variablesin electrodynamics.The variableswe choosewill coincide with the two functionsused to
describemetric perturbationsin a particulargauge,the longitudinal (or conformal—Newtonian)gauge.
The gauge-invariantequationsof motion areidenticalto theperturbedEinsteinequationsin this gauge.

The pioneeringwork on densityperturbationsin Friedmann—Robertson—Walker(FRW) cosmologi-
cal modelsis thatof Lifshitz [31assummarizedby Lifshitz and Khalatnikov [4]. After that, the subject
was studiedby manyauthors.The textbooksby Weinberg[5], Peebles[6], andZel’dovichandNovikov
[7Jtreatcosmologicalperturbationsin somedetail. Although thusstandarized,the subjectcontinuedto
be plaguedby difficulties in interpretation. The early papersdid not adequatelyaddressthe gauge
freedom.Most treatmentsuseda particulargaugechoice,“synchronousgauge”,which doesnot totally
fix the coordinates.

In synchronousgauge, the interpretationof perturbationswhosewavelengthis larger than the
horizonsize is not alwaysstraightforward.PressandVishniac [8] proposeda schemefor keepingtrack
of gaugemodeswhile continuingto calculatein standardsynchronousgauge. However,this procedure
doesnot eliminatethe problemsof this gauge.

A more elegantway to deal with the gaugeproblemis to eliminatethe gaugedependenceentirely
ratherthanto just specify andunderstandit. The gauge-invariantapproachto gravitationalperturba-
tionswas pioneeredby Bardeen[9, 10] and GerlachandSengupta[11]. It is basedon previouswork by
Hawking [12], Field and Shepley [13], Harrison [14] and Olson [15]. Bardeen[101applied the
gauge-invariantapproachto cosmologicalperturbations.
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Initially, the gauge-invariantapproachappearedto involve acomputationaltour de force. However,
the increasinginterestin cosmologicalperturbationsgeneratedby the adventof inflationary universe
modelscreateda lot of activity in this area. In ref. [16], it was shownthatBardeen’sequationsfor the
gauge-invariantvariablescanbe derivedin a straightforwardmannerstartingfrom synchronousgauge.
The gauge-invariantapproachto cosmologicalperturbationswas studiedextensivelyin refs. [17—19].It
has beenapplied to constructa self-consistentquantumtheory of metric perturbations[20,21], to
investigateeternal [22] and stochasticinflation [23], to follow the dynamicsof inflationary universe
models[24], andto analyzethe stability of inflation in higher-derivativetheoriesof gravity [25]. Other
applicationsincludea gauge-invariantanalysisof perturbationsthroughthe decouplingepoch[26]anda
studyof fluctuations[27] in the Cold Dark Matter modelof structureformation.Den andTomita [28]
haveextendedthe gauge-invariantformalism to anisotropiccosmologies.

In our opinion, the simplestderivationof the equationsof motion for gauge-invariantvariablesis
obtainedby working in longitudinal (conformal—Newtonian)gauge,in which Bardeen’sgauge-invariant
variablesare identicalto the remainingmetric variables.This approachwas pioneeredin ref. [29].

The goalof the first part of thisreviewarticle is to providea new expositionof gauge-invariantlinear
perturbationtheory and to find the solutionsof the gauge-invariantequationsof motion in the most
interestingcases.Thederivationof the equationsof motion in anew andsimple form is presented.The
formalism is applied to a hydrodynamicaluniverse, to a universe dominatedby scalar fields (with
application to inflationary universe models), and is extendedto analyzeperturbationsin higher-
derivativetheoriesof gravity. The growth rate of perturbationscan be calculatedanalytically in many
cases.

Recently,therehasbeen a lot of work on alternativeapproachesto cosmologicalperturbations.A
gauge-invariantformalism basedon acovariantapproachwas elaboratedby Bruni et al. [30] (seealso
refs. [31—33],drawing on previouswork by Hawking[12] andOlson [15]). A gauge-invariantformalism
basedon the 3 + 1 Hamiltonianform of generalrelativity was developedby Durrer andStraumann[34].
Severalauthorshavetakenup the old synchronous-gaugeapproachandhaverefined it in orderto take
the gaugeambiguity into account[35,36].

It is importantto point out a fundamentallimitation of linearizedgravitationalperturbationtheory.
The conceptsare restrictedto small perturbationsof FRW space—times.If e is a measureof the
amplitudeof the perturbation,thentherearecorrectiontermsof the order ~2 to all the equations.In
particular,the gauge-invariantvariablesusedhereareinvariant only to ordere. The only perturbation
variableswhich are invariant under largegaugetransformationsare perturbationsof quantitieswhich
are constantin bothspaceand time on the backgroundmanifold (seeref. [38] for a discussionof this
point). The authorsof ref. [30]haverecentlydevelopedaformalismbasedon gauge-invariantvariables
which are perturbationsof quantitieswhich vanish on the background.Hence,this formalismcan in
principle be extendedto arbitrary orders in perturbationtheory. However, this framework appears
cumbersome.In ref. [39] the equivalenceof the approachdevelopedin ref. [30] with the formalism
developedherehasbeenshown.The Ellis and Bruni methodshavebeenextendedto multi-fluid and
scalar-fieldmodels[40].

Oneof the main reasonsfor the upsurgeof interestin linearizedgravitationalperturbationtheory is
its applicationto new cosmologicaltheories,in particularthe theory of the inflationary universe[41].
Thesetheoriesweredevelopedstartingin about1980 andfor thefirst time allow acausalexplanationof
the origin of structuresin the universesuch as galaxies,clustersand evenlarger entities.

Two ideaswerecrucial in developinga causaltheoryof structureformation in inflationary universe
models. First, it was realized in 1980 independentlyby Chibisov and Mukhanov [42] and by Lukash



210 V.F. Mukhanoveta!.. Theoryof cosmologicalperturbations

[43], thatquantumfluctuationsin an expandinguniversecan lead to classicalenergy-densityperturba-
tions. (First attemptsin this direction were madeby Sakharov[44] in 1965.) Secondly,it was realized
[45,46,42,43]that in aninflationary universe,scalesinside the HubbleradiusH’(t) = [á(t)/a(t)]’ at
the beginningof the period of inflation will expandexponentiallyandreenterthe Hubbleradiusatlate
time as large-scalecosmologicalperturbationswith a scale-invariant[47] spectrum.

Mukhanovand Chibisov [48] calculatedthe spectrumof densityperturbationsin a model in which
higher-derivativetermsin the gravitationalactionlead to a periodof exponentialexpansion[49]. The
spectrum of density perturbations in New Inflationary Universe models was first estimatedby
Starobinsky[50], Hawking [51], Guthand Pi [52], Bardeenet al. [53]andMukhanovandChibisov[54].
Subsequently,the evolution of fluctuations in new inflation was studied intensively [55—60].The
analysiswas extendedto chaoticinflation [61]. The gauge-invariantapproachmakesthe analysismore
tractable.

The outline of this part of our review article is as follows. In chapter2, the metrics for the
backgroundmodelsand perturbationsare described.In chapter3 we discussgaugeinvariance and
introducethe gauge-invariantvariables.Chapter4 is a derivationof the first-orderperturbationof the
Einsteintensorand Einsteinequations,first for a generalperturbedmetric andthenin gauge-invariant
form. Chapters2—4 are all short and provide the backgroundneededto analyzethe evolution of
perturbationsin the threeimportantcosmologicalmodelsstudiedin chapters5—7.

Hydrodynamicalperturbations are discussed in chapter 5. We derive the perturbed energy—
momentumtensorT~andwrite down the equationsof motion.Next, a detailedstudyof adiabaticand
entropyperturbationsis presented,applying the gauge-invariantequations.In the casesof radiation-
andmatter-dominateduniverses,exact solutionsfor linear perturbationsare derived. In a universe
containing both matter and radiation it is possible to find exact solutions for long-wavelength
perturbations.

Chapter6 is a surveyof perturbationsin a theory in whichmatteris representedby a scalarfield (as
in inflationary universemodels).First, the solutionsof the backgroundequationsaredeterminedand
the resultspresentedin termsof a phasespaceanalysis.Then, we write down the perturbed~ and
derive the equationsof motion for perturbations.Theseequationsarethenapplied to study classical
densityperturbationsin inflationary universemodels.

Finally, in chapter 7, the perturbationequationsfor higher-derivativegravity theoriesare de-
termined.We discussthe backgroundsolutions,derive the perturbedEinsteintensor,andfind solutions
of the gauge-invariantequationsof motion.

Units areusedin which c = = kB = 1. Greekindicesrun from 0 to 3, Latin indices only over the
spatialdegreesof freedom.The Einstein summationconventionis assumed.a(t) is the scalefactor of
the backgroundFriedmann—Robertson—Walker(FRW) model. G is Newton’s gravitationalconstant.
We draw the attentionof the reader to the difference between~ (scalar field), 4~’(Newtonian
gravitationalpotential) and ~P(gauge-invariantvariable). In longitudinal gauge,4 and P are equal.

2. Background model and perturbations

Everywherein this article we shall assumethat space—timedeviatesonly by a smallamountfrom a
homogeneous,isotropic idealizedspace—timewhich is definedto be the background.In this case,it is
convenientto split the metric into two parts,the first beingthe backgroundmetric,the otherdescribing
how the “real” space—timedeviatesfrom the idealizedbackgroundmodel.The secondpart is called the
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perturbation.The observationalfact that the universe on large scales is nearly homogeneousand
isotropic makes this approachreasonable.Further, it was shown [37] that in Robertson—Walker
universessolutionsof the linearizedfield equationscan be viewedas linearizationsof solutionsof the
full nonlinearequations.Hence linear perturbationtheory is mathematicallywell defined.

The backgroundline elementis

ds2 = ~°~g~~(x)df’ dx” = dt2 — a2(t)’y,
1 dx’ dx’ = a

2(~j)(d~j2— y~,dx’ dxi), (2.1)

where ~ is the conformaltime d~= a’ dt. We choosethe backgroundmetric to be the Friedmann—
Robertson—Walker(FRW) metric, in which case

i 2 2 2 —2y
1~~1[1+~X(x+y +z )] , (2.2)

where ~ = 0, 1, —1 dependingon whether the three-dimensionalspacecorrespondingto the hyper-
surface~ = const.is flat, closedor open.The Einstein equationsare

G~= R~— ~?~R= 81TGT~, (2.3)

whereR~is the Ricci tensor,R R~ is the Ricci (curvature)scalarandT~is the energy—momentum
tensor.For the backgroundmetric in eq. (2.1) in conformaltime, the Einsteinequationsreduceto the
0—0 equation,

a’+.~1{a
2=~irGTga4,a’nsdaId~q (2.4a,b)

andthe i—i equation,

a” + ~ICa~irGTa3, TasT~ (2.5a,b)

For the backgroundmetric (2.1), the space—spacepart of the Ricci tensorR~,is proportional to t5

Thus, for an isotropic universe,which the backgroundis constructedto be, the energy—momentum
tensormustalso be spatially diagonal, i.e. T, cx ~ in order that the Einstein equationsare satisfied.
Differentiating(2.4a)with respectto ~j andsubtracting2a’ times(2.5a)weget the continuityequation
for matterT~= 0 or

dT~=—(4Tg—T)dlna. (2.6)

To model the universemore realistically,we must include the perturbations.The full line element
may be representedby

ds2 = (~)g~~dx~dx” + ~ df dx”, (2.7)

where the 6g~Pdescribethe,perturbation.The full metric hasbeendecoupledinto its backgroundand
perturbationparts

= + ~ (2.8)
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The metric perturbationsmay be categorizedinto three distinct types: scalar, vector and tensor
perturbations.This classificationrefers to the way in which the fields from which areconstructed
transformunderthree-spacecoordinatetransformationson the constant-timehypersurface.(Recently,
Stewart[62] hasgiven a covariantdescriptionof this tensordecomposition.)Both vector and tensor
perturbationsexhibit no instabilities.Vectorperturbationsdecaykinematicallyin an expandinguniverse
whereastensorperturbationslead to gravitational waveswhich do not couple to energydensityand
pressureinhomogeneities.However, scalarperturbationsmayleadto growinginhomogeneitieswhich,
in turn, havean importanteffect on the dynamicsof matter.

Scalarperturbations.Therearetwo possiblewaysthat scalarquantitiesmayenterinto ~g,1either by
multiplying the tensor with a scalar, or by taking covariantderivatives of a scalarfunction, the
covariantderivativebeingwith respectto the backgroundmetric y,~,of theconstant-timehypersurface.
In a spatially flat universe(~= 0), thesecovariantderivatives becomeordinarypartial derivatives,
denotedby a comma with correspondingindex. In general, we denote the (background) three-
dimensionalcovariantderivativeof a functionf with respectto somecoordinatei by f~.

To complete the specification of a general scalarmetric perturbation,we need two more scalar
functions.The first gives ~ig00,andthe three-dimensionalbackgroundcovariantderivativeof the second
gives 8g~0.Thus, the most general form of the scalarmetric perturbationsis constructedusing four
scalarquantities4, ~s,B and E which are functionsof spaceand time coordinates,

= a2(,i)( ~ 2(~”E))~ (2.9)

From (2.7) and (2.9), we get the mostgeneralform of the line elementfor the backgroundandscalar
metric perturbationsto be

ds
2 = a2(~){(1+ 2fr) dfl2 — 2B~~dx’ d~— [(1— 29’J)y,~+ 2E

1~1]dx’ dx’). (2.10)

Vector perturbations. The vector perturbationsare constructedusing two three-vectorsS, and F,
satisfyingthe constraints

S~’=F~’=0, (2.11)

wherewe shift from upperto lower three-spaceindices andvice versaby usingthe spatialbackground
metric tensor‘y,, and its inverse‘y”. That the aboveconstraintsarenecessarycan be seenas follows: if
the three-divergenceof eachof the vectorsdid not vanish,we could separatetheminto adivergenceless
vector and the gradientof a scalar.Hence,we would not be dealingwith a pure vectorperturbation.
Theseconsiderationslead to the following metric for vectorperturbations:

~g~=_a2(fl)(O~ ~ (2.12)

Tensorperturbations.Tensorperturbationsareconstructedusinga symmetricthree-tensorh,1 which
satisfiesthe constraints

h=O, h,)’=O. (2.13)
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Theseconstraintsmeanthat h,1doesnot containpieceswhich transformas scalarsor vectors.Thus,the

metric for tensorperturbationsis

~g~=_a2(7~)(~ ~). (2.14)

Countingthe numberof independentfunctionswe used to form &g,,~,we find that we havefour
functionsfor scalarperturbations,four functionsfor vectorperturbations(two three-vectorswith one
constraint each) and two functions for tensorperturbations(a symmetric three-tensorhas six in-
dependentcomponentsand therearefour constraints).Thus we haveten functionsall together.This
numbercoincideswith the numberof indepenentcomponentsof ~

In the linear approximation,scalar,vectorandtensorperturbationsevolveindependentlyandthus
can be consideredseparately.In the following we concentrateon scalarperturbationssincetheyarethe
onesthat exhibit instabilities andmay leadto the formation of structure.

3. Gauge-invariant variables andtheir physicalmeaning

First of all, we shall explain the definition andmeaningof gaugetransformationsin thecontext of
small perturbationsof a homogeneousand isotropicbackgroundspace—time.Therearetwo mathemati-
cally equivalentapproachesto the problem— the passiveand activeones.In the passiveapproachwe
considera physical space—timemanifold At and choosesome system of coordinates~a on At. A
backgroundmodel is definedby assigningto all functionsQ on At a previouslygivenfunction(o)Q(xa).
The functions Q may be scalar, vector or tensor quantities. ~

0~Q(x”)are fixed functions of the
coordinates(they are not geometricalquantities).Therefore, in a secondcoordinatesystem? the
backgroundfunctions (~)Q(ia) will haveexactlythe samefunctional dependenceon Ia Theperturba-
tion 6Q of thequantity Q in the systemof coordinatesx~zis definedas

bQ(p) = Q(f(p)) — (o)Q(xa(p)), (3.1)

andcan be evaluatedfor any point p E At with associatedcoordinatesx”( p). Similarly, in thesecond

systemof coordinates,the perturbationof Q is
~(p) = Q(Ia(p)) — (O)Q(Ia(p)) (3.2)

Here, Q(Ic~(p)) is the value of Q in the newcoordinatesystemat the samepointp of At, and, aswe
stress again, ~°~Q(r(p)) is the samefunction of i~as (o)Q(xa(p)) is of x”. The transformation
~Q(p)—~ &Q( p) is called the gaugetransformationassociatedwith the changeof variablesx” ~÷ Ia on
the manifold At.

In the secondapproach(the activeone)we considertwo manifolds— thephysicalmanifoldAl anda
backgroundspace—timeX on which coordinatesx~are rigidly fixed, where the index b standsfor
“background”.Any diffeomorphism921: X-4 Al inducesa systemof coordinateson Al via 921: x~—~ x~’
(see fig. 3.1). For a given diffeomorphism~ we definetheperturbation~lQof the function Q (defined
on Al) as
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Fig. 3.1. Sketchof two diffeomorphisms~ and~ mappinga homogeneousbackgroundmanifoldX onto an inhomogeneousmanifold .41. For fixed
backgroundcoordinatesx~on X, thediffeomorphisms~ and~ induce two coordinatesystemsf and?on£ Also drawn arethe integralcurvesof
the basis tangentvectorsof the threecoordinatesystems.

~Q(p) = Q(p) — ~°~Q(921_1(p)), (3.3)

where ~Q is a fixed function defined on the backgroundspace—time.A seconddiffeomorphism

~: X—~At inducesa new set of coordinates?on At via 921: x~—~?and a different ~Q

~(p) = Q(p)— (O)Q(~_l(p)), (3.4)

where Q is the value of Q in ? coordinates. In this approach, the gauge transformation
~Q(p) —~ ~Q(p) is generatedby thechangeof correspondence~ —* ~ betweenthemanifoldsX andAl.
We canassociatewith this changein correspondencethechangeof coordinatesf’ —p? inducedon At.

Both approachesare equivalent.From the point of view of physics, the first allows one to connect
thegaugetransformationwith thechoiceof thesystemof coordinateson At in which theperturbations
are described.The secondview allows one to understandhow the amplitudesof the perturbations
dependon the correspondencebetweenbackgroundmanifold X and physical manifold At. For an
alternatecoordinate-invariantdefinition of a gaugetransformationseeref. [62].

In both ofthe approachesdescribedaboveonemayconsiderinfinitesimalcoordinatetransformations

xIQ=xc~+r, (3.5)

describedby four functions ~“ of spaceandtime. This transformationleads to the following changein

(3.6)

where is theLie derivativein directionof thevector~. The transformationsgivenby (3.5) and(3.6)
form a group, thegroupof infinitesimal coordinatetransformationsor thegaugegroupof gravitation.

An arbitrarythree-vector~‘ [thespacepart of the four vectorr = (~°i’)] can be written as the
sum of two parts

= + ~ (3.7)
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where the function ~is the solutionof the equation

= ~ (3.8)

The “transverse”vector~r satisfiesthe condition

~rIi = 0, (3.9)

andcontributesonly to thevector-likemetric perturbation.Hence,it is only the two functions~° and ~
which preservethe scalarnatureof a metric perturbation.Note that the tensor part of a metric
perturbation[seeeq. (2.13)] is invariant undercoordinatetransformations(3.5).

We haveseenthat not all diffeomorphismspreservethescalarnatureof themetric fluctuations.The
most generaloneswhich do can be describedin termsof only two independentfunctions ~ and ~,

~ + ~ x), x’—s’I’ = x’ + y”~(~, x), (3.10)

where the derivativeof ~ is a covariantderivativewith respectto the backgroundspacecoordinates.
Clearly, the metric perturbation8gap is not invariant under this change of coordinates.The

transformation(3.10) inducesa changein

—~ = + t~sg~, (3.11)

which can be rewritten as variationsof the functions ~, tfr, B and E determiningthe perturbedmetric
[seeeq. (2.9)]. One may verify that the new functions4,, ~!i, B and E are given by

4=4,—(a’Ia)~°—~°’,tIi=tfr+(a’Ia)~°, B=B+~°—~’,E=E—~. (3.12)

By taking combinationsof 4,, ~i, B and E we can constructgauge-invariantvariables.The simplest
gauge-invariantlinear combinationsof 4,, ~i, B and E which span the two-dimensionalspaceof
gauge-invariantvariablesthat can be constructedfrom metric variablesaloneare

= 4, + (1 /a)[(B — E’)a]’, ~I’= — (a’/a)(B — E’). (3.13)

The above variableswere first introduced by Bardeen[10]. In his notation, ~ = ~ and ~“ = —

Of course,therearean infinite numberof different gauge-invariantvariables,sinceany combination
of gauge-invariantvariableswill also be gaugeinvariant.The situationis similar to whatis well known
in gaugefield theories. In gaugetheories, the electric and magneticfields takeon a special role.
Similarly, herethepotentials cP and ‘I’ play a specialrole sincetheyare the simplestcombinationsof
metric perturbationswhich aregaugeinvariant andsincethey satisfysimpleequationsof motion,as we
shall show in the following chapter.The variables 1 and~Pwill play a crucial role in the restof this
review. It is important to stress that they are unchangedunder all infinitesimal scalar coordinate
transformations,but they arenot invariant underfinite coordinatechanges.

As anotherusefulexample,let usconsidera four-scalarq(q,x) definedon the physicalmanifold At.
q can be split into its backgroundvalue andaperturbation

q(~,x) = q

0(i~)+ ~ x). (3.14)
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It is important to note that in general bq is not gauge invariant. Its changeunder the coordinate
transformation(3.10) is given by

~ x) = ~q(i~, x) — q~)~°. (3.15)

Only if q0 is time-independent,then6q is gauge-invariant.Otherwise,the following combinationof &q
and metric perturbationsis gauge-invariant:

= ~q + q~(B— E’). (3.16)

Thefreedomof gaugechoicecan be usedto imposetwo conditionson thefour functions4,, ~i, B and
E. This is possiblesincetherearetwo functions ~° and~which can be chosenappropriately.In picking
aparticulargauge,onehasalsospecifiedin whichcoordinatesystemthe perturbationsareconsidered.
In the following weshall considertwo particular choicesof gauge.First, the synchronousgauge,which
is the one usedmostoften in the literature. Second,the longitudinal (or conformal—Newtonian)gauge
which can be used to verify the derivation in later sections[63,641.

Synchronousgauge.Synchronousgaugeis definedby the conditions4, =0 and B =0. From(3.12) it
follows that given any initial system of coordinatesone can find a coordinatetransformationto
synchronousgauge.To do this, weset 4, = 0 andB = 0 in (3.12) and solvethe equationsfor ~° and~.

The result is

n~ns =n+a’fa~d~, x’~x~=x’ + y”(JBd~+f a~dnJa~dn), (3.17)

wherea subscripts denotessynchronousgauge.However,as can be seenfrom (3.12) [or from (3.17)],
the synchronouscoordinatesarenot totally fixed. Underthe residualtransformationgiven by

~ + a’C1(x), x’~I’ + y’1C111(x)f a~d~+ y”C211(x), (3.18)

whereC1(x) and C2(x) arearbitraryfunctionsof thespatialvariables[they areintegrationconstantsin
(3.17)], the synchronous-gaugeconditionsare maintained.This residual coordinatefreedomin syn-
chronousgaugeleadsto the appearanceof unphysicalgaugemodeswhich renderthe interpretationof
synchronousgaugecalculationsdifficult, especiallyon scaleslargerthanthe Hubbleradius(seealsoref.
[65]).

Longitudinal gauge. Longitudinal gauge is defined by the conditionsB = E= 0. From (3.12), it
follows that in longitudinalgaugethe coordinatesaretotally fixed. The conditionE= 0 determines4~
uniquely,andusingthis result, the conditionB =0 uniquelyfixes ~°. Hence,in longitudinal gaugethere
are no complicating residualgauge modes. Starting from any systemof coordinates(~,x’), the
longitudinal gaugeconditionscan be implementedby a coordinatetransformation,namelyby

= — (B — E’), x’—~x~= x’ + -y”E11. (3.19)

Under this transformation,the metric variableschangeas follows:
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4,—s.4,,=4,+a1[a(B—E’)]’=~, i/i—~
1=i/i—(a’/a)(B—E’)=!P,

(3.20)
B—~B1=0, E—+E1=0,

We drawthe importantconclusionthat in longitudinal gauge,4, and t/i coincidewith the gauge-invariant
variables~Pand‘P respectively.This fact can be usedto proposean elegantderivationof the equations
of motion for tI’ and ‘P. We go to longitudinalgaugeandderive the equationsof motion for 4,~and~
which can thenbe abstractedto give the gauge-invariantequationsof motionfor I’ and ‘P if wereplace

4~and i/is by P and ‘P respectively.

In longitudinal gauge,the metric takesthe form

ds
2 = a2(~)[(1+ 2c1)d~2— (1 — 2’P)y,, dx’ dx’]. (3.21)

In thecasewhenthespatialpartof theenergy—momentumtensoris diagonal,i.e. ~T~, ~,, it follows
(seechapter4) that 4~= or = ‘P. Thereremainsonly onefreemetric perturbationvariablewhich is
a generalizationof the Newtonian gravitational potential 4,. This explains the choice of the name
“conformal—Newtonian”for this system. It is also the reasonfor our notation. As can be seen from
(3.21), the gaugeinvariants‘1 and ‘P haveaverysimple physicalinterpretation:theyarethe amplitudes
of the metric perturbationsin the conformal—Newtonian(or longitudinal) coordinatesystem.

As the final point of this chapter,we shall write down the formulaswhich connectsynchronousand
longitudinal coordinatesystems. The coordinate transformationwhich leads from synchronousto
longitudinal gaugeis obtainedfrom (3.19) upon inserting 4, = B = 0,

m = ‘i~+ E~, x~= x~+ i/’E,
11, (3.22)

whereE~denotesthe metric variable E in synchronousgauge.The metric variablesareconnectedas
follows:

= —(a’/a)E~— E’, 4,~=~‘~+ (a’Ia)E~, (3.23)

and the energy-densityperturbationsbe, andbs~are related[seeeqs. (3.15) and (3.22)] via

= — ~ (3.24)

Conversely,given longitudinal coordinatesone can obtain synchronouscoordinatesby the trans-
formation [seeeq. (3.17)]

= m + a’ f a(~)4,1d~, x~= +~“(Jd~a’(~)Jd~a(n)~i), (3.25)

under which the metric variablesandenergy-densityperturbationareconnectedby

= + Ja4,1d~, E, = _Jdn a’(?l)Jdn a4,1, be, = be1 — s~a’Jd~ia4,1. (3.26)

Equations(3.23) and (3.26) follow immediately from (3.12) and (3.16).
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4. General form of the equationsfor cosmologicalperturbations

In this sectionwe shall derive the generalfrom of the equationswhich describesmall cosmological
perturbations.To do that, we startwith the Einsteinequationswhich relatethe generaldistributionof
energy and momentum given by the stresstensor T~of matter to the geometricalpropertiesof
space—time,

G~~=8irGT~~,~ ~ (4.la,b)

where G~ is the Einstein tensorand R~ is the Ricci tensor.R = R is the scalarcurvature.
For the backgroundmodel with metric (2.1) describinga homogeneousand isotropic expanding

universe, the Einstein tensoris

= 3a2(~C2+ ~fl, °~G°,= 0, ~°~G’,= a2(2~C’+ ~2 + ~ (4.2)

where ~f= a’/a using conformal time. The form of ~ using physical time can be obtainedby
insertingthe changeof variablest = t(,~)into the abovetensorelementsfor conformaltime. Then, the
backgroundequationsare

= ~ , (4.3)

where~°1T~~is the backgroundenergy—momentumtensor.In order to satisfy theseequations,(O)TILP

must satisfythe following symmetryproperties:

= ~°~T°,= 0, ~ cx 3’~~ (4.4)

For a metric with small perturbations,the Einstein tensorcan be written as

~ = ~ + bG~,+..., (4.5)

and the energy—momentumtensorcan be split in a similar way. The equationsof motion for small
perturbationslinearizedaboutthe backgroundmetric are

= 8zrG bT~’~. (4.6)

whereb denotesthe termslinear in metric and matter fluctuations.
For scalartype metric perturbationswith a line elementgiven in (2.10) (in conformal time), the

perturbed Einstein equationscan be obtained as a result of straightforwardbut rather tedious
calculations,

= 2a2{—3~(~C4,+ vi’) + V2[i/i — X(B — E’)] + 3~t/i)= 8ITG bT°
0, (

= 2a
2[~4,+ t/i’ — ~J4B— E’)]

11 = 8~GbT°,,

= —2a
2{[(2~t”+ ,~o2)4,+ ~r4,~+ di” + 2~ri4r’— ~‘4, + ~V2D]~’J— ~D

111}= 8irG bT’J, 4 8

D=(Ø— ç1i)+2~(B—E’)+(B— E’)’.
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Notethat if we usephysicaltime t insteadof conformaltime z~,all but the8G~andbG’0 termscan be
obtainedimmediatelyby changingthe time variablet = t(i7) in theabovetensorelements.For bG~and
bG~there areextrafactorsof a,

b~’~G°~(t)= a(t)b~”~G°~(’q(t)). (4.9)

~ is notgaugeinvariant. Hence,the right- and left-handsidesof theperturbedEinsteinequations
are not separatelyinvariant undergaugetransformations.Under the transformation(3.10),we find
from (3.6) that bG’~~transformsin the following manner:

bG0
0—* bG~— (10~G~)’~°, bG~—~bG~— (10~G~— ~ , bG—~ —

(4.10)

The samekind of transformationlaw holds for bT~’if we take into account(4.3).
We mayrewrite bG~ in termsof the gauge-invariantvariables‘P and ‘I’ by substituting4, and i/i in

termsof c~,‘P and (B — E’) using (3.13) to get

= 2a2[—3~C(~P+ ‘P’) + V2’P + 3~’P+ 3~4—~ + ~o2+ ~{)(B — E’)],

bG°,= 2a2[~ + ‘P’ + (ar’ — ~2 — ~l~)(B— E’)],,
(4.11)

bG’J = — 2a2{[(2~W’+ ~~t02)~ + ~‘ + ‘P”+ 2~C’P’— X’P +

+ (ic” — ~r~r’— — J{~1C)(B— E’)o’, — 1 ikD }

whereD = — ‘P. It is easyto constructthegauge-invariantvariablesbG~’~~’andbT~’~”corresponding
to and

= + (~°~G~)’(B— E’), bG~’~°= + (~°~G~— ~°~G1)(B— E’)
11,

(4.12)
= + (~°~G~)’(B— E’)

andanalogouslyfor bT~,

= 5T~+ (°~T~)’(B— E’), bT(gi)O = bT~+ (~°~Tg— °~T~)(B— E’)11,
(4.13)

= 8T~,+ (~°~T)’(B— E’).

Using the backgroundequationsof motion, eq. (4.6) for small perturbationsmay be written in the
following form:

= 8irG bT~’~. (4.14)

Both sidesare now explicitly gauge-invariant.
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The left-handsideof the aboveequationcan be expressedin termsof thegauge-invariantpotentials
cP and ‘P alone. Taking into account(4.11) and (4.12),we find that all termson the left-handside of
(4.14)which include B and E cancel.Thus, from (4.14) we obtainthe following generalform of the
gauge-invariantequationsfor cosmologicalperturbations(in conformal time):

—3~’(~+ ‘P’)+ V2’P + 3~’P= 4iTGa2bT~’~°, (~P+ i1”)~= 4ITGa2bT’~°,
(4.15)

[(2~” + X2)k + ~C~’ + ‘P”+ 2~”P’— ~‘P + ~V2D]5’,— ~y”DIk,= —4ITGa2bT~’~’,

whereD = ‘I — ‘P as before,and the bT~’aregiven by (4.13).
In the abovederivation,we havefollowed the Lifshitz [3] coordinateperturbationapproachwhich

we considerto be technically the most straightforward.However, thereare other derivationswhich
shouldbe mentionedat this point. Onealternativemethodis the fluid-flow approach[5,6] in whichone
follows the total energydensity along comoving world lines and analyzesits perturbations.This
approachhasbeenusedby Lyth andcollaborators[31,32] to derivethe gauge-invariantequationsof
motion.Very closely relatedto this is the covariantformulationwhich hasrecentlybeendevelopedby
Bruni, Ellis, Hwang andVishniac [30,68] and which hasbeenapplied to inflationaryuniversemodels
[69] and generalizedgravity theories [70]. The most geometricalmethod is based on the ADM
formulationof generalrelativity and hasbeenusedby Durrerand Straumann[34,66] to rederivethe
gauge-invariantequations.Recently,this formulationhasbeenextended[67] to covermodelswith seed
perturbationssuch as cosn~icstrings and textures.

To close the system of equations,we need equationsof motion for the matterwhich are also
formulatedin a gauge-invariantway. Examplesof perfectfluid andscalarfield matterwill bediscussed
in chapters5 and6. Anotherexample(treatedin refs. [71,66]) is collisionlessmatter.

5. Hydrodynamicalperturbations

Accordingto the Big Bangtheory, the universewas dominatedby radiationat early times. Sincethe
energydensity in radiationdecaysfaster thanthat in matter, at sometime (calledthe time of equal
matterandradiation), the universebecomesmatter-dominated.In this chapter,we derive the growth
ratesof cosmologicalperturbationsin modelswith conventionalhydrodynamicalmatter.First, westudy
the evolution during the radiation-and matter-dominatedphases,thenwe evolve the perturbationsin
the transition region.

First, we discussthe generalform of the energy—momentumtensorandillustratethatadiabaticand
entropyperturbationsevolvein quitedifferentways. Next, we write down the equationsof motion for
the perturbations,focusingattentionon their gauge-invariantform. Thebulk of this chapterconsistsof
discussionsof solutions[29]of the perturbationequationsin the caseof adiabaticperturbations(section
5.3) andentropyperturbations(section5.4). (Seealso ref. [72] for a relatedgauge-invariantapproach
to hydrodynamicalperturbations.)

Sections 5.3 and 5.4 contain the detailedderivations of the solutions for the gauge-invariant
perturbationvariables.Thosereadersthat are not interestedin the technicaldetailsof the derivations
but areonly concernedwith the asymptoticbehavioror the physicalinterpretationof the resultsmay
refer to the summarypart at the end of the section.
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5.1. Energy—momentumtensor

Restricting our attention to scalar perturbations,we can express the most general first-order
perturbationof the energy—momentumtensorin fluid notationin termsof four scalarfunctionsbe,bp,
‘V and a-, all of which dependon space—timevariables.Here, be and bp are the perturbedenergy
density and pressurerespectively, ‘V is the potential for the three-velocity field u’(x, t), and a-
determinesthe anisotropicstress.The perturbedstress-energytensorhasthe form [10]

bT~’= ( be —(e0+p0)a’V1\1 (5 1
\.(e0+p0)a71~ —8p~,,+a-1~,J -

In the following we will consider a perfect fluid for which the energy—momentumtensorcan be
describedin termsof only threefunctions,energydensity e, pressurep andfour-fluid velocity u”,

T (e+p)U”Up —pö. (5.2)

Thus, for a perfect fluid the anisotropicstresswhich leadsto nondiagonalspace—spacecomponentsof
the energy—momentumtensorvanishes.In addition,possibledissipationhasbeenneglectedin (5.2).
This is justified for manyproblemsunderconsideration.

In general,the pressurep dependsnot only on the energydensity e, but also on the entropyper
baryonratio S. Given p(e,5), the pressurefluctuation bp can be expressedin termsof the energy
densityand entropyperturbationbe and bS,

= (äp/äe)l~be + (apIaS)~~bS c,
2 be + ~bS. (5.3)

For hydrodynamicalmatter,c, can be interpretedas the soundvelocity.
In a singlecomponentideal gas thereareno entropyperturbations.However,in the universethere

are atleast two components:plasmaandradiation.Hence,entropyperturbationsmaybe important.At
latetimes, whenthe temperatureT is low comparedto the massesof the baryons,the pressureof the
baryonsis negligible (Pm = 0), and the total pressureis given by the radiation

PPr~t~r (5.4)

where Cr is the energydensityin radiation.Hence

= ~bEr. (5.5)

Sincethe entropyper baryonis proportionalto T3Inb, where~b is the numberdensityof baryons,T is
the temperature,and er cc T4, the entropyperturbationcan be rewritten in the form

8S/S= ~ 8cr/er — 8Cm/Em. (5.6)

Here, Em cx n~,is the energydensityin baryons(matter). Taking into accountthat

be= be
1+ 8Cm, (5.7)
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and usingthis relation to express8Cm in termsof be and bCr in (5.6),we can solve (5.6) to find bCr ~

termsof 85/Sandbe. Insertinginto (5.5), one obtains
bp = ~(1 + ~Em/Er)~ be + ~Cm(1+ ~EmICr)~’85/S. (5.8)

Hence,comparingwith (5.3), we can readoff the expressionsfor c,2 and r,

j — 2 (~O

— ~ I

4E~IE~) , T~CsEmI~)-
When applied to the early universe, the above model describesthe smooth transition from the
radiation-dominatedperiod (Er ~‘ Cm) with c~= ~to the matter-dominatedepoch (Em ~‘ C~)with c,

2 = 0.

The first-orderperturbationof the energy—momentumtensor,8T, can be expressedin termsof
be,bp and bu’, the velocity perturbationof the fluid. In conformaltime we obtain,

bT~=be, 8T~=(e
0+p0)a~bu~, 8T~,=—bp6, (5.10)

where e0 andp0 are the backgroundvaluesof e andp. In the aboveequations,bp must be written in
termsof be and 8S using (5.8).

Now we shall calculatethe gauge-invariantperturbationsof the energy—momentumtensor8T~’)a
They can be expressedin termsof the gauge-invariantenergydensity,pressureandvelocity perturba-
tions. The gauge-invariant;nergydensityand pressureperturbationsbe~’~and8p~ aredefinedin the
sameway as the gauge-invariantperturbationof a generalfour-scalarwas in (3.16),

= be + e~(B— E’), 8p~ = bp + p~(B— E’). (5.11)

The gauge-invariantthree-velocitybu~’~is given by

= bu, + a(B — E’)11. (5.12)

[One mayeasily verify that 8~ç~I)is in fact invariant undertransformationsof type (3.10).]
Now, using (3.16) we immediatelyobtain

= ~ 8T(gt)O = (e0 + p0)a’ 8u~~’~, 8T~’~’= ~ 8 - (5.13)

Theseare the quantitieswhich enterthe gauge-invariantequations.Note that the physical meaningof
be~’~,bp~’~and bu~’~is very simple: they coincide, respectively,with the perturbationsof energy
density,pressureandvelocity in longitudinal gauge.

5.2. Equationsof motion

Basedon our generalconsiderationsin chapter4 andtakinginto account(5.13),we canimmediately
write down the gauge-invariantequationsof motion for hydrodynamicalperturbations,

—3~t’(~+ ‘P’)+ V
2’P +3X’P = 4ITGa2be~’~ (5.14)
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(~I’+ ‘P’),= 4rrGa(e0+ ~ 8~(gi) (5.15)

[(2~r’+ ~2)~ + ~P’ + ‘P”+ 2Yt”P’ — ~‘P + ~ V
2D]8’,— h”~DIk,= 4irGa2bp~’~8~, (5.16)

whereD ~-‘P.
The absenceof nondiagonalspace—spacecomponentsin the energy—momentumtensorleadsto a

significantsimplificationof thissetof equations.It follows from the i ~ j equationthat ‘1’ = ‘P. Onecan
show this using invarianceargumentsand the fact that the spatial averageof a perturbationmust
vanish. Now, from (5.16), all mixed spatial derivativesof f = — ‘P vanish. Hence,f(x

1, x2, x3) must
be a sum of threefunctionsf,(x,). The only way that this structurecan bepreservedundercoordinate
transformationsis for f, to be linear functions.Sincethe spatialaveragemustvanish,the only possibility
is for f, to vanish.In a flat universe,thereis asimplerway to reachthis conclusion;wego to momentum
space.The i ~ j equationmust hold for eachmodeseparately,andthe only way for this to happenis if
all Fouriercoefficientsvanish.With the above identification, the perturbationequationsbecome

V
2’P — 3~P’— 3(~~C2— 5I~)cP= 4irGa2be~’~, (5.17)

= 4irGa2(e
0 + p0)8u~~, (5.18)

~“ + 3~’ + (2k’ + ~2 — = 4irGa
2bp~’~ (5.19)

In the Newtonianlimit, (5.17) is the usualPoissonequationfor the gravitationalpotentialinducedby
someenergy-densityperturbation.Thissupportsthe interpretationof cP as the relativistic generalization
of the Newtoniangravitationalpotential 4,. Equation(5.17) generalizesthe Poissonequationby taking
into account the expansionof the universe.Since the equationis similar to the heat equation,it is
possibleto find its Greenfunction andhencealsoits generalsolution if we considerthe right-handside
as a given sourcefunction. Note that (5.17) is true wheneverlinear perturbationtheory is valid. This
requires ~ 41 but not necessarilybe/el41 (see, e.g., ref. [72]). On scaleslargerthan the Hubble
radius, kIl 4 1 maybe true even if be/el> 1.

It is interestingto comparethe gauge-invariantequationsfor hydrodynamicalperturbationswith the
synchronous-gaugeequations.To obtain theseequations,we start from the generalgauge-dependent
Einstein equations(4.6) for first-orderperturbationsandset 4, = B = 0. The result is

V2(c(i~+ ~ICE~)— 3~4~i~= 4~rGa2be,, ç(i~,= 4irGa3(e
0+ p0)8u,,,

(5.20)
+ 2~4~+ ~(V

2D
5— D,111) = 4irG bps, D~1,,= 0, i ~J,

wherethe subscriptss standfor synchronousgauge. In this case,D, can be readoff from (4.7)

D5=—t/i5—E’—2~rE~. (5.21)

Thus,the i ~ j equationallows usto expresstfr, in termsof E,. After thissimplification,the perturbation
equationscan be expressedin terms of a single metric perturbationE,(x, i~) and its derivatives.
Unfortunately, the equationcontains[36] up to third time derivativesof E5, which rendersit hard to
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solve. This mathematicalproblemis a reflectionof the fact that synchronousgaugehasa residualgauge
freedom.

Thus, the equationsfor cosmologicalperturbationsin synchronousgauge are manifestly more
complicated than the gauge-invariantequations.This gives an additional practical motivation for
choosingthe gauge-invariantapproachbesidesits intrinsic advantagesrelatedto the physicalinterpre-
tation.

Returning to the generaldevelopmentof the theory of gauge-invarianthydrodynamicalperturba-
tions, we see that using relation (5.3) which expressesbp in termsof energy densityand entropy
perturbations,(5.17) and (5.19) can be combinedto give

‘P”+ 3~’(1+ c~)cP’— c,2 V2’k + [2~” + (1 + 3c~)(~C2— .~)]P= 4.irGa2rbS. (5.22)

In particular,in the caseof pure adiabaticperturbations,the source termin the abovesecond-order
partial differential equationvanishes.For readersfamiliar with Bardeen’sarticle [10]we mentionthat
the aboveequation(5.22) agreeswith eq. (5.30) in ref. [10].

The equation of motion (5.22) can be recast into a very convenientform by introducing the
gauge-invariantfunction

(5.23)

It canbe verified that the equation~=0 is equivalentto (5.22) as long as only adiabaticperturbations
(8S= 0) areconsideredon scaleslargerthantheHubbleradius(whenc,2V2’~J’is negligible).Thus,under
theseconditions, the equationof motion for ‘P becomesa very useful conservationlaw. A variable
which differs from ~ only by terms of the order (k/aH)2 was first introduced in ref. [16] and was
discussedin detail in refs. [55,56]. Theaboveform of ~wasgivenby Lyth in ref. [18],who alsopointed
out that in comovinggauge~takeson thephysicalmeaningof a curvatureperturbation.

The friction term proportionalto ‘P’ can be eliminatedby the following changeof variables:

‘P = 4i~G(e~+ p
0)”

2u = (4irG)”2[(~C2— ~ + .~)/a2]”2u (5.24)

(where the secondequality sign follows from the FRW backgroundequations).After sometedious
calculationsusing(5.9a)and thebackgroundequationsfor hydrodynamicalperturbations,theequation
of motion for u can be obtainedin the form

— c~V2u — (O”/O)u = X, (5.25)

1/2 ~- 1/2

0 = (~t’Ia)[~(~’C2— ~r’+ ~]1/2 = ~ (eo +~
0) (i — 8lTGa2eo) (5.26)

X = (4irG)”
2a3(~C2— it” + ~yU2r 85 = a2(e

0+ p0)~
2r85. (5.27)

Equations(5.17) and (5.18) give

= 2[3(~~2+ Sr)]’[V2’P — 3~rcP’— 3(~22 — ~)‘P] (5.28)
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= —a2(~2— ~“ + 5~~’(a’P)’~. (5.29)

Equation(5.22) or equivalently(5.25) determinetheevolution of perturbationsin a hydrodynamical
universe.They arethe main resultof this section.

In the following wewill separatelyinvestigatetheevolutionof adiabaticandentropyperturbationsin
a hydrodynamicaluniverse.

5.3. Adiabaticperturbations

For adiabaticperturbations,thesourcetermin (5.22) or (5.25)vanishesand the equationsbecome
homogeneous.First, the solutionsfor a matter-dominateduniverse(p = 0) will be considered.Then,
the equationsin a radiation-dominateduniverse(p = ~)and in a universecontainingboth matterand
radiationwill be analyzed.Finally, a summaryof the resultswill be presented.Thosereaderswho are
only interestedin the asymptoticbehaviorand the physicalinterpretationof the resultsmay skip the
following and go directly to thesummaryat theend of the section.

Adiabatic perturbationsin a universewith hydrodynamicalmatter have been studied by many
authorsusing both the synchronous-gaugeframework (see, e.g., refs. [3,5—7, 2]) and the gauge-
invariant formulation (see,e.g., ref. [10]).

We first considera cold matter-dominateduniverse(p = 0). The backgroundequationsof motionfor
a(q) are given in eqs. (2.4a)and (2.5a).Their solution is

coshai—1 5l:’~=—1,
a(~)=am~2/2 ~=0, (5.30)

1—cosi~ ~=1.

Sincein a flat universe‘q(t) t~3,(5.30) in this caseimpliesa(t) t213, the well knownscalingfor p = 0.

Here, am is a constant.
Since p = 0, c~= 0 and (5.25) becomesa differential equation which does not include space

derivatives.The most generalexact solution of this equationis

u(x, q) = C(x)0(-q)+ C~(x)0(~) J~ (5.31)

whereC~(x)and C~(x)are arbitrary functionsof the spatial coordinates.Evaluating(5.31) for a flat
universewe obtain

‘P(x, ri) = C
1(x) + C2(x)r~

5, (5.32)

whereC
1 (x) and C2(x) arearbitraryfunctionsof thespatialcoordinatesproportionalto C(x) andC(x)

respectively.From (5.28)and(5.29)we canfind thegauge-invariantdensityandvelocityperturbations,
= ~[(V

2C
1ij

2— 12C
1)+ (V

2C
2ri

2 + 18C
2),~

5],

(5.33)
= (1 /am)(2C

2,/q
6 — ~C

11/r~)

The important lesson to draw from these solutions is that (neglecting the decaying mode) the
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gravitationalpotential ‘P remainsconstant. On length scales smaller than the Hubble radius, the
energy-densityperturbationincreasesas ~2 or t

2’3, whereasfor scaleslarger than the Hubble radius,
also the energy-densityperturbationremainsconstant[sincethespatial derivative termsin (5.33) are
suppressed].The velocity perturbationdecreasesas or

The aboveresultsfor the time evolutionof adiabaticperturbationson scalessmallerthantheHubble
radius are well known and agreewith the conclusionsof previous analyses.A nice featureof the
gauge-invariantapproachconsideredhereis that the resultson both largeandsmall scalesemergein a
unified and fairly simple treatment.

In the caseof an open universe(~= —1), (5.33) can also be explicitly integratedto yield

‘P(x, ~)= C
1(x) 2sinh

27 — (co:hi~—1)3 —8 + C
2(x) (co:hri— 1)~ (5.34)

where C1 (x) and C2(x) are arbitrary functionsof the spatial coordinatessatisfying theconstraints

J C~(x)v’yd
3x=0, i=1,2. (5.35)

The expressionsfor gauge-invariantenergy-densityandvelocity perturbationsagainfollow from (5.28)
and (5.29),

be~’~/e
11= ~[(cosh~ — 1)V

2cP + 9’P — 6C
1],

2 2 (5.36)
C1.).3am -‘ smh~

The solutionsfor a closeduniverse(~= 1) canbe obtainedby replacing i~ with i~in (5.34) and(5.36).
From the abovesolutionswe canseean importantadvantageof thegauge-invariantformalismover

thesynchronous-gaugeapproach.In synchronousgaugethemetricperturbationsh,, areof order1 when
be/c—~1 whereasthe gauge-invariantvariable

‘P—(A/~)241 when bc/c—i, (537)

on length scalesA muchsmallerthantheHubbleradius.Thus, the linearized0—0 Einstein equationcan
be extendedfurther in time than it can in synchronousgauge.

From(5.34)and (5.36)we concludethat for anopenuniversethedensityperturbationsarefrozenin
for ~ namely

~ ~(V2C
1—3C1) for ~ (5.38)

and the gravitationalpotential‘P decaysexponentially,‘P 4C1 e
Next, we considera radiation-dominateduniverse(p = ~e). The backgroundequationsof motion

yield the following time evolutionof the scalefactor:

sinhii ~K=—1,
a(’q)=a1 i~ ~r=0, , (5.39)

sin77 X=1,
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where ar is a constant.In termsof physicaltime, (5.39) implies a(t) t~
2in a spatiallyflat universe.It

is easyto verify that in thecaseof ultrarelativisticmatterwith an equationof statep = e /3 (c,2 = 1/3),

= 2a~/a2,and, accordingly,eq. (5.25) for the rescaledgauge-invariantpotential u becomes

— ~V2u— (2a~/a2)u= 0. (5.40)

The generalsolutionof this equationcanbe obtainedasfollows: we expandthe functionu in terms
of eigenfunctionsUk of the operator V2 (—k2 denotesthe eigenvalueof this operator)and solve eq.
(5.40)for eachmodeseparately.Resummingthe terms,we find that thegeneralsolutionof (5.40) can
be expressedin termsof a function ~(q, x) which satisfiesthe waveequation

(a2/a2.r
1— ~V

2)921(x,i
1)0. (5.41)

The functionsu and ~ arerelated asfollows:

u(x, q) cc (~C
2— ~C’+ X)~2(a/a~)[92!(x,q)/a]. (5.42)

Hence,wecan write thegauge-invariantgravitationalpotential ‘P,energy-densityperturbationbe~’~/e
0

and velocity perturbation8u~in termsof ~ in the following form:

‘P = a’(ä/ä,~i)[a~921(x, n)],

a (gi) \2/i ~ \2 1~, a____ = 2L(~-)(\~—) a~— 1](\a’ — (a~92~)), (5.43)
eQ a,. aa~

bU(gi) = —(1 /2a~)(a
2/a~2)(a~921,)-

Let us analyzethe implicationsofthis solution in the caseof a spatiallyflat universe.In this case,the
generalsolutionof thewaveequation(5.41)canbe expandedin planewaves.For fixed wavevectork,
the solutionis

921(x,~i)= [C
1sin(an~)+ C2 cos(w~)]e’~’, = k/V~. (5.44)

Hence,from (5.43),

‘P(x, ~)= ~
3{[w~ cos(w~)— sin(wq)]C

1 + [con sin(wt~)+ cos(wq)]C2} e1kx, (5.45)

= (4/~
3)({[(a~)2— 1] sin(tuq) + wq[1 — ~(co~)2] cos(wq)}C

1

+ {[1 — ()2] cos(wq)+ w’q[l — 1()2] sin(w’q)}C2)e’~ - (5.46)

In the long-wavelength limit (~nj4 1) when the scale of the perturbationis larger than the Hubble

radius, the nondecayingmodehasconstantamplitude,
‘P—const, 8e~~’~/econst (5.47)
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Since both potential ‘P and be~’~/e0are constantfor long wavelengths,it is possible to give a
self-consistentdefinition of statisticalfluctuations.If wedenoteby N thenumberof particlesin a box of
length1, then statisticalfluctuationsin energydensityon scale1 can be definedas [3,6, 73]

(5.48)

In a radiation-dominated universe, neglectingthe decayingmode, it doesnot matter atwhich time the
fluctuationsare defined,providedwe considertimeswhen I is longer thanthe Hubbleradius.This is a
furtheradvantageof a gauge-invariantformalism.

In contrastto this situation, if we work in synchronousgauge,thenin thecorrespondingcoordinates
the densityfluctuationsincreasein time on scaleslargerthanthe Hubble radius. Hence,it is unclear
how to define statistical fluctuationsin termsof energy-densityperturbations.A definition suchas
(5.48)would no longerbe time independent.In chapter20 wegive a definitionof statisticalfluctuations
basedon thequantumtheorywhich will be developedin part II. It will be shownthat this definition is
in agreementwith (5.48).

Finally, we considera universefilled with coldmatterandradiation(in particular,thediscussionhere
appliesto the transitionregionbetweenthe radiation-and matter-dominatedphasesof theevolutionof
the universe). In this case,energydensity and pressureare given by

C = Cm +
8r’ P Pr = iCr, (5.49)

wherethesubscriptsm andr standfor matterandradiation,respectively.A carefulstudy of this caseis
importantfor many applications,e.g., in calculatingthespectrumof densityperturbationson galactic
scalesin all cosmologicalmodels.

It is possibleto solvethebackgroundequationsexactly,andto find the following time dependenceof
the scalefactor:

(2aeq/~q)[~eqsinh~ + cosh~i— 1] ~ = —1,

a(7~)= aeq[2(fl/?leq) + (ri”fleq)2] = 0, (5.50)

(2aeq/~q)(1—cos11+?1eqsin71)/;s~-=1

fleq = [3a~q/(2irGe,.a4)]~2, (5.51)

andaeqare conformaltime andscalefactorevaluatedat the time teq of equalmatterandradiation,i.e.,
when Cr = ~ Unfortunately,in this caseit is only possibleto find the solutionsof theequationsfor
perturbationsin the asymptoticlimits. We will considera single Fourier-modeperturbationor, more
generally(for ~ ~ 0), a perturbationwhosespacedependenceis an eigenfunctionof theoperatorV2
with eigenvalue— k2. In the long-wavelength limit kfl 4 c~1we canneglectthespatialgradienttermin
theequationof motion (5.25)for u. As can be verified usingeq. (5.9a)for c~andeq. (5.50) for a(~),
the aboveconditionholds during the entireevolution of the universefor inhomogeneitieswith

krieq4l (5.52)

in the modelunderconsideration.Note that thismodel breaksdown atrecombinationat whichpoint c~
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rapidly drops to 0. It is importantto stressthat the long-wavelengthlimit consideredhereis different
from demandingthat the wavelength be larger than the Hubble radius. The asymptotic behavior
discussedhereis valid alsoon smallerscales,provided (5.52) is satisfied;(5.52)meansthat thescaleof
the perturbationentersthe Hubble radius after 7leq’ the time of equalmatterand radiation.

For ~l~’= 0, calculating0 for a(’q) given by (5.50),substitutingthe result into (5.31) and integrating,
one finds u. Then, using (5.23) and (5.28) we obtain the following results for long-wavelength
perturbations:

(5.53)

8e~
2~((k71eq)

2 ~2(~+2)2 — 3~2+6~+4’\’P+C3~4+4~3+18~2+30~+16]
— L\ 12 (~+ 1)~ 2(~+ 1)2 J 1k 2(~+ 1)2(e +2)2 (5.54)

where ~ = ~1“fleq and wherethe subscriptk refers to the eigenvalueof V2.
In spite of the apparentcomplexity of the above equations,the main result is easyto readoff.

Consideringthe nondecayingmodeonly, we seethat ‘P and be~’~/e
0are constantat times both early

andlate comparedto ~eq. During the transition, the amplitudeof both ‘P andbe~’~/e0decreasesby a
factor9/10.Also, theamplitudeof be~~/e0is twicethat of ‘P. Notethat thedecreasein ‘P by a factorof
9/10 duringthe transitionbetweenthe radiation-andmatter-dominatedepochscaneasilybe derivedby
applying the conservationlaw (5.23).

The formulasfor an openuniverseare morecomplicated.Again, they follow from integrating(5.25)
explicitly,

‘P = (fleq sinh~ + cosh~q— 1)
3[Cik(3(rieq cosh ir~+ sinh ~)2

+ (271~q— 9)fl(’ieq cosh~?+ sinh~1)+ (3 — 2?1~q)fleqsinh~1

+ (12— 10~q)CO5h~+77?~q —12) + C
2k(rieqcosh~+ sinhri)], (5.55)

(gi) f~k
2(71eqsinh~+ coshi~ — 1)2 — 3(~ sinh~j + coshij —1)— 2fl~q

be /e
0—2~ 2 . ‘P

?1eq+
2(?1eq5mhfl~05h~1l)

3(hleqsinh~ + cosh~—1) + 21~q~ 5 56

fleq + 2(~1eqsinh~1+ cosh~ — 1) /

The correspondingformulas for a closeduniversecan be obtainedfrom the above by substituting
~—÷i~.The solutionsgiven by (5.53)and (5.55) areexactin the limit k4 aH. For ~ 4 1, thesolutions
for X=0 and ~= ±1coincide.

Summary.Let us now summarizetheevolution of adiabaticperturbationsin a universedominated
by hydrodynamicalmatter. We shall focus on the nondecayingmode. For inhomogeneitieswith
wavelengthlarger thanthe Hubble radius, theevolutionof ‘P andbe~’~/e

0is quite simple. Whenthe
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equationof state is constant,i.e., for early times whenp e13 and at late times whenp = 0, the
amplitudesof ‘P and be~’~/e0are constant.The valuesof ‘P andbc~~/e0arerelated,be~’~Ie0—2’P.
This result is true for any arbitrary,time independent,equationof statep = we with constantw. For
suchan equationof state,thesolution in a flat universe(X = 0) for a generalk is

‘P=i~”[C1J1(Viwki1)+ C2Y~(-’./i~kij)],i’= ~(5+3w)/(1+3w), (5.57)

whereJ~and Y~arethe Besselfunctionsof order ri. Consideringthe small-argumentexpansionof the
Besselfunctions, we seethat for k~4 1 the nondecayingmode of ‘P is constant.

Whentheequationof statechangesfrom w = 1 /3 to w = 0 at the time of equalmatterandradiation
(~ri fleq)’ the amplitude of the long-wavelengthperturbationchanges by a factor 9/10. If such
perturbations(kfleq41) enter the Hubble radius at k’W—1, then, during the period of matter
domination,‘P remainsconstantwhile be~/e0begins to increase,3~(g’)/~0

In an open universe (~1C=—1), for a linear perturbationthat enters the horizon at ~4 1, the
amplitudeof bc~’~/e0onceagainfreezesout when ~> 1, whereasthe amplitudeof ‘P startsto decrease
asa~(~)[see(5.55)and (5.56)]. Figure5.1 shows theevolutionof theamplitudeof ‘P andbe~’~/e0in
an openuniverse.

Short-wavelengthperturbations(krieq ~ 1) enterthe Hubble radius before the time of equalmatter
andradiation For

7leq <71r (recombinationtime), therewill be a time interval given by ij,. ~ ~‘ 1/k
when thespatial gradientterm in the equationof motion for theperturbations(5.25) dominates(i.e.,
ki

1 ~‘ cr). In that case,we canusethe WKB approximationto find thesolutionsin this time interval.
While fl ‘~

Tleq we can neglect the cold matter to describethe evolution of perturbations[(5.45) and
(5.46)]. A comparisonof the WKB solution with the radiation era, oncein their commonintervalof
applicability, fleq ~‘ ~ ~‘ 1/k, gives the initial conditionsfor theWKB solutionwhich thencanbe usedin
its entire rangeof validity (i.e., up to ~1r)

Theseperturbationsbecomesoundwaveswhenthey entertheHubble radius(strictly speakingwhen
thescalebecomessmallerthantheJeanslength, k’q a~-cr). The amplitudeof 8e~’~/e

0for thesesound
wavesis approximatelyconstantwhile thepotential ‘P decaysas~-2 At thetime of recombination,the

1/2 9/20

~~I/ki~

Fig. 5.1. Time evolution of adiabaticperturbationsof wavenumberk in an open universe.
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velocity of sounddropsabruptlyto a negligible value.For manyscaleswith klleq ~ 1, theconditionof
applicability of the long-wave approximation (k’q 4 c~)is restored.Since we are in the matter-
dominatedperiod,we canusetheappropriateequations[(5.32)and(5.33)] to describethebehaviorof
theseperturbations.

5.4. Entropyperturbations

Entropy perturbationscan and generically will arise in all multi-componentsystems.They also
generatescalar-typemetric perturbations.The basic equationsfor ‘P or equivalently u are (5.22) and
(5.25). For entropyperturbations,the sourcetermsdo not vanish. We shall assumethatat the initial
time there are no adiabaticperturbations.Then, to define the entropyperturbations,we imposethe
initial condition

as t—~0. (5.58)

Insteadof distinguishingbetweenadiabaticand entropyperturbations,fluctuationsareoften divided
into isocurvatureandadiabaticones.Isocurvatureperturbationsaredefinedby the initial conditionthat
the initial curvature perturbationvanishes,i.e., that the gauge-invariantcurvature perturbation~
vanishesat the initial time [35].If the initial time is takento be 0, thenthis definitioncoincideswith the
definition (5.58) of entropyperturbations.If the initial time is finite, thenthe two definitions might
differ by a termproportionalto the decayingmodeof ‘P.

Entropy perturbations can be generatedif the different matter components are distributed
nonuniformly in spacebut with uniform total energydensity and henceuniform curvature at the
beginning. Such perturbations are hence often called isocurvatureperturbations.An example of
entropy perturbationsis an inhomogeneousdistribution of baryonsin a radiation background,the
energydensityexcessin baryonsbeinginitially compensatedby a deficit in radiation energy.

Entropy perturbationsmay well be important for galaxy formation. In particular, they can be
generatedin axion models(refs. [74,75]) andin nonsimpleinflationary models[76—81].They alsoarise
in phasetransitions which producetopological defects[82].For example,in phasetransitionswhich
producecosmicstrings, stringsstretchingfrom one side of theuniverseto the otherwill be produced
[83]. Causalityconstraints[84] forbid the formationof adiabaticperturbationson scaleslargerthanthe
Hubble radius.Hence,the only perturbationswhich can be formed on thesescalesare isocurvature
(entropy) perturbations.In the caseof cosmic strings, this implies that the energyoverdensityin
scalar-fieldmatteralong the string must be compensatedby an energydeficit in radiation [85].

In the following, we shall considervarious effects connectedwith entropyperturbations.First, we
shall investigatethe behaviorof long-wavelengthinhomogeneitieswith k~j4 c~in auniversefilled with
cold plasma and radiation. This case is sufficiently simple to analyzebut demonstratesthe specific
featuresof the evolutionof entropyperturbations.In the secondpart of this section,wewill studythe
generationof soundwavesby short-wavelengthentropyperturbationsnear

As before, we shall expand the fluctuation into eigenmodesof the operator V2 and consider
perturbationswith a spacedependencecorrespondingto a solution of the modeequation,

V2’Pk = —k2’Pk, (5.59)

with fixed wavenumberk. We will first considerlong-waveperturbations.The formulasobtainedbelow
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[until eq. (5.67)] areapplicablefor inhomogeneitieswith k-q 4 c~’andfor timessmallerthanthe time
of recombination.They are also applicableon scaleslargerthan the Hubble radius (k~’14 1) for later
times,sinceon thesescalesfor causalityreasonsbS/S= const(onscalessmallerthanthe Hubbleradius,
in general85/S~ constfor ~ >

We startwith eq. (5.22) andomit the term c,
2 V2’P sincek’q 4 c~.ExpressingX and~‘ in termsof

e
0 andp0, usingthe backgroundequationsof motion, andtaking into account(5 .9a,b), wecan rewrite

this equationin the form

(4e1 +3Em)’ ~ CmEr —2X 8er+3eJfl\’P 16ITGa
2 EmCr 854Er+3Cm ‘\ 3 4E~.+3C~ 4Er+3EmJ — 3 4C,.+3E~

where85/Sis constant.Hence,for a flat universe(X 0) we immediatelycan write down aparticular

solutionfor ‘P,

‘P=28S/S. (5.61)

Obviously, the above particularsolution does not satisfy the required initial conditions (5.58).The
solutionwhich doesis obtainedby addingto (5.61)a generalsolutionof thehomogeneousequation[for

= 0 see (5.53)] and choosingthe coefficientssuchthat the initial conditionsare satisfied.In a flat
universe,the result is

(5.62)

bc~)~(k71eq)2~3(~2+6~.+1O) +~ ~ (~3+7~2+18~+20\]bS (563)
— L 30 (~+1)2(~+2) 5 (~+2)~~ ~+1 )i S -

The important conclusion(see also ref. [86]) is that the gauge-invariantamplitude for this type of
entropyperturbationsincreaseslinearly in conformal time until 7leq,whereasit is constantfor adiabatic
perturbations.

The calculations are significantly more involved in the case of a nonflat universe (~= ±1).
Substituting

‘P=28S/S+’P
1 (5.64)

into (5.60),we obtain an equationfor ‘P~which canbe solved by standardmethods[87]. Taking into

accountthe initial conditions (5.58) and using (5.55) to satisfy them, one finally gets (for 5l~= —1)

‘P=(neqsinhui+cosh7i—1)
3

x [(fleq cosh~ri+ sinh~)2 — 3~(~cosh~ + sinh ‘rj)

+ 2(2— 7)~q)cosh~ + sinhi~ + — 4] 85/S. (5.65)

The correspondingexpressionfor 8e~~/e
0follows immediatelyfrom (5.28). The formulasfor aclosed



V.F. Mukhanoveta!., Theoryof cosmologicalperturbations 233

universe(X= 1) can be obtained by substitutingi77 for t~ in the above equation.Using (5.6) and
be= bCm + bEr we can expressbErn/Cm and be1/e1in terms of be/c and bS/S.

In figure 5.2 we plot the time dependenceof the amplitudesof ‘P~bEm/Cmand be/c for entropy
perturbationsin an open universe.(The behaviorof entropyperturbationsin a flat universeis exactly
the sameas herefor times 174 1.) The amplitudesof ‘P,be/e and bCr/Cr increasein time until ~ = fleq~

Betweenfleq and fik 1/k theyare constant(we are assumingfleq
477k 4 1/k). The fluctuationsin the

cold-matterdensity,bCm/Cm decreaseto 2/5 of their initial valuesby the time ~ = fleq~For 17 > fleq’ the
entropyperturbationsevolve like the nondecayingmodeof the adiabaticperturbations.There is a
difference,however: for adiabaticperturbations

bErn/Em = ~ 8C,./E,., (5.66)

whereasfor entropyperturbations

8Cm/Em= —~ bCr/Cr~ (5.67)

Note thatentropyperturbationsdo not turn into decayingadiabaticperturbationswhentheyenterthe
Hubble radius.This point was incorrectly treatedin someof the literature [88].

Let us finally investigatethe generationof sound wavesby short-wavelength(kfleq ~‘ 1) entropy
perturbationsin a bathof coldplasmaandradiation.To simplify the calculationswe will consideronly
the caseof a flat universe(~= 0). At first, let us investigatetimes ~1before the time of equalmatter
andradiation In this casec,2 = 1/3 andthe scalefactora(~)evolvesaccordingto (5.39).Hence,the
equationof motion (5.25) for u takesthe form

U” — 1,V2u — (2a~q/a2)u= (aeq/V2ITG 77~q)(bS/S)fl, (5.68)

where we took into account(5.9b) when evaluatingthe right-handside of (5.25). For 774 fleq’ this
equationis correctfor perturbationswith arbitraryk. The solutionsatisfyingtheinitial conditions(5.58)

I~mI I

Fig. 5.2. Time evolution of entropyperturbationsof wavenumberk in an open universe.
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recalculatedfor ‘P by meansof (5.24) is

8S ~ 1 1 2 d /cosw~\] k
(5.69)

fleq (W7ieq) ‘°17 0)77 3

It is important to stress that solution (5.69) is valid both for short-wavelengthand for long-
wavelengthperturbationsat early times (~< fleq) Next, let usconsidershort-wavelengthfluctuations
(k77 ~ c~)at timesin the interval fir> ~1~ 1/k. For them, the last term in (5.25) is negligible andwe
canusethe WKB approximationto find the solution. The result is

‘Pk = F(77) + c~3/2(a~q/a)2[Aksin(J c5kd77)+ Bk cos(fc5kd77)], (5.70)

whereFdoesnot containoscillatingtermsto leadingorder in (k77)- ~.ThecoefficientsAk andBk can be
obtainedby matching(5.70) with (5.69) in the interval fieq ~‘ ~1~ 1/k whenboth of the solutionsare
valid. The matchingconditionshavebeendiscussedin detail in ref. [89]. The final result is

b~
t~’~3714c~28S - /1 ‘\ 85

C
0 k7leq -~-sin(j c~kdri) — - (5.71)

This formula is true for fir ~‘ ~ 1/k. Besidesthe constantmode coming from F(77), there is an
oscillating part of the matter-densityperturbationwhich correspondsto sound waves which were
generatedby the entropyperturbations[90]. Thesesoundwavescan be significant for anisotropiesin
the microwavebackground.

Note that for a collisionlessgas, the aboveformulationof hydrodynamicalperturbationsshouldbe
extendedto allow for a gauge-invariantanalysisof the phase-spacedensityof the gas. This hasbeen
done in refs. [71,66].

6. Perturbationsin the universefilled by ascalarfield

At very high energies,it is no longer reasonableto believe that a hydrodynamicaldescriptionof
matter will be valid. Rather,we expect that matter will be describedin termsof fields. In many
particle-physicsmodels,scalarfields areintroduced.Theirrole is to breakhigh-energysymmetriesand
to give fermionsmassesby the mechanismof spontaneoussymmetrybreaking[91]. Forscalarfields, it
is possibleto constructnontrivial potential terms (we call all terms in the Lagrangiannot containing
derivativespotentialterms).Nontrivial meansthat therearehigher thanquadraticterms. Theseterms
correspondto self-interactionsof the scalarfield q’ [92].

It was soon realized that due to the potential V(~),scalar fields can play a particular role in
cosmology[93]. In particular, an equationof stateunfamiliar from classicalstatisticalmechanicsmay
result; for example,if ~‘ is homogeneousin spaceandtrappedin a local minimumof the potential. In
this case,the scale factor of the universewill expandexponentially;this is the de Sitter phase[94].

In this chapterwe studyperturbationsin a universefilled with scalar-fieldmatter.In the first section,
the energy—momentumtensorfor a scalarfield will be given. Then, the evolutionof the backgroundin
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the presenceof a homogeneousscalarfield will be studied. With only mild conditions on V(co) (the
self-couplingconstantsmustall be somewhatsmaller than 1) most energeticallyallowed (to justify a
classicalconsiderationof thegravitationalfield) initial conditionsleadto chaotictype inflation [95].In
the third section, the gauge-invariantequationsfor cosmological perturbationsin a model with
scalar-field matter are studied. After reducing the equationsto a single second-orderdifferential
equationfor perturbations,its solutions in various interestingcasescan be obtained.

6.1. Energy—momentumtensor

In this chapterwe take thematter in theuniverseto be a scalarfield minimally coupledto gravity.
Such a theory is given by the action

S = f ~ — V(~)]v~gd4x, (6.1)

where V(q,) is the potential of scalarfield. The correspondingenergy—momentumtensoris

= — ~ — V(~)]~, = g~”~p
1. (6.2)

We shallconsidera homogeneousandisotropicuniversewith small scalar-typemetric perturbations
(2.9). For consistencythe scalarfield must also be approximatelyhomogeneous.In this casethe field
co(x, t) can be decomposedinto two parts,

p(x, t) = ço0(t)+ b~i(x,t), (6.3)

where~p0(t)is thehomogeneouspart of thescalarfield whichdrivesthe backgroundisotropicmodeland

Ib~I4 ~ is a small perturbation. The energy—momentumtensor can be also decomposedinto
“background” and “perturbed” parts

T~= ~ + 8T~, (6.4)

where 8T~is linear in matterand metric perturbationsb~and 8g~p.
Substituting (6.3) and (2.9) into (6.2) we obtain the backgroundenergy—momentumtensor(in

conformal time)

= ~ ~ + V(~p0)= e, ~ = 0, °~T~= [—(1 /2a
2)~~+ V(ç)]ô~= —p~, (6.5)

andthe first-orderperturbation

bTg = a2[—~4,+ ~b~’ + V~,a28ç], 8T~= a2~bç~,

(6.6)
bT,=[ço’çb — çt’,~bço1+ Vça2bco]ô.

Herea prime denotesdifferentiationwith respectto conformal time ~1,~ = dV/dço,and the comma
with spaceindex meansdifferentiationwith respectto thecorrespondingcoordinate.
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For the sakeof simplicity, we shall in this sectiononly considera flat universe(X = 0). Most of the
resultswhich will be obtainedcanbe generalizedwithout difficulties to thecaseof a spacewith arbitrary
curvature (~JC= ±1). To write down the equationsfor cosmologicalperturbationswe will needthe
gauge-invariantperturbationsof theenergy—momentumtensorbT~’~”[seeeq. (4.13)].Using (6.6) and
(6.5) we find

= a2[—~~2’P+ ~i

8~(gi), + V~a
2
8~(~i)], 8T~’~°=

(6.7)
bT~’= a

2[+~’~’P— .,

8(gi), + V~a
2
8~,(g’)]~l

where ‘P is the gauge-invariantpotential (3.13),and

bq,~= b~+ p~(B— E’) (6.8)

is the gauge-invariantperturbationof thescalarfield.

6.2. Background

In thecaseof hydrodynamicalmatter,the time evolutionof thebackgroundmodelwassimple.For a
time-independentequationof state,thescalefactora(t) increasesas a fixed poweroft. For scalar-field
matter,thebackgroundevolution is significantlymorecomplicated.The homogeneousbackgroundpart
co0(t) ofthe scalarfield hasnontrivial dynamics.This leadsto a time-dependentequationofstate,andto
a more complicatedtime evolutionof a(t).

In this section,we shall analyze thebackgroundmodel in somedetail. The time evolutionof p0(t)

dependson thescalefactora(t),which in turn dependson theequationof stateof matter.Thus,we are
dealingwith a systemof coupleddifferential equations.We shallpresentan analysisof thebackground
evolution which doesnot dependon theparticularscalar-fieldpotential V(q). The readerwho is only
interestedin perturbationsmay skip this section.

The main ideasof our methodare the following. We first eliminate theexplicit time dependence
from the problem.This allows an analysiswhich is independentof the particularpotential.The next
step is to considerageneralizedphasediagramfor the resultingbackgroundequations.We investigate
the time evolutionwhich yields curves in this phasediagram, and find attractorsfor the dynamical
evolution. This step in the analysis generalizesa method used previously [95] to study the time
evolutionof a homogeneousscalarfield in an expandinguniverse.Finally, we calculatea(t) for attractor
curves.In this section,physical time t andnot conformaltime r~will be used.Also, thezerosubscript
for backgroundfields will be omitted.

The startingpoint consistsof the time—time Einstein equation,which, using (6.5),gives

H
2 = l2[~2 + V(~)], (6.9)

wherethe derivativewith respectto physicaltime t is denotedby a dot, 12 = 8i~G/3andH a/a is the

Hubbleparameter.The secondstartingequationis the scalar-fieldequationof motion,
~b+3Hçb+V~0. (6.10)
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This equationcanbe derivedby varying theaction(6.1) with respectto ~, or from theconservationlaw
(2.7) for the energy—momentumtensor(6.5). Taking thederivativeof eq. (6.9) with respectto time
andsubtracting~ times eq. (6.10) we also obtain the following useful relationship:

H=—~l24,
2. (6.11)

Beforestartingthetechnicalanalysis,wementionsomeimportantpoints. Usingthemild constraints
on V(~)mentionedat thebeginningof this chapter,fairly generalinitial conditionsfor a homogeneous
scalarfield will lead to a period of inflation, i.e., exponentialexpansionof the scale factor. To see
heuristically how this might occur, considera situation when ~ is static (~2 0) but V(p) doesnot
vanish but takeson a largepositive value. In this case,the right-handside of (6.9) is approximately
constantand hence

a(t)cc exp(Ht), H W(c)L~2 (6.12a,b)

Note that exponentialinflation correspondsto an equationof statep — e, ascanbe seenfrom (6.5).
In thefollowing, we shall seethat inflation will arisefor a wide regionof initial data.It is importantto
mentionthat initial largespatial inhomogeneitiescanpreventtheonsetof inflation. For a discussionof
this issue see e.g. refs. [24,96—98].

Therearedifferentapproachesto investigatethefield equationsin the modelgiven by eqs. (6.9) and
(6.10).For example,using(6.9) we mayexpressH in termsof çand~‘ andsubstituteit in (6.10).Then
we obtain a differentialequationfor the variable ~ only, which can be studiedby meansof a phase
diagrammethod. In the following discussionwe follow a more generalapproach.

As a first step,let us introducethenew variablex = ln a insteadof t and transformtheequations.We
have

i=H, d/dtHd/dx. (6.13)

Using (6.13)to expressthe time derivativein termsofderivativeswith respectto x, theexpression(6.9)

for the Hubbleparametercan be recastas

H 1Vu2[1 — ~l2(d~/dx)2]~’2- (6.14)

Applying eqs. (6.13) and (6.14), the equationof motion (6.10) for ~ takesthe form

(2 r j ~2, ~, 2jd~ i
12(d4~1d~~ IV —

t~j~ L ~ ‘~~I~i]~J1_il2(d~/dx)2+ ç~

This equationcan be reducedto afirst-orderequationif weintroducethe new variabley= d~/dx,and
considerit asa function of ~‘,

dy/d~= —(1 — ~l
2y2)[3 + (V~,,/V)/l2y]. (6.16)

From (6.14) it follows that for physical real-time solutions (called Lorentziansolutions) thereis a
constraint on the magnitudeof y, I ~l~ \/~/l.This follows since for LorentziansolutionsH mustbe
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real. Points on the ~—y planewhere this condition is not satisfiedcorrespondto Euclideansolutions
(solutionsdefinedin imaginary time).

Equation(6.16)canbe analyzedby meansof thephase-diagrammethod[99].The generalstructure
of this diagram does not depend on the details of the potential V(ço). Only two assumptionsare
important: first we considerpotentialsV(ço) which aresymmetricfunctionsof q’. Secondly,we assume
that as I I —* ~, V(p) increasesless fast than an exponential,i.e.,

(6.17)

as ~—~co. In this case,the phasediagramof eq. (6.16) is depictedschematicallyin fig. 6.1.
Let us startwith solutionswhich arecloseto the lines I I = \/~/1. ForsuchsolutionsV4 ~2 and in

this casethe scale factor evolvesas in a universefilled with hydrodynamicalmatterwhich obeysthe
equationof statep = +e [a(t)cxt”3].

To investigatethesolutionsneary = v’~/1 [whichis itself a solutionof (6.16)],wewrite y in theform
y = ±(V~/l)(1— ay), where 0<~y 4 1 for Lorentzian solutions. The linearized equation for ~y
immediatelyfollows from (6.16),

d i~y/d~= ±(3V~1±VQ/V)~y, (6.18)

andhasa solutionof the form

= ~y
1[V(~)/V(~1) exp[±3\r2l(~— ~)], (6.19)

where p~and iXy~are the initial conditions for (6.16): Ay1 =

Analyzing eqs. (6.18)and (6.19), it is easyto understandthe flow linesnear = ~[2/1 in fig. 6.1.
(Note that the arrowsin the figure indicate evolutionin time.) Consideras the simplestexamplethe

~
Fig. 6.1. The phasediagramfor thebackgroundequationsdescribinga scalar-fielddominateduniverse.The bold lines labelleds areseparatrices
sincetheyseparatetrajectoriesof different type from one another1101].
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theory of a free real scalarfield with massm, for which the potential is

V(co) = ~m2co2. (6.20)

This is oneof the modelsusedto realizechaotic inflation [100].In this case,(6.19) reads

d~y/d~= ±(3\/~l±2/co)1~y. (6.21)

For large positive and negativevaluesof ~, the bracketis positive. Hence,as ~ increasesstarting at
largenegativevalues,the trajectorymovesaway from theline y = \/~/1. For small negativevaluesof ~,

however,trajectoriesconvergeback towardsthe line. For small positive valuesof ~, trajectoriesare
againrepelled.

Sincethephasediagramis symmetricaboutthey-axis, we shall restrictour attentionto thebehavior
of trajectorieson the left-handsideof thediagram.Moving awayfrom the line y = v’~/1, we eventually
reachanothercurve in thephasediagramwhich is an attractorfor solutions,aseparatrix[101]markeds
in fig. 6.1. At largevaluesof ~ (I~I~‘ 1/i) this separatrixis closeto the line wheredy/d~= 0. Hence,
we can obtain the equationfor this separatrixin the form

y = ~(1/3l2)Vç/V + O[(V~/V)2,VQQ/V,. . .)]. (6.22)

For ~I~‘ 1/1 we can neglectthe termsoforder ~ andhigher.
The ratio H/H2 can be calculatedfrom (6.11) and (6.13). Inspectingthe result, it follows that for

solutionsin the vicinity of this separatrix,for I I ~ 1/1

I~’I/H2 = ~12y241, (6.23)

provided that the potential increasesless fast thanexponential[see(6.17)]. This implies that these
solutionsdescribean inflationary period.We call them quaside Sittersolutionsfor which the effective
equationof stateis p — e. For an exponentialpotential,the backgroundevolutionleadsto power-law
inflation [102].

Sincey~= dx/d~,we can integrate(6.18) to obtain

a(ço) exp(_312J(V/Vç)d~) (6.24)

during the inflationaryperiod. For a polynomial potential,

V(io) = (A~/n)ço”, (6.25)

onegets

a(~)= a, exp[—(3l2/2n)(~2— ~)], (6.26)

To find thedependenceof thescalefactoron time weneedto obtain the time dependenceof thescalar
field p. During the quasi de Sitter stagewe may useH Wli2 and (6.22) to obtain the equation
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= Hy= —(1/3l)V~/V”2. (6.27)

Integratingthis equationgives the time dependenceof ço. For polynomial potentials(6.25) with n ~ 4
the result is

= [(4— n)(A~n)’’2(6l)~(t
1— t)]

2~4”~, (6.28)

where t
1 is an integrationconstant.For n = 4 we get

= ç~exp[—(2/3l)A,~/
2(t— t)]. (6.29)

A quasi de Sitter periodwill ariseif thephasetrajectoryapproachesthestationaryline at I ~‘ I > 1/I.
Thiswill happenif Ay reaches0(1) when tpl >1/1. Usingeq. (6.19),wemayrewrite thisconditionin
termsof boundson the initial data~ and ~. The result is

sV(i~p
1)exp(3V’~Ilq1~). (6.30)

This bound can be understoodasa constrainton the initial conditions which haveto be satisfied in
orderto realizeinflation. For inflation to correctlymodel theobserveduniversewe needinflation to last
morethan65 Hubbleexpansiontimes [41].The constrainton the initial conditionsrequiredto achieve
this is similar to eq. (6.30).

Whenthevalueof thescalarfield dropsbelow thePlanckscale(q, < 1/1) inflation ceases.The scalar
field begins to oscillate. In fig. 6.1 this correspondsto the ellipsoidal curves close to the origin.
However,for this part of thephasediagramtheeffective equationof statedependssensitivelyon the
potentialV(tp). To describea concreteexamplewereturnto themodel of a free scalarfield with mass
m given by the potential(6.20). For this choice of potential it is conventientto introduceradial and
anglevariablesr and 0 insteadof y and ~ in the following manner:

y = (V~/l)sin0, ~ = rcoso. (6.31a,b)

Thesevariablessatisfyequationswhich follow immediatelyfrom eq. (6.16)

0 = —(3I/2’/~)mrsin 20 — m, r = —(3li’/~)mr
2sin2O. (6.32a,b)

Eliminating r from the abovesystemwe get a closedform equationfor 0,

sin20 — 2(~ + i)(~~cos20+ sin2o) = 0, r = mt. (6.33)

If we introducethenew variableu d0/dTand regardit as a function of 0, then(6.33) reducesto

du/dO= (u + 1)(ucot0 + tan0)/u. (6.34)

A particularsolutionfor this equationis u = —1. The generalsolutionduring theperiod of oscillationis
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close to u = —1. To seethis moreclearly let usintroducethe newvariable11= u + 1 4 1 and setout to
prove that 11—p0. Keepingin (6.34) only termsup to secondorder in 11 we get

d11/dO = 211cot20 — 112 tan0. (6.35)

This is the Bernoulli equationwhosesolution is [87]

11 = sin20/(0+ c — ~ sin20), (6.36)

wherec is an integrationconstant.From the abovesolution (6.36), it follows that as 101—~~, 11—i’ 0.
Thus, as a generalsolution in the regime underconsiderationwe usethe solution u = —1 for which
0 = 0~— mt where 00 is an arbitrary phase.Substitutingthis into eq. (6.38)we cansolve for r,

2V~ / 1 .
r= il+ sin2m(t—t0)

31m(t— t0) \ 2m(t— t0)

2V~ 1 1 . / 1 \1
Ii — sin2m(t— t0) + 01 2 (6.37)

31m(t— t0) L 2m(t— t0) \ (t — t0) / J

Using (6.14) and (6.31a,b) to expressH in termsof r it follows that H= (l/V~)mr.It is possibleto
integratethis expressionandfind the scalefactora(t). The result is

2/3” cos2m(t— t0) 1 —3
a cx (t — t0) l\1 + 6m

2(t— t
0)

2 — 24m2(t— t
0)

2 + O(t — t
0) ]) . (6.38)

Thuswe seethat the evolution of the scalefactor in a universedominatedby a massivescalarfield
during the periodof oscillation is nearlythesame(up to oscillating corrections)asif the universewere
dominatedby pressurelessmatter. However, the oscillating correction terms in (6.38) are very
importantsincethey determinethe time evolutionofgeometricalinvariantswhich areconstructedfrom
higher-ordertime derivativesof the scalefactor. For example,the Hubbleparameterhasoscillating
correctionterms(comparedto theevolution for a dustuniverse)which decayonly as(t — t0) ~.For the
scalarcurvaturethe result is

R= —[4/3(t — t0)]{1 —3 cos2m(t— t0) + 0[(t — t0)~]} , (6.39)

comparedto R = —4/ 3t for a dust universe.

6.3. Perturbations

To obtain the gauge-invariantequationsof motion for cosmologicalperturbationsin the universe
dominatedby scalar-fieldmatter, we insert into the general equations(4.15) the gauge-invariant
energy—momentumtensor8T~t~[seeeq. (6.7)]. First of all, from the i—j (i ~ j) equationit follows
that we can set (as in the perfect fluid example of chapter 5) ‘P =‘P, since 8T~’~’= 0 (i ~J).
Substitutingtheenergy—momentumtensor8T~’~’” from (6.7) into eqs.(4.15)andsetting‘P = ‘P we find
(in conformal time)
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V2’P — 3~’P’— (LW” + 2~2)’P= ~l2(p~
8~(gi), + V~,.,a

2~ (6.40)

‘P’+ ~r’P= ~12~bp~, (6.41)

‘P”+ 3~”P’+ (~“+ 2~?2)’P= ~I2(tp~bp~’— Va28~~~) (6.42)

Note thatonly two of theseequationsareindependent.In obtainingthis form oftheequations,we have

usedthe backgroundrelation [see(6.11)]

~I2~~2= ~,2 — ar’. (6.43)

Equations(6.40)—(6.42)are the basicperturbationequationsin the caseof scalar-fieldmatter.They
were first derivedin this form in ref. [103](seealso ref. [63]).

We can obtain the equationof motion for the gauge-invariantscalar-fieldperturbation~ by
combining eqs. (6.40)—(6.42). However,it is easierto derive this equationstarting from the Klein—
Gordonequationfor ~,

~: +V~=0. (6.44)

which can be obtainedby varying theaction (6.1). For thebackgroundpart ~, theequationbecomes
[seealso eq. (6.10)]

+ ~ + V~(~
0)a

2= 0. (6.45)

The equation of motion for the scalar-field perturbation~ can be obtainedby linearizing the

Klein—Gordonequationabout the backgroundsolution. The result is
+ ~r

8~(g1), — v
2

8~(g) + V~a
2
8ç(g’) — 4ç~~P’+ 2V~,a

2’P= 0. (6.46)

Often, the termsdue to gravitationalfluctuationsare left out in the equation for the scalar-field

perturbation,which is then written as

b~”+ 2~t’bç’ — V2 8~+ V~a28~= 0. (6.47)

However, the terms due to metric perturbationsare also linear in fluctuationsand are, evenduring
inflation, of thesameorderasthe termV~~a28q which hasbeenkeptin (6.47).Thus, strictly speaking
eq. (6.47) is incorrect. In manycases,the differencebetween(6.46) and (6.47) is significant, e.g., in
eternalinflation [104].It is very difficult to investigate(6.46)by itself. It is moreconvenientto returnto
the systemof eq. (6.40)—(6.42)in order to calculatethe time,evolution of the fluctuations.

Subtracting(6.40)from (6.42),using (6.41) to express~ in termsof’P’ and ‘P,andtaking into
account (6.43) and (6.45),we obtain a second-orderpartial differential equationfor ‘P which can be
written eitheras

‘P”+ 2(~~— ~/ç,~)’P’ —V2’P + 2(~C’— ~l~/qz~)’P= 0, (6.48)

or as
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‘P”+ 2(a/~)’(a/~)~’P’— V2’P + 2~(~/ç~)”P= 0. (6.49)

Introducingthe new variable

u = (a/p~)’P (6.50)

insteadof ‘P and using the equationsfor the backgroundmodel, we reduce(6.49) to the following

equationfor U:

— V2u— (0”/O)u = 0, 0 = ~/C/aco~. (6.51a,b)

The solutionsof eq. (6.51a) caneasily be foundin the asymptoticlimits. Let us considerplane-wave
perturbationwith wavenumberk, i.e. ‘P, b~, u cx exp(ik x). For short-wavelengthperturbations
which satisfy k2 ~ (0)”/0 it is possibleto neglectthe last termin eq. (6.51a)and one obtains

ucce~”~. (6.52)

For long-wavelengthperturbationswith k2 4 (0)”/0 thesecondtermin eq. (6.51a)canbeneglectedand

we get

u~Ci0+C
20J~~

4(!Jdfia2(
77)), (6.53)

where C1, C2 andA areintegrationconstants.The secondintegrationconstant,in the final expression
hasbeenabsorbedin the integral.The correspondingexpressionsfor ‘P and~ following immediate-
ly from (6.50) and (6.41).

For short-wavelengthperturbationswe have

‘Po[Cisin(kJadt)+C2cos(kJa1dt)]e~, (6.54)

— ~ [c~cos(kJa~dt) — C2sin(k J a’ dt)] e~, (6.55)

where the dot meansthe derivativewith respectto physical time t = J a d77.
For long-wavelengthperturbationsone gets

‘P=A(~Jadt) =A(1_ _HJadt), (6.56)

A~~(a’f a dt). (6.57)

Beforeapplying theaboveanalysisto fluctuationsin inflationaryuniversemodels,we will rewriteour
main equation(6.48) to makecontactwith otherwork. For long-wavelengthperturbationssatisfying
k
24 0”/0, when the spatial derivative termscan be neglected,(6.48) can be recastas a “constant of
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motion” or “conservationlaw”. Let us introducethe quantity ~definedby

~=~(H~’P+’P)/(1+w)+’P, w=p/e. (6.58)

Then, it is easyto verify that

~tH(1 + w) = cP + (H — ~ + 2(H — H~o0/4,0)’P, (6.59)

which is (up to the term V
2’P) the left-handside of (6.48) expressedin termsof physical time rather

than conformal time. Accordingto eq. (6.48), this expressionvanisheswhenconsideringwavelengths
far outsidethe Hubble radius for which V2’P can be neglected.Thus, on thesescales~is conserved.
This conservationlaw wasfirst derivedby Bardeenet al. [53],using ratherdifferent methods.It has
beenusedin manybrief reviews[105]to estimatethe spectrumof densityperturbationsin inflationary
universemodels.

6.4. Applicationto inflationary universemodels

Oneof the main applicationsof the theoryof cosmologicalperturbationsis to inflationaryuniverse
models.In this sectionwe shall discussthe evolutionof classicalperturbationsin inflationaryuniverse
models.The quantum generationof fluctuationswill be discussedin the secondpart of this review.

First, let us recall the reasonwhy it is possible in inflationary universemodelsto havea causal
generationmechanismfor cosmologicalperturbations.Figure6.2 is a sketchof physicaldistanceversus
scalefactor a. We imagine that therewas a period of exponentialexpansionduring the very early
universe,for a < aR. During this period,theequationof stateof matteris approximatelyp = — e, and
theHubble radiusH 1 is constant.At aR, the time of reheating,thevacuumenergydensityis assumed
to convertinto usualmatter(massiveparticlesandradiation)in a time interval smallerthanthe Hubble
expansiontime H - ~.Thereafter,the universeevolvesasin the standardBig Bangmodel, which is to
say that the universe is radiation-dominateduntil the time of equal matter and radiation, and
matter-dominatedthereafter.In the matter- and radiation-dominatedperiods, the Hubble radius
increasesmorerapidly thana fixed comoving scale.In fig. 6.2 we also showa line correspondingto a
fixed comovingscaleon which perturbationsareto be generated.The successof inflationaryuniverse

a(t~(k)) a a(t (k))R a

Fig. 62. Sketchof theevolution of length scalesin inflationary universemodelsin terms of physicaldistancex versusscalefactora. The line k
denotesthe wavelengthof a perturbationwith fixed comoving wavenumber.H -‘ is the Hubble radius.The scaleof the fluctuation leavesthe
Hubbleradiusat time t = t

1(k) and reentersat t = t,(k).
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modelsconsistsof allowing perturbationsto begeneratedinsidetheHubble radiusduring theperiodof
inflation, and then to grow to becomeperturbationson the scaleof galaxiesand clustersof galaxies
today. This is possibleprovided that theperiod of inflation is longerthan about65H-

Models with a single period of inflation during which the Hubble parameteris constantpredict a
scale-invariantHarrison—Zel’dovich[47]spectrum.This is easy to see heuristically, but a rigorous
derivation is not possiblewithout including quantumconsiderations.The heuristic argumentgoesas
follows. Considera fixed comovingwavenumberk. Let t~(k)bethe time whenthewavelengthbecomes
larger thanthe Hubble radiusduring theperiodof inflation, and let tf(k) be the time whenit reenters
the Hubble radiusat latetimes. By time-translationinvarianceof thede Sitterphase,thetime evolution
of a perturbationshouldbe independentof k whenconsideredup to the time t~(k).This impliesthat the
amplitudeof the perturbationshould be independentof k when measuredat t1(k). As we shall see
below,whenwe follow theevolutionof theperturbationwhile outsidetheHubble radius,its amplitude
increasesby a factorthat dependsonly on thenetchangein theequationof state.Hence,theamplitude
of the perturbationis practically independentof k whenmeasuredat the time tf(k). This is what is
meantby a scale-invariantspectrum.In the following, we shall analyze the classicalevolutionof the
perturbationsand verify the aboveclaim.

Applying the techniquesof eqs. (6.48)—(6.57), we see that for short-wavelengthfluctuations
[k

2~ a2 max(V~,Vt/V,.. .)], the amplitude of the metric perturbation ‘P is proportional to 4i.
During inflation when

—V~/3H———V~/3lV”2, (6.60)

the time changein ‘P is negligible. In particular,for thequadraticpotentialof eq. (6.20) theamplitude
~ is exactly constantduring inflation and hence‘P cc cx m.

The amplitude of the scalar-field perturbationsdecreasesasa’. For perturbationswith a given
comoving wavenumberk, this amplitudewaslarge in the pastand at somepoint in time linear theory
breaksdown since theconditionbç /~< 1 is violated. Note that themetric perturbationswerealways
small when calculatedby linear theory. However,when thewavelengthof the perturbationis of the
orderof the Planckscale,nonlineartermsdue to scalar-fieldperturbationsin theenergy—momentum
tensordrive themetric perturbationsto valuesthat arelargerthanonesdeterminedby lineartheory.It
is possibleto estimate[106]this effect and show that the metric perturbationson Planckianscales
becomeof theorderunity. Thus, linear perturbationtheory can be appliedonly whenthescaleof the
perturbationsis largerthanthe Planckscale.

Whentheuniversehasexpandedsufficiently, theperturbationswith a givenwavenumberk reachthe
long-waveregime, k24 a2 max(V~/V,Vt/V,.. .), where accordingto (6.56),

‘P=A(a~Jdta) = A(a~JdaHj = A(H~_Jdta(H~)~)

= A([H~] — [H[H~]~] + [H[H[H]~]~]~ — . - -) , (6.61)

~~(gi) = Acb
0(H~— H’[H~]~ + H[H[H]~]~ —...). (6.62)

The expansionsabovewereobtainedas a resultof integrationby parts and theyare asymptoticseries.
During inflation, when HI 4 H

2, we can neglect all but the first terms in eqs. (6.61) and (6.62).
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Further, taking into account that during inflation ~ 4 V(ço), and kô0I 4 IV,~,(co)I and using the

backgroundequationsof motion, we find
‘P=—AH/H

2=AV~,(6l2V2)1, (6.63)

A çb
0/H —AV~(31

2V)’- (6.64)

After the end of the period of inflation, the scalarfield oscillatesand decaysinto ultra-relativistic
particles[107].Afterwards,thescalefactorgrows asa powerof time, i.e., a cc tm. It follows from (6.56)
that the amplitudeof the perturbationis

‘P=A/(m+1), (6.65)

and practicallydoesnot changein time. Here A is the sameas in (6.63) and (6.64). ExpressingA in
termsof H, ~ and

8~,(gi) using (6.64), we obtain

‘P — (m + 1)’H ~ (6.66)

in agreementwith the resultsof previousinvestigations[50—53,105]. Here, bq~/~0and H haveto be
evaluatedat the time when k

2 = 0”/O (which in many casesoccurs when the wavelength of the
perturbationcrossesthe Hubble radius). Note that in this formalism we do not need to makeany
assumptionsabout the durationand detailedmechanismof reheating,exceptto assumethat we are
consideringscaleswhich leave the Hubbleradiusbefore reheatingandenterafterwards,andthat the
lengthof the reheatingperiodis small comparedto 50 Hubbleexpansiontimes. In synchronousgauge,
trackingthe perturbationsthrough the reheatingperiod is quite difficult, andthe independenceon the
reheatingmechanismis obscured.

For the potentialV= ~m2~2(eq. 6.20) the oscillatingcorrectionsto the evolutionof the scalefactor
a [see(6.38)] leadto oscillatingcorrectionsin (6.65).The time evolutionof the amplitudeof themetric
perturbations‘P for inhomogeneitieswith a given wavenumberk is depictedin fig. 6.3. We shall briefly
addhow the final amplitudeof perturbationscan bederivedusingthe conservationlaw (6.58). Sinceat
very early andvery late times ‘P vanishes,(6.58) simplifies to yield

1 + 2[1 + w(t )]‘
cP(tf) = 1 + ;[1 + w(t

1)]”’ ‘P(t~) , (6.67)

wheret1 and t~arethe k-dependenttimesof initial andfinal Hubbleradiuscrossingandw = p/c. From
this equationit is alsoclear that the amplitudeof the final metric perturbationsis independentof the•
details of reheating,since it is given in termsof the initial amplitudemultiplied by a factor which
dependsonly on the net changein the equationof state.Using (6.63) and (6.64) to express1 + w(t1)
and ‘P(t1) in termsof ~ andb~,and applying (6.11) to replaceH, we obtain

— H ~ (6.68)

in agreementwith (6.66).
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Fig. 6.3. Evolutionof thegauge-invariantgravitationalpotential ‘~Pfor a plane-waveperturbationwith wavenumberk asafunction of time in an
inflationary universe. tR is thetime of reheating.

Note that for long-wavelengthfluctuations,both H and b~~ dependon time, but theproduct
doesnot. However, if we considerthe productH(8~/~)andwork in a particularcoordinatesystem,
then also the product is time-dependent.Thus, when using a particulargaugeto computethe initial
fluctuations,caremust be takento evaluatethe productat the correcttime (whenk

2 = 0”/O), which
often occursat the time t

1 (k) when the wavelengthof the perturbationleavesthe Hubble radius.

7. Perturbationsin higher-derivativegravity theories

We know that Einstein’s general relativity theory basedon an action with integrandR is a good
descriptionof spaceand time. However, this theory is also known to be non-renormalizable.The
simplestway to rendergravity renormalizableis to changethe Einsteinaction at high energies[108].
Any changein thegravitationalactionwill genericallyleadto higherderivative termsin theequations
of motion. A secondreasonfor consideringhigher-derivativegravity theoriesis relatedto vacuum
polarizationeffects. WhenevercouplingEinsteingravity to quantummatterfields andcalculatingin the
semiclassicallimit in which the expectationvalueof the energy—momentumtensoroperatorof the field
theory is coupledto gravity, higher-derivativetermsarisewhencalculatingthe expectationvalues.We
will not specifically investigatethesemodelsin this review, andrefer the readerto the literature [109].

Higher-derivativegravity hasrecently arisen in severaldifferentareas.It resultsin the low-energy
limit of many superstringtheories [110]. It is also used in a new realizationof inflation, extended
inflation [111]. The evolution of a homogeneousbackgroundin higher-ordertheoriesof gravity was
studiedby manyauthors(e.g.,seeref. [112]).In higher-orderderivativegravity theories,theevolution
of the early universecan have some very interestingfeatureseven without matter. In particular,
inflation arisesin suchmodels [49,113] without fine tuning of initial conditions [25].This is a major
reasonwhy higher-ordergravity modelsareof interestin cosmology.
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To simplify the analysis we use the conformal equivalencebetweena higher-derivativetheory
without matterand theusualEinsteintheorywith scalar-fieldmatter.(This equivalencewasfirst proved
for R2-gravity by Whitt [114]and for a general F(R) action in refs. [115,116].) We shall consider
theorieswith Lagrangiandensitieswhich area function of the scalarcurvatureR. This coversa lot of
modelswhich are of interest.In the first sectionof this chapter,we demonstratethat a theory with
LagrangiandensityL = f(R) is conformallyequivalentto Einstein’s theory with ascalarfield. Then,we
briefly discussthe backgroundevolutionbefore analyzingthe perturbationsin the third section.

7.1. Conformalequivalence

Let us considera gravity theory with metric ~ and action

S = (1/612)f f(R)~d4x, (7.1)

wheref(R) is an arbitraryfunction of the scalarcurvatureR and 12 = 8irG/3. The field equationsare
obtainedby varying the action (7.1).The result is

(af/aR)R~— ~~f(R) + (af/aR)’6~’— (af/aR)-~= 0. (7.2)

Our goal is to showthat thesevacuumgravity equationscoincidewith the usual Einstein equations,

— = 3l2T~(Q), . (7.3)

in a theorywith scalar-fieldmatterand anewmetric which is conformallyrelatedto theold one, i.e.,

= Fg~. (7.4)

The correspondencewill hold for appropriatechoice of the conformal factor F F(R) and of the
potential V of thescalarfield p(R), V(p) V(p(R)).

We now determineF, tp and V(~o)as functionsof R. Here andin the next formulasthe tilde means
that the correspondingvariablesare calculatedfor the conformal metric j~. Under the conformal
transformationg~—~ = ~ the Ricci tensor and scalar curvature transform in the following
manner[114]:

R~’—+R~=F’R~ _F_2F;p~ galL + ~ ~
(7.5)

R—~R= F’R — 3F_2F;~pga$+

Correspondingly,the Einsteinequations(7.3) rewritten in termsof themetricg~,.by substituting(7.5)
and the energy—momentumtensorof a scalarfield with potential V(co) take the form

— ~ + ~F’((ln F);p(ln F);~g”~’— ~(ln F);a(ln F);pgaI~ô~~)

+ p_2~ gaP ~ — galL)

= 312F_l[ço;pp;~g~~lL— ~ô~co;~cv;pg~+ ~FV(~)]. (7.6)
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If we set

co=(1/V~1)lnF, (7.7)

then the terms in (7.6) with a tensorstructuredifferent from that of termsin eq. (7.2) cancel.Hence,

eq. (7.6) can be rewritten in the form
F(R~— ~6~’R)+ F&~’— F~— 312F2V(ço)6~= 0. (7.8)

This equationcoincideswith (7.2) if we choose

(7.9)

and the scalar-fieldpotential

V( )=_Lf)fl~ (7.10)
~ 61~ (af/aR)2

The q~-dependenceof V is obtainedfrom (7.10) if we expressR in (7.10) in termsof ~ using the
formulas (7.7) and (7.9).

7.2. The backgroundmodel

As an examplewe shall describethe evolutionof the backgroundmodel in R2-gravity, a modelwith
action

~ (7.11)

In this model

f(R) = R— (1/6M2)R2, (7.12)

and, correspondingly,from (7.9), (7.7) and (7.10) oneobtains

F=1—R/3M2, ~=(1/\/~l)ln(1_ ~-~) , (7.13a,b)

V(~)= (M2/4l2)[1 — exp(—V~1~)]2. (7.14)

Note thatwhen q~4 1 /V~l,then V(ço) M2~2/2.
Now we shall use the conformal equivalenceof R2-gravity and ordinary gravity theory in the

presenceof scalar-fieldmatterto study theevolutionof thebackground.Theresultsof section6.2 for a
scalar-fieldmatter-dominateduniversecan thenbe applied. For thesakeof simplicity we will consider
only the caseof a flat universe.The resultsof this and the following sectioncanin principle easilybe
generalizedto nonflatuniverses.The backgroundmetric is



250 V. F. Mukhanovet al., Theoryof cosmologicalperturbations

ds2 = a2(’q)(d
77

2 — dx’ dx’3), (7.15)

andthe correspondingconformalmetric becomes

ds2 = 112(
77)(d77

2— dx” dx’s). (7.16)

The conformal scalefactor 11, relatedto a by

11(17) = F~2a(~)= (1 — R/3M2)”2a(
77), (7.17)

satisfiesthe Einstein equationsfor the conformaltheory [see(6.9)]

= l2[~,2 + V(p)]. (7.18)

The scalarfield ~ definedin (7.13a) obeystheequation [see(6.10)]

çó+3H~p+V~=0. (7.19)

Here,H = i/i and— aswe stressat this point— the dot denotesthe derivativenotwith respectto the

original physical time variablet = f a(~q)d~,but with respectto a new time variable

t=f11(fi)dfl=fF1/2dt. (7.20)

The systemof backgroundequations(7.18) and (7.19) wasinvestigatedin detailin section6.2, and
in the following we will usethe resultsobtainedthere.The potentialV(tp) is not symmetric[see(7.14)].
Hence,thephasediagram(which can be constructedasin section6.2) will not be symmetricaboutthe
y axis. Also, thecondition Vç/V4 1 will not be satisfiedfor any negativevaluesof ~.Thus,the phase
diagramfor higher-derivativegravity will look very different for ~ < —1/1. We will not study this partof
thephasediagramsincein this regionsolutionsdo not leadto inflation. However,for I wI 4 1/1 and for
all positive valuesof ~, the phasediagramwill be similar to that depictedin fig. 6.1, and thus we can
usethe resultsobtainedin section6.2. In particular,we shall useeqs. (6.24), (6.27) and (6.38) which
give theconformalscalefactor in termsof thescalarfield ~ and in termsof the time ~ Note that when
appliedin this chapter,also the differentiationin eq. (6.27) is with respectto i

First considertrajectoriesstarting at a value ~~ 1 /V~1. As can be seenfrom the phasediagram,
thesetrajectoriesrapidly approachthe region in which inflation is realized.Once in this region, eq.
(6.24) appliesandwe can integrateit for the potentialof (7.14) to obtain

11(w) = 11~exp[— ~exp(V’~lip) + (3l/2V~)q7], (7.21)

where ~ like a
0 in the following equation,is a constant.Using (7.17) and (7.7), we can find a(w),

a(w) = a0 exp[— ~exp(V~Ic) + (l/2V~)c]. (7.22)

To determinea(t) we needto calculatethe time dependenceof w(t). To do this one canuseeq. (6.27).



V.F. Mukhanoveta!., Theoryof cosmologicalperturbations 251

Rewritten in termsof physical time t insteadof toneobtains

dtdw 1 V~ \/~M

~ ~ (7.23)

Taking into accountthat

dt/dt=F”2 = exp(—~/~lc), (7.24)

andintegrating(7.23) one gets

exp[(l/V~)q,]= ~M(t, — t), (7.25)

wheret~is someintegrationconstantwith the approximatemeaningof the time wheninflation ceases.

Substituting(7.25) into (7.22) we concludethat
a(t) cx (t, — t)u2 exp[— *M2(t~— t)2]. (7.26)

Thus,wesee that for w ~ 1 /V~I quasi-exponentialexpansionis realized.While t 4 t~,thescalefactor
a(t) grows like a slightly modified exponential.Inflation endsat t — t,. In termsof physicalvariables,the
condition w ~‘ 1 /V~1 necessaryto obtain a quasi-deSitter periodmeans I RI ~ M2. The limitations on
the initial derivativeof R requiredto realize inflation can be readoff from (6.30).

When the field w dropsbelow the Planckvalue, the potential V(w) can be approximatedby the
quadraticpotential V(~)= (1/2) M2w2 Thus, to analyzethebackgroundevolution in this periodwe can
apply the results from the second part of section 6.2. The scalar field w is oscillating, and the
correspondingsolution for theconformal scalefactor can be obtainedfrom (6.38),

11(t) cx (t— i)2/3[1 + sin~~~
2 ~ + O(1~M~))3)]. (7.27)

For small values of w (Id <<1/i), the time variable t= J Fu
2 dt coincides with t up to oscillating

correctiontermswhich decayas1 /t. This follows from Taylor-expandingF in termsof c aboutw = 0,

F1+V~lw+O(l2w2)=1. (7.28)

Recallingfrom (7.17) that physicalandconformal scalefactorsare relatedby

a(t) = F’~’211(t)= [1— lip/’s/~+O(l2~2)]â’, (7.29)

and using eq. (6.37) for p(t), (7.27) gives

a(t) cx (t — to)2/3[1 — 2 cos[M(t ~~°)] + o(sin[M(t_o)])] - (7.30)

We concludethat in contrastto the expressionfor 11(t), the physical scalefactor a(t) in the caseof
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higher-derivativegravity theoriescontainsoscillatingcorrectingtermsdecayingas 1 / t and not only as
t~

2.This is due to the factor F’ /2 connectinga and11. The correspondingHubbleparameteris

H(t) = a”’ da/dt= ~ (t — t
0)’

1[1 + sin[M(t — ~~)]+ O(t — t
0)”

1] . (7.31)

Let us comparethe dustmodel, the theory with an oscillatingscalarfield, andthe higher-derivative
gravity theorydiscussedin this chapter.In all threemodels,the scalefactora(t) increasesas (t — t

0)
213.

In thescalar-fieldtheory, thereis a periodicmodulationwith amplitudedecreasingas (t — t
0)’

2. In the
caseanalyzedabove,the modulationhasan amplitude which decreasesonly as (t — t

0) ‘. In all three
models,H(t) hasthe sameoverall decayrate proportionalto (t — t0)’~. In R

2-gravity, the oscillating
correctiontermsto a(t) leadto a completemodulationof H(t) which variesperiodically from 0 to 1. In
the oscillating scalar-field model, thereis only a small modulationof the amplitudeof H(t), and the
relativeamplitudeof the modulationdecreasesas (t — t

0) An evenlargerdifferenceoccursfor the
Ricci curvatureR. For a dust model,R(t) scalesas (t — t0)’

2, for an oscillatingscalarfield thisbehavior
is modified by an amplitudewhich oscillatesin time [see(6.39)]. However, in R2-gravity,

R= 4M cos(Mt)/(t — t
0) + O(t — ~ . (7.32)

Thus, the dominanttermdecaysonly as (t — t0) ‘. Hence,the oscillatingcorrectionsto thescalefactor
are very important since they determinethe overall decay rates of physical invariants which are
constructedfrom higher-orderderivativesof the scalefactorwith respectto time.

7.3. Theperturbations

Let us considerthe cosmologicalperturbationsin a higher-derivativetheory of gravity with action
(7.1) [115].The full metric of the perturbeduniverse is [see (2.10)]

ds
2 = a2(~){(1+ 2c~)d

77
2 — 2B

1 d77 dx’ — [(1— 2i/i)~~~+ 2E,1] dx’ dx’}. (7.33)

To analyze the perturbationsin this case, it is more convenientto work with the corresponding
conformal theory basedon the Einstein action and including scalar-field matter. We have already
consideredmodelswith a scalarfield and thus we can use the resultswhich were obtainedin the
previous section. (Basically the same method has also recently been used in ref. [70] to study
fluctuationsin awide classof generalizedgravity theoriesincluding scalar—tensortheory,nonminimally
coupledscalar-fieldtheory andinduced-gravitytheory by gauge-invariantmethods.)

For the perturbedconformal metric = Fg~,,we can write down an ansatzequivalentto (7.33),

d~
2= Fds2 = 112(fi){(1 + 24)d

77
2 — 2B

1dx’ d77 — [(1 —

2~/i)~~~ + 2E
11] dx

1 dx’}, (7.34)

where the conformal scalefactor is i= F~’2a.F
0 is the backgroundvalue of the function F= af/aR.

The conformal scalefactor, as was shown in the previouspart of this section,must satisfy the same
backgroundequationsas in the caseof the scalar-fieldmodel of chapter6. For convenience,we will
write down theseequationsagain,usingconformal time,

= l
2[~~+ V(~

0)11
2], ~2 — = ~ , (7.35a,b)
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which are theexactanalogsof (6.9) and(6.11). Here ~‘ = 11’/a andc and V(~)aredefinedin formulas
(7.7) and (7.10). Comparing(7.33) and (7.34) and taking into accountthat in linear approximation
F = F0[1 + (~ln F0/aR) 8R] we find that the conformal potentials~, ~!i, B, E are connectedwith the
potentials~, ~fr,B, E of the original metric (7.33) in the following manner:

~=4+(0lnF~
2/äR)bR, B=B, ,/i=tIi—(ölnF~2/3R)bR, E=E, (7.36)

where &R is the perturbationof the scalarcurvature.
The conformal metric perturbationsare not gauge-invariant.The correspondinggauge-invariant

variablescan be constructedin the standardmanner[see(3.19)],

‘P = 4 + (1/11)[(B — E’)11]’ = ‘P + (~ln F~2/aR) 8R~”~
(7.37)

‘P = — (11’/â)(B— E’) = ‘P — (~ln F~’2/3R) 8R~~

where ‘P,’Parethe gauge-invariantpotentialsfor the original metric (7.33) and

= 8R + R~(B— E’) (7.38)

is the gauge-invariantmeasureof the scalarcurvatureperturbation[seealso (3.16)].
The conformal gauge-invariantpotentials‘P and ‘P satisfyequationswhich areexactly analogousto

the equationsfor a scalarfield and gravitation [see(4.15), (6.40) and (6.41)]. Of course,we needto
substitutein (6.40) and (6.41) the correspondingconformalvariablesto obtaintheseequations,

— 3~r’P’— (sr’ + 2~~2)’P= ~I2(ço~b~~’+ V,112~ (7.39)

+ ie~= ~I2w~8ç~. (7.40)

From the i—f (i ~J) equationin (4.15) it follows that, as for ordinaryscalar-fieldmatter,‘P = ‘P.
Beforediscussingthe solutionsof the equationof motion for ‘P, weneedto find theexplicit formulas

relatingthegauge-invariantpotentials‘P and ‘P of theoriginal metric to ‘P. To find theserelations,we
take into accountthat

~ ainFRl(BEI))

1 alnF 741
V~I aR

ExpressingbR~’~in terms of ‘P — ‘P and ‘P — ‘P by meansof (7.37) where we set ‘P =‘P, and
substitutingthe resultingexpressionfor bq~(gi) from (7.41) into (7.40)we find the following resultsfor ‘P
and ‘P:

‘P= —~(F2/F’a)[(a/F)I-]’, ‘P= ~(1/FF’a)(aF2’P)’. (7.42)

Thus,wecan find ‘P and ‘P if we know thesolutionsfor ‘P. Notethat thetwo gauge-invariantpotentials
for the original metric are not equal.This is a specialfeatureof higher-derivativetheoriesof gravity.
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Returningto theequationsfor thegauge-invariantpotential ‘P of theconformalmetric,wecan, asin
the caseof scalar-fieldmatterin ordinarygravity (chapter6), obtaina single second-orderdifferential
equationfor ‘P if we substitute~ from (7.40)into (7.39). Then,taking into accountthat ‘P = ‘P and
using the backgroundequations(7.35a,b) we obtainthe equation

‘P”+
2(i/e,’,’)’(111w

0’) I~ — ~2j~ +
2w,~,(~’/w,!,)’~= 0, (7.43)

which hasexactlythe sameform as (6.48).The solutionsof (6.48)were investigatedin detailin chapter

6 and we shall usethe resultswhich were obtainedthere.Thus, if we introducethenew variable
11 = (11/q~)’P= \/~I(aF312/F’)’P, (7.44)

then 11 satisfiesthe equation

11” — — (0”/0)11 = 0, 0 = ~W/a~p~= V’~l(aFU2)’/a2F’ - (7.45a,b)

The solutionsof (7.45a)can beeasilyfound in the asymptoticshort- and long-wavelengthlimits. For a
plane-waveperturbationwith 11cce”~,theshort-wavelimit (for k2 ~‘ 0”/0) gives

11cc C e’~+ c.c. = ~ exp(ik f a’ dt) + c.c. (7.46)

whereC is a constantandc.c. standsfor thecomplexconjugate.In the long-wavelimit (k2 4 6”/O) the
result is

3/2 1/2 , 3/2 1/2

___ — (aF) Ja2Fdfi=A(~~~__(aF) faFdt). (7.47)

Here, the physicaltime t = 5 a dq hasbeenintroduced;anddot meansthe differentiationwith respect

to t. To simplify the integralin (7.47) eq. (7.35b) was used in the form

F’2 = — ~aF512[(aF’’2)’/a2F]’. (7.48)

Let usnow expressthe potentials‘P and ‘P in terms11. Using the relation (7.44) between‘P and 11,
(7.42) becomes

‘P=_
3~F,/2[(_~+H)11+~], ‘P=3F1/2[(~+~+H)11+u], (7.49)

whereH = a/a. Taking into account(7.37) andusing ‘P =‘P, onecan expressbR~’~in termsof ‘P and

= ~(d In F”
2/aR)”’’(’P — ‘P). (7.50)

Now, substituting 11 from (7.47) and (7.48) in (7.49), it follows that for the short-wavelength
perturbations(k2 a~0”/O)
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1 lift s P ik\ 1. 1 ~ 1
‘P=—-—-~L~—~~+H+—)cexp!,~tkJ a dt)+c.c.],

-- - (7.51)
1 1/F 1 F ik\ 1. 1 —~ 1

~ dt)+c.c.],

and, correspondingly,for long-wavelengthperturbations(k2 4 0”/O),

‘P=A(-~JaFdt)~, ‘P=’P+A-~JaFdt. (7.52)

The solutions(7.51) and(7.52) can be appliedto describethe evolutionof cosmologicalperturbations
in theoriesof gravity with action S = (1/612)5 f(R)~./9d4x, wheref is an arbitraryfunction of the
scalarcurvatureR anddeterminesF via F= af/aR.

Let us analyzein detail thebehaviorof perturbationsduring the quasi-dcSitter stage(7.21) in R2
gravity. As in the caseof scalar-fieldperturbations,thereare two distinguishedphysicallengthscales.
The first is the HubbleradiusH’, thesecond(andlarger)oneis given by the inversemassM ~. Taking
into accountthat during this stage

H= —~M24H2, (7.53)

we obtain (after integrationby parts) the following for the long-wavelengthlimit, in which the length
scaleexceedsthe larger of the abovetwo distinguishedlengthsin this model (k2 4 ~M2a2),

11 M2 1 M4\1 11 M2
‘P=~AL_ 2 +O~-4)], ‘P=_AL_ 2 +O(~,—

6H(t) H 6H(t) H4
(7.54)

____ 11 M2 (M4
R A[

3 H
2(t) +O~\,ff~3

For thecaseof short-wavelengthperturbations(k2 ~‘ ~M2a2),the termsft/P and F/F in (7.51) can be
neglectedduring the quasi-dcSitter period,and we find

/ ik\ /. 1k \ ____

‘P~=—’Pcc~1+Tj~—)exp~IJ— dt)+c.c., R =—2’P. (7.55)

As shown in ref. [70], the differencebetween‘P and ‘P in higher-derivativegravity theoriesis dueto
anisotropicpressuretermswhich arisein thesemodels.

Let us now follow the amplitudeof a perturbationwhosewavelengthstartsout muchsmaller than
the Hubbleradiusduring the quasi-deSitterperiod. Accordingto (7.55), the amplitudeof the metric
perturbationsdecaysas1 /a(t) up to whenthe length scalecrossesthe Hubbleradius(k —= Ha), sincethe
decayingmode in (7.55) hasa largeramplitude.Accordingto the sameequation,the amplitudethen
freezesat a value given by ‘P — ‘P = constantuntil the physicallength scale reachesthe valueM ‘l

(k -~Ma). From that point on, the amplitude of the long-wavelengthmetric perturbations(k 4 Ma)
increasesas H 2(t) [H(t) decreasesduringthe quasi-deSitterperiod]. The increaseis cut off whenthe
quasi-dcSitterperiod endsand the period of oscillationof the curvaturebegins.
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~

Fig. 7.1. Evolutionof thetwo gauge-invariantgravitationalpotentials‘I’ and~Pfor a plane-waveperturbationwith wavenumberk asa function of
time in a higher-derivativetheoryof gravity duringand after inflation.

To analyzethe time evolutionof the perturbationsduring theperiodof oscillation,wesubstitutethe
result for thescalefactorfrom eq. (6.38) into (7.52)andtake into accountthat duringthis period F 1.
Thenwe obtain for the long-wavelengthperturbations,

‘P A{~— ~ cos[M(t — t,)]} , ‘P A{~+ ~ cos[M(t — t
1)]} , (7.56)

wherethe amplitudeA is the sameas in (7.54). We seethatthe increasein theamplitudeof the metric
perturbationsstops. The amplitude contains,in addition to a constantterm for which ‘P =‘P, a piece
oscillatingwith a constantamplitude.The oscillating part of the metric perturbationswill presumably
decay only if we take into account the fact that reheatingdamps out the oscillations [107]. The
oscillatingtermsin the ‘P and ‘P equationsareshiftedafter half the oscillationperiod.This effect may
be significantfor reheating.The time dependenceof ‘P and ‘P is representedschematicallyin fig. 7.1.

Let us stressthe interestingfeaturesof the perturbationsin R
2-gravity. During thequasi-exponential

periodof expansion,both the short-wavelengthandlong-wavelengthfluctuationsareconformallyflat,
i.e., ‘P = —‘P, in leadingorder.This is to be distinguishedfrom scalar-fieldmodelswhere‘P = ‘P. When
the period of oscillation starts, the nonoscillatingpart of the long-wavelengthperturbationsbecomes
conformal—Newtonian,i.e. ‘P =‘P, as in the hydrodynamicaland scalar-fieldmodels. However, the
short-wavelengthfluctuationsalways remain conformally flat to leading order, as can be seenfrom
(7.49).

8. Conclusions

In the first part of this review article we have presentedthe theory of classical cosmological
perturbations.It is important to distinguishphysical perturbationsfrom gauge-modechangesin the
metric which are due to a changein the backgroundcoordinatesof space—time.We havearguedthat
the bestway to achievethis separationis by eliminating the gaugemodesaltogetherby adopting a
gauge-invariantformalism.

In chapter3 we defined simple gauge-invariantvariables ‘P and ‘P and discussedtheir physical
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meaning.‘P is the generalizationof the Newtoniangravitationalpotentialandis proportionalto 8g00 in
longitudinal gauge. Chapter 4 contains a new derivation of a closed set of equations for the
gauge-invariantmeasuresof cosmologicalperturbations.

In chapter5, we applied this set of equationsto perfect fluid perturbations.In this case,the two
gauge-invariantmetric perturbationscoincide.The perturbationequationscan be combinedto give a
single second-orderpartial differential equationfor ‘P. In the caseof adiabaticperturbations,this
equationis homogeneous;for entropyperturbations,thereis a sourceterm proportionalto &S/S. We
derivedthe solutions for ‘P for a universe containingboth cold matter and radiation. For adiabatic
perturbations,both ‘P andthe gauge-invariantenergydensityfluctuation 8E~t)/eremainconstantif we
considerinhomogeneitieswith wavelengthlarger thanthe Hubble radius.Oncethe wavelengthdrops
below H ‘(t), the densitycontrastbc~’~/cin the matter-dominatedperiodstartsto increaseas 772 with
77 beingtheconformaltime. In an openuniverse(X = —1), 8g~’~/sfreezesout when77> 1. In thecase
of entropyperturbations,it was shownthat on length scaleswhich enterthe Hubble radius after the
time of equalmatterandradiation both ‘P andbe~’~/cincreasebefore

17eq’ whereasthe magnitude
of the matterenergy-densityfluctuation (a measureof the entropyperturbation)is frozen in. bs~/c
catchesup to bErn/Em by the time fleq~ Thereafter,the evolution is as for adiabaticperturbations.

The gauge-invariantequationsfor cosmologicalperturbationswereappliedin chapter6 to a universe
filled with scalar-fieldmatter.First, we presenteda new analysisof the backgroundmodelwhichshows
that for alargerangeof initial dataandfor suitablepotentials,the backgroundwill go throughaperiod
of inflation. Explicit equationsfor thescalefactora(t) during inflation andduring thesubsequentperiod
whenthe scalarfield oscillateswerederived.For long-wavelengthperturbations,analyticalformulascan
be obtainedfor the non-decayingmodeof the fluctuations.Theseresultswereappliedto the studyof
the evolution of classical perturbationsin inflationary universemodels. The amplitudesof ‘P after
inflation andduring inflation arerelatedby a factorwhich dependsonly on the changein the equation
of state.

Finally, in chapter 7 we discusseda class of higher-derivativegravity models. By a conformal
transformation,the systemcan be recastas a modelwith Einstein gravity plus scalar-fieldmatter.This
enablesa simple discussionof the backgroundevolution andperturbationequationsbasedon the
analysisof chapter6. In particular, the gauge-invariantapproachto cosmologicalperturbationscan
immediatelybe extendedto higher-derivativetheories.However, after the conformal transformation
back to the original variables,thereare someimportantdifferences.For the backgroundmodel,small
oscillatingcorrectiontermsin the scalefactora(t) (comparedto a dustmodel)crucially alter the time
evolution of invariants, like the Ricci scalarR, which dependon higher derivatives of a(t). The
perturbationsare no longer conformally—Newtonian(‘P =‘P), in contrastto the theoriesdiscussedin
chapters5 and 6.

We hope to have shown that the gauge-invariantapproachto cosmologicalperturbationsis both
physically more appealingand mathematicallysimpler than analyses in a particular gauge, e.g.,
synchronousgauge.

PART II. QUANTUM THEORY OF PERTURBATIONS

9. Introduction

In this part of the review article we develop a consistent quantum theory of cosmological
perturbations.This involves the simultaneousquantizationof metric andmatterfluctuations.Sincethis
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procedurerequiresa nonvanishingmattercomponent,it is only possiblein anexpandinguniverse,not
in Minkowski space,in contrastto the quantumtheory of gravitationalwaves.Quantizingmatterfields
in anontrivial backgroundleadsin generalto particleproduction.This processis thebasisfor structure
formation in inflationary universemodels and thus provides the initial conditions for the classical
evolution of perturbations discussedin part I. Recently, there has been a lot of progressin
understandinginitial conditions. Successfulcosmologicalmodelshave beendevelopedbasedon the
premisethatquantumfluctuationsareresponsiblefor the observedlarge-scalestructureof the universe
today. The theory of inflation [41] is one of the most promisingof thesemodels.

The basis for quantizationis the canonicalcommutationrelations. In order to define them, we
requirecanonicalmomentaandhencetheaction. It is incorrectto start simplywith a classicalequation
of motion and try to interpret it quantum mechanically;this would in general leadto an incorrect
normalizationof themodes(seealso ref. [117]).It is importantto quantizeonly thephysicaldegreesof
freedom.Hence,the gauge-invariantformalism is very useful.

In the following, both the generationandevolutionof the fluctuationswill be discussedin a unified
treatment.Ouraim is to be able to calculatethe spectrumof metric anddensityperturbationsstarting
with initial quantumfluctuationsin generalcosmologicalmodels,and in particularin thecasesanalyzed
in part I.

Since the small fluctuationsare Gaussian,the computationof metric anddensityperturbationscan
be reduced to the determination of two-point correlation functions and power spectra
[42, 52,50, 35, 118]. Sincethis fact is of centralimportance,weshall discussit atthis point following the
treatmentin ref. [119]. The main physical observableconnectedwith densityperturbations(scalar
metric perturbations)is the root-mean-squarerelative massfluctuation (bM/M)(r) inside a sphereof
radius r. This observablecan be expressedin termsof the relative densityperturbation8~(k)/e in
Fourier space,which in turn can be expressedin termsof the two-pointcorrelationfunction.

To derivethe relation, let usexpressthe massfluctuationinsidea sphereSrx() of radiusr centeredat
the point x0,

C ~ d
3k’

bMX~(r)= j d3xbe(x)= J 3/2 V”2 bi(k’) j d3x exp[ik’ - (x — x
0)], (9.1)

(2w) Sr~

whereV is the total volume of the systemandwherefor simplicity ~ = 0 hasbeenassumed.Taking the
squareof (9.1), averagingoverx0 and dividing by the squareof the averagemassinside the sphereSr
gives [119]

2 ~- b~’k’~ 2 •I~d
3x eilc1

-~j~-(r)=J d3k’ ‘ I14’r(k’)12 , Wr(k’)= ~ d3 (9.2a,b)
Js, X

whereWr(k’) is a window function which vanishesfor k’r ~ 1 andwhichis 1 for k’r 4 1. Providedthat

Ib~(k’)/cI2doesnot increasefasterthank’ “s as k’ —~ 0, the integral on the right-handsideof (9.2a) is
dominatedby k -= r’ and hence

I&A4’/MI2(k”’) -~k3Ibs~(k)/sI2 Io~(k)I2, (9.3)

where Iö~(k)Icharacterizesthe amplitudeof the perturbations.In the following we will refer to this as
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the powerspectrum.However,in much of the literature on large-scalestructure,k~ ‘2ô~(k) is defined
as the powerspectrum.On the otherhand, the two-point energy-densitycorrelationfunction

= (x) ~ (x + r) (9.4)

can be expandedin termsof the Fourierspacequantity b~(k). After integratingoverthe angularpart of
k we obtain

= ~ J dk sinkr Io~(k)I2. (9.5)

In aquantumtheory,the classicalvariablesbecomeHeisenbergoperators,andaveragingmeanstaking
the expectationvaluesof the operatorsin the quantumstateof the system.Thus it follows that in a
quantumtheory of cosmologicalperturbations,the relevantquantitiesto calculateare the two-point
correlationfunctionsof theoperatorscorrespondingto the classicalphysicalobservables.In this partof
our reviewarticle, the focuswill be on evaluatingthesetwo-point correlationfunctions.

The quantizationprinciple used will be quite conventional.After deriving the relevantaction for
cosmologicalperturbations,the resulting theory will be quantizedusing canonicalquantization.The
way in whichthis standardquantizationschemewill be applied,however,is new, quite simpleanddoes
eliminateambiguitiesthat exist in otherapproaches.

As a first step, the action for cosmologicalperturbationswill be written in terms of a single
gauge-invariantvariablev which satisfiesa particularlysimple equation(a waveequationwith anadded
potentialterm). Next, thephysicalobservables(the gauge-invariantmetricperturbationvariable ‘P and
theenergydensitys) areexpressedin termsof v. The functionswhich relate‘P (e) and v dependon the
backgroundcosmologicalmodel- The third stepin our methodis standardcanonicalquantizationof the
actionwritten in termsof v. The operatorô correspondingto v is expandedin creationandannihilation
operatorsof themodesof theequationfor v. The coefficient functionsin this expansionwill satisfy the
sameequationsas theclassicalperturbationvariables.This fact establishesa deepconnectionbetween
partsI andII. The calculationof the correlationfunctionsin orderto determinethe powerspectrathus
reducesto the evaluationof expectationvaluesof productsof creationandannihilationoperatorsin the
quantumstateof the system.

Our approachhasseveralimportantadvantages.It is simple (sinceit only involvesonequantization
variable),physically unambiguous(sinceit is a gauge-invariantformalism),andallows a unified picture
of cosmologicalperturbations.The analysisgives both the generationand evolution of cosmological
perturbations.The approachappliesto a wide variety of cosmologicalmodels:to standardFriedmann
cosmologieswith hydrodynamicalperturbations,to scalar-field driven inflationary models,and to
higher-derivativegravity models.

The original ideathat quantumfluctuationsin an expandinguniversecould leadto classicaldensity
perturbationscan be tracedback to Sakharov [44]. The first concrete fonnalism was developed
independentlyby ChibisovandMukhanov[42] andby Lukash [43]. It was in particularrealizedthat in
inflationary universemodelsquantumfluctuationsduring the phaseof exponentialexpansionwould
reenterthe Hubble radiusat later timeswith a scale-invariantspectrum[45,46, 42]. Mukhanovand
Chibisov [48] gavethe first quantitativecalculation of the spectrumof densityperturbations.They
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considereda model [49] in which higher-derivativegravity actionslead to inflation. The spectrumof
densityperturbationsin New Inflationary Universemodelswas first estimatedin refs. [54,50—53].

The approachoutlined in the following chaptershasa major advantagein that generationand
evolution of the perturbationsare discussedin a unified way. This approachwas developedin refs.
[42,54] (see also ref. [43]) and recast in gauge-invariantform in refs. [20,120]. For quite a similar
analysis see refs. [21, 121] (a ratherdifferent treatmentwas presentedin ref. [122]). In much of the
earlierwork [53,52, 118, 58] (see,e.g.,reviews in refs. [119,105]), an artificial separationbetweenthe
period of quantumgenerationandclassicalevolution of perturbationswas used.For a similar unified
analysis(albeit in synchronousgauge)seeref. [123].For ananalysisof metric fluctuationsin thecontext
of quantumcosmologyseeref. [124].

The outline of part II of this review is as follows. In chapter 10, the action for cosmological
perturbationsis reducedto an action of a single gauge-invariantvariable v - The analysisis done for
hydrodynamical,scalarfield, and higher-derivativegravity perturbations.This chapteris in principle
straightforwardbut technically quitetedious. The readerinterestedin the physicalresultsis advisedto
skip this chapterandto referbackto the crucial resultsas required.Chapter11 containsthe application
of the standardcanonicalquantizationmethodto the reducedactionsof chapter10 for cosmological
perturbations.Chapters12—14 containthe key results. We calculatethe powerspectrain modelswith
hydrodynamicalperturbations(chapter12), in theoriesof inflation drivenby a scalarfield (chapter13)
and in higher-derivativegravity models (chapter14).

10. Variationalprinciples

The quantumtheory of cosmological perturbationsdiscussedhere is the quantization of the
first-ordermetric andmatterperturbationsabouta homogeneousandisotropicbackground.Thus, the
original configurationspacevariablesarethe metric and matterperturbationvariablesdiscussedin the
first part of this article. In order to obtain the action for them, we beginwith the initial action

s=— ~ (10.1)

for gravity and matter, and expandit up to secondorder in the perturbationvariablessince the
first-order perturbationequationsof motion are given by the second-orderaction. Note that the
first-order terms vanishwhen expandingaboutabackgroundsolutionwhich satisfiesthe equationsof
motion.

In this chapter, a derivation of the full action of matter and gravity to second order in the
perturbationvariableswill be given [63].3~Q will denotethe termsin somevariableQ of nth orderin
fluctuation variables.In section10.1, the pure gravitationalcontribution825gr to the action S will be
derived. In the following sections,the contributions to &

2S which include matter perturbationsare
analyzedfor hydrodynamicalmatter (section10.2) [42] andfor scalar-fieldmatter(section10.3) [20].
Section10.4 is an extensionof the formalism to higher-derivativetheoriesof gravity [120].

In all caseswe shall reducethe actionfor perturbationsto the simplestform in which it is described
in termsof a single gauge-invariantvariable characterizingboth metric andmatter perturbations.The
reductionof the action utilizes the constraintequations.Basedon the reducedaction, the canonical
variablesfor quantizationwill be found.
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10.1. Thegravitational part of the action

To derivethepurely gravitationalpart b2Sgr of the action b2S it provesconvenientto usetheADM
formalism [125]since this significantly simplifies the ratherlengthy calculations.In this formalism the
metric is written in the form

ds
2= (X2 — ~~X’) d

77
2 — 2..4~dx’ d

77 — y,~dx’ dx’. (10.2)

Here, X is the lapseand .N is the shift vector and y~,is the metric on the constant-qhypersurface.
In terms of the ADM metric (10.2), the Einstein action takes the form (see ref. [125]for a

derivation)

~gr= — 16~G1 Rv~ d
4x

= l6irG J[Xy “2(K~K — K2 + ~3~R)— 2(y”2K)’ + 2(y”2KX’ — y”2
7’

1X ) .] d~x, (10.3)

K,
1 = ‘ (Aç11 + .N1~— y~’~)’ (10.4)

where K,1 is the extrinsic curvature tensorof the .~:1’~= constanthypersurface.A prime denotes
derivativewith respectto conformaltime i~,a commarepresentsa partialderivativeand theverticalbar
standsfor the covariantderivativewith respectto the spatialmetric y~.Also, K K and y = det(y,~,).

We use and its inverse y” to raiseand lower spatial indices. Finally, ~
3~Ris the scalarcurvature

of thehypersurface~. The reducedscalarcurvature~3~Rcanbe written in terms of themetric‘y,~,and its
first and secondderivatives.As derived,e.g.,by Fock (eqs.(B.49) and(B.50) in ref. [126]),the second
derivativesof y,~only enteras a total derivativeterm and (10.3) can be written as

~gr l6irG f [Xy”2(K~KJ — K2) + ~(y”2y1’X)
1(ln y)~

+ X~(y’”

2y’~)

1 — ~ 2(3)p~~~+ ~fl d~x, (10.5)

= —2(y”
2K)’ + 2(y’’2KX’ —

7t~27”~ — [x7”(7
1~2)+ X(yU2yh1)

1]~ (10.6)

where ~ ~ is a total derivativeterm which doesnot affect the equationsof motion.
Now wewill expandthis actionin termsof the metricvariablesusedin part I. For simplicity, thecase

of a flat universe(~= 0) will be considered.It is not difficult to generalizethe results to the cases
3l~=±1.Comparingthemetrics (10.2) and (2.10) we find

= a
2B

1, y,~ = a
2(1 — 2i/i)ô~~+ 2a2E,

1, A” = a(1 + ~ — ~2 + ~ (10.7)

(In all expressions,only termsup to secondorder in the perturbationvariables will be kept.) The
inversemetric y” is

= a
2(~

1+ 2~frö,1— 2E,1 + 41fr
2ö,~+ 4E ,

1E~— 8E11iIi), , (10.8)
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where summationover repeatedlower indices is implicit. From theseequations,follows

~1/2 = a3(1 — ~ + ~ + E,, + ~E ,
1E ~ — E,1E1, — E~~~i)

(10.9)
(3)F~J= ~I~.I~ij— ~I’.i~11— ~/i.1ô~j+ ~1iJ +

Here, t2 denotestermsof secondorder in the perturbationvariableswhich we will not needsincethey
leadto third-orderterms in the action. We also get

K’1 = —a~[3~1(~’—~ — di’) — (B — E’),1 + &(~4,2 + 4~i’— 2i/fl/i’) + 2(E~1i/i)’+ ~B~1—

— 2~iB,1+ 2E ,,B ~ 2E + 5~1~p1B — ~Ji~B1— ç&1B~+ E~11B,— ‘Ô~JB,B1].

(10.10)

Inserting (10.7)—(10.10) into (10.5), we can determinethe termsin the Einstein action which are
quadraticin the perturbationvariables.The calculationsare straightforwardbut very long. The final
result is

b2Sgr= l6irG J {a
2[—6~’2—12~(~+ ~fr)c1i1— 9~2(~5+

— 2~fr~(24,— i/i,) — 4~r(q5+ ~/i)(B— E’)~~

+ 4~Cifr’E~~— 4~i’(B— E’),, — 4~i~B~+ 6~r2(4+ ~/i)E,~— 4YrE~
1(B— E’)11

+ 4~~CE,1B ~ + 3W
2E~~+ 3~r2B,B

1] + ~f + 9~~)d
4x, (10.11)

where ~ ~ is anothertotal derivativeterm,

= {a2[—8~’(E~
1(B— E’)1 — EJJ(B— E’), + ~E11B1)

+ 6X
2(E,

1E — EJJE~)+ (B — E’),1(B — E’)1

— (B — E’)11(B — E’)1 + E ,11E~,— E 111E,,]}~- (10.12)

It will beconvenientto combine(10.11)with thematterpartof theaction.Thus,we will proceedto the

discussionof the actionfor matter.

10.2. Theaction for hydrodynamicalmatter

For hydrodynamicalmatter, the action Sm is given by [126]

Sm=_fEV~d~X, (10.13)
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where c is the energy density. Unlike in the case of scalar-field matter, it is not completely
straightforwardto extract the contribution b2Sm which is secondorder in perturbationvariables.We
begin this sectionby bringing Sm into a form in which the perturbationexpansionis manifest.

To start out let us recall somebasicexpressionsfor the background(seepart I, chapters2 and5).
The Friedmann—Robertson—Walkerequationsfor hydrodynamicalmattercan be written as

= a’
2i’2(~C2+ ~), p

0 = a
2l2(~/3— ~2 — ~ (10.14a,b)

where in orderto simplify future equationsthe following notationhasbeenintroduced:

(10.15)

1 is the Planck length

1 = (~i~G)”2= 4.7 x io~cm. (10.16)

Equations(10.14a,b) can be combinedto give

Co + p
0 = 2/3/31

2a2. (10.17)

Subscripts0 denotebackgroundvalues.Using theseequations,we can expressc~,thesquaredadiabatic

velocity of sound, in the following equivalentforms:

2_~P p’ (af3)’ i(
1~p~dln(p0+e0)a

3 1018c~—be se’ — 3a~/3 3 ~ ~I31 dlna3 -

Theserelationsfor backgroundvariableswill be extensivelyused in the further derivation.
For computationalease,thederivationof the expressionfor b

2Sm will be given in thecaseof a flat
universe(~= 0). The final resultswill begeneralizedto spatiallyopenandcloseduniverses(~= ±1).

The first step in obtainingthe actionfor hydrodynamicalperturbationsis to rewrite the initial action
in termsof thedynamicaldegreesof freedom.The energydensitys is not oneof thesebasicdynamical
degreesof freedom, and henceit is not possibleto immediately expande in the action (10.13). The
basic dynamical variable characterizesthe fluid flow. Thus, to introduce the dynamicaldegreesof
freedom,we take test particleswith, space-and time-dependentnumber densityp. The energy per
particleconsistsof the restmassm0andof the “potential energy” n-(p) which in turndependson the
pressurep. Following Fock [126],

(10.19)

Thus, the total energydensitye is

e = p[m0 + ir(p)]. (10.20)

Thenumberdensityp satisfiesthe usualcontinuity equation,
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(pua);a =0, (10.21)

whereur~is the four-velocity of the fluid, and a semicolonstandsfor the covariantderivative.
Next, we introduceLagrangecoordinatesa’ which label theparticles(the Lagrangecoordinatesof a

given particle do not changein time) andan affine parameterA which fixes the point along aparticle
trajectory.The Euclidean(comoving) coordinatesf arethenfunctionsof a’ and A

~a fa(a~A). (10.22)

We write the backgroundflow as

x~=f~(a’,A). (10.23)

Theperturbationof the fluid flow can thenbe describedby a shift vectorr = ~a(X~) which shifts the
positionof the testparticlefrom x~whereit would bein anunperturbeduniverse.Thenthe full flow is

x” fa(~lA) =f~(a’,A) + ~a(XP) (10.24)

In termsof f~,the four-velocity uc~is

= (bfa/&A)[gp (bf~/bA)bf’/bA]”2. (10.25)

The numberdensityp can bedescribedby an arbitraryfunction F(a’) of the Lagrangecoordinatesand
evolves in time accordingto the JacobeanJ of the transformationbetweenEuclideanand Lagrange
coordinates,

J= ~ A), (10.26)

in thefollowing way:

p(f) = F(a~)[g~p(t3fa/~3A)af~/aA]112(v~Jy’- (10.27)

It is not hardto verify that (10.25) and (10.27) solve the continuity equation(10.21).
Inserting (10.20) and (10.27) into the equation(10.13) for the matter action, we are finally in a

positionto work out the terms in the action of secondorderin the perturbationvariables.Thereare
contributions involving metric perturbationsalone (from expanding~ termswith metric and
matter perturbations,and expressionscontainingonly mattervariations.We obtain

b
2Sm=_f[Eo b~g +(~0+p0)(~bg + ~P)+ ~c~(s0+p0)(biP)

2]~d4

The next task is to evaluatethe individual terms. To do that, we first expressthe perturbations
b,p(f) and b

2p(x”) of the number density at the space—timepoint f in termsof bip(f + ~),

b2p(f + ~) and 4~by meansof (10.24)—(10.26).Applying the Taylor expansionand keepingonly
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termsup to secondorder in ~ we obtain

- ~ (8,p(xa+r)_~ ~)~- ~ ~ ~. (10.29)

In our case,p0 dependsonly on time, so only the time derivativeand ~° survive in all termsinvolving
derivativesof p0. The unperturbednumber density of particlesp0 is proportional to a

3. We can
evaluatep(x” + ~) on the right-handside of (10.29) by using (10.27) and calculatingseparatelythe
individual terms in this formula up to secondorder in the perturbations.Lengthybut straightforward
calculationsyield the following expressionsfor individual termsin (10.29):

~ ~ (10.30)

=~(x”+ ~) = v~(f)[1 + 4~°+ 2(~’+ 4~2)(4O)2

+ (~— 3k/i + E~,)’~°+ (4 — 3i/i + E,,)
1~’]. (10.31)

Thus we get

a a a 13 1/2 a a a ~ 1/2

(g~p(x7+ ~) ~ -&) = (~gap~ 1ç~q.) [1 + ~ + ~o + ~ + ~ + ~

— ~2 + + t/’,,~’ — B~” + ~(~r’+ ~2)(~o)2 — 1~iP4~~+ ~r~°~°’]. (10.32)

The valueof \/~(x”+ ~) in (10.31) wasexpressedby expandingabout the term ~/~~(f) which in
turn is equalto

v~g(xa)= (Xy”
2)(x”), (10.33)

where the individual termswere calculated in terms of our metric variables 4, ~!i, B and E in the
previoussection[see(10.7) and (10.9)]. Substituting(10.30)—(10.33)into (10.27),and then into eq.
(10.29) we find

(p
0+ b,p + b2p)(f) = p0[l + 3~i— E11 — ~‘, —

— ~“~“ — ~ + ,i~s~
2+ ~E~~EJJ+ E,

1E1,

- (3~- E~~)~’1+ (~°~“+ ~‘~‘ + ~‘~‘)~]. (10.34)

Finally, readingoff the individual first- andsecond-ordertermsin (10.28) from (10.33)and(10.34),
we obtain the following form for theperturbedmatteraction:
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b2Sm= f ([~~0~2+p0(~
2— 3~i + — + ~E

11E~ — E11E~ + ~B1B1)

+ (e0 + p0)(~~“~“ + B1~”+ ~‘~) — ~ + p0)(3qi — E11 — ~1)
2]a4+ ~ d~x,

(10.35)

where~ “ is the total derivativeterm

—612[(e
0 +p0)a

4(~°~”+ + ~s’~’~’)]j. (10.36)

Now, it is possibleto combinethe gravitationalpart of the action (10.11)with the matterpart (10.35) to
obtain the total action to secondorder in the perturbations,

b
2S = b2Sgr+ b2Sm = ~ I a~{_6[iV~+ 2~C~i’+ (~2 —

— 4(qi’ + ~~~)(B— E’)1, — 2~/i~(24~—

+ 2$(~”+ B1)(~’+ B1)— 2/3c~(3~— E11 — + ~ d~x

(10.37)

To obtain this form, we haveused the definition of /3 from (10.15) andthe backgroundequationsof
motion (10.14a,b). ~ ~‘ denotesa furthertotal derivativetermcontainingcontributionsfrom both b2Sm
and b2Sgr~

= (4~a
2~iE~+ 2~’a2E2,

1— 6Xa
2tfr2)’ + [2a2(2~C’+ ~2)(E ,

1E — E 11E1) — 4~’a
2~/iB

1]1.

(10.38)

In the above form, the action looks rather complicated.It is possible to achievea substantial
simplification: by using theconstraintequations,we canrewrite theaction in termsof a minimal setof
gauge-invariantvariableswhich describessimultaneouslythe gravitationaland matterinhomogeneities.
This form is thenconvenientfor quantization.

The first constraintequationfollows immediately by varying theaction (10.37) with respectto B1,

(v” + ~?/C4),= —/3(4” + B,) = —~l
2a2(e

0+p0)u0(bu’ + a”B1), (10.39)

where

= a’’~” (10.40)

is the three-velocity of the fluid in linear approximation.Equation (10.39) is the (0—i) Einstein
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equation.Fromit, we concludethat the velocity potential c~can be definedas

= (2f3”2a/c~)(~”+ B
1) = —(2/3”

2a2/c,)bu,. (10.41)

This potentialis not gauge-invariant.However,it is easyto constructthecorrespondinggauge-invariant
quantity

— 2(a/3“2/c~)(B — E’) - (10.42)

Using ~ and ‘P we can constructthe following gauge-invariantvariable:

1/2

u .-~ ((gi) — 2z’P) = ~ (w
0 — 2zi/i), ~ = a - (10.43a,b)

The goalnow is to prove that the action(10.37) can be rewrittenin termsof v aloneby meansof the
constraintequations.

Before doing that we demonstratehow to obtain the other Einstein equationsfrom the action
principle. Varying the action (10.37) with respectto q5, ~(i and E,, one gets

L1~/J— 3rn,’ — 3~W
24~— ~‘(B — E’),, — f3(3~/i— E,, — i’,) = ~l2a2b, e, (10 44)

~fr”+ 2~4Y+ ~‘çb’ + (2~C’+ ~2)~ + ~{~(q5 — i/i) + a’2~1[a2(B —

= c~f3(3l/1— E
1, — i’,) = ~1

2a2b,p, (10.45)

i/i” + 2~’i/i’+ ~C~’+ (2k” + ~2)~ = ~l2a2b,p. (10.46)

To simplify the right-handside of (10.44)and (10.45)we havetakeninto accountthat

b,u°=—a’’4, b,s=(e
0+p0)(3i/i—E11—~’1), (10.47)

(10.48)

Comparing(10.45)and (10.46),we concludethat

— ~(,+ a”’
2 [a2(B— E’)]’) = 0 (10.49)

[seeeq. (3.13) and discussionthereof], which from (3.13) implies that the two gauge-invariantmetric
potentials‘P and ‘P are equal,

‘P=’P. (10.50)

Thus,we haverederivedthe basicresultsstarting,from the action.
Finally, by varying the actionwith respectto ~‘ we obtain the matterequationof motion
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[/3a2(~” + B
1)]’ + /3a

2c~[3i4’ — E
11, — f’,, + c~

2~]
1=0. (10.51)

This equationis redundant.It in fact follows from (10.43a)and (1048).
We now use eqs. (10.41) and (10.51) to exclude ~‘ and its derivatives from the action (10.37)

expressingthesequantitiesin termsof ~, ~!i, B, E and w. First, eq. (10.41)can be written in the form

~“ + B1 = ~(c~/f3”
2a)tp~

1. (10.52)

From the constraintequation’(10.39)we concludethat

i/i’ + ~‘4= —~(c,f3”
2/a)co~, (10.53)

thus, taking into account (10.52),we can rewrite (10.51) as

3tfr — E,, + c~24— 4’, = —~(cfi”2a~~)’/c~13a2- (10.54)

Using (10.52) and (10.54), the last two termsin the action (10.37) can be convertedin the following

manner[here we do not usethe constraintequation(10.53)]:

2$a2(~” + B
1)(~”+ B1) = cs/3u

2adv~(~“ + B
1)

= [c,/3‘‘
2a~~(~‘‘ + B,)], — c~f3‘‘2a~~(i’,’ + B

11)

= [c~/3’’
2a~~(~’’+ B

1)], —

~ ~ ~)‘+B,1]

= 1 (cfi’a~)’
2 ~3c,/3u2adu~,~— cspI/2adv(~ q~)’

— cj3 u2adv(B— E’)
11 — ~ ~ + ~(c~w~)11, (10.55)

—2I3a
2c~(3l/1— E

11 — 4~’, + c~
2~)2(c~/3”2a~~)’(3~!i— E,, — ~‘, + c~”2çb)

= —c~/3”2a~
0[3~i’— E’,, — + (c~

2j)’]

+ [c,/3”2a~~(3tfr— E,, — ~‘, + c~2~)]’

= —c~$”2a~
0[3tfr’+ (c~

2~)’+ (B — E’),,]

— ~c~e~
1w~1+ ~(c~~~)11— ~ - (10.56)

Using (10.55) and (10.56), the action(10.37) takeson the following form:
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b2S= ~ J [_~a2~~ + ~4)2 + 2f3a
2 ~2 — 2a2i/,~(2t~j— + ~ (cJ3~aco~)’2

— ~ — 6c,f3“2ac~1’— 2c,/3“2a~~(c~2e~)’

— 4a2(~l+ ~ + ~ — E’)
11] d

4x

(10.57)

where ~ ~‘ is a further total derivative term,

~ ~ —(~~~))]- (10.58)

Finally, we expressw~and~r’ in eq. (10.57) in termsof the gauge-invariantvariablev and t/.’ and4
using the definition of v in (10.43a)and the constraintequation (10.53). Taking into account the
backgroundequations,theconstraintequationfollows by varyingtheaction with respectto B — E’. The
result takeson a very simple form,

b
25= ~ f (u’~— c~vj~ + ~- v~)d

4x + ~ f (~+ ~r +±~)d4x, , (10.59)

where ~ ~‘ is a total derivative term

11 (~Cc2z)’ a2

= L~~c~z ~ + 2 ~ l/J,ifr, + (z2)’~’2— 2~Cz4c~

_2~z2~2+2\/~I(zl_~~)v~_2l2 ~ ~ (10.60)

Theaboveaction is like theactionof thescalarfield u with a time-dependentmass.Its quantizationwill
be discussedin chapter11.

The action (10.59)was derivedfor a flat universe(~= 0). To generalizethis result to closedand
open universes(X = ±1) we definethe gauge-invariantvariable v by

v = (1/V”~l)[~~’~— 2zi/i + (2aX/Xf3”2c3iIj], (10.61)

and— omitting the total derivatives— obtain essentiallythe sameform for the action,

b
2S= ~ I (v12 — c,~y’~v10 1 + ~ ~2)~ d

3x d
77, (10.62)

wherez and /3 weredefinedin (10.43b) and (10.15).
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10.3. Theaction ofscalar-fieldmatter

The derivationof the action for scalar-field matter is less involved than that for hydrodynamical
mattersince the action can be immediately expandedto secondorder in the perturbations[20]. Here
and in the following sectionwe shall only concentrateon thecaseof ~ = 0. Weconsidera theorywith
total actiongiven by

S = — 161G JR(—g)’12d4x+ J [~d,ada — V(~)](—g)~2d4x - (1063)

It is useful to recall the two basic backgroundequations(seechapter6)

= l2[~~~2+ V(~
0)a

2], 2GW” + ~2 312[_ ~ + V(q
0)a

2]. (10.64a,b)

Thesetwo equationscan be combinedto give

— = ~I2p’~2- (10.65)

From section10.1, the form. of the contribution to the first termin (10.63)of secondorder in the
fluctuationvariablesis known.Whenevaluatingb

2Sm,whereSm standsfor the matterpart of the action
(10.63),severalterms must be considered,

b2Sm = Jd~x(_g0)l/2( b~(g)”
2 + 2 b

1(~g)’~
2b,~+ b

2~), (10.66)

wheresubscripts0 denotethe homogeneousbackgroundvaluesand

~(d)’~d.ad —V(~). (10.67)

b,.~and b2~’can be immediately readoff by expanding(10.67) in a Taylor seriesabout w0- Applying
the backgroundequations(1064a,b) and (10.65), integratingby parts andcombining b2Sm with b2Sg,.
from (10.11),we obtain

b2S= b2Sgr+ b2Sm = ~ J {a
2[—6~i’2 — 12~q5~’— 2~i~(2~~— /i~) — 2(~’+ 2~2)~2

+ 3l2(b~’2— b~
1b~.1— V,~a

2b~2)+ 6l2[~~(~+ 3t/i)’ be — 2V~a2~b~]

+ 4(B — E’)
11(~I

2p~b~— t/i’ — ~C4)]+ ~ + ~r + ~i3} d4x, (10.68)

where~ is a total derivativeterm

= [6l2a2~b~’(E,, — — 3i~)+ 2~’a2(E~,
1+ 2~!iE,1—

+ {a
2[2(2~” + ~1C2)(E

11E — E11E,)— 4~’tfiB1 — 6~
2c~B

1b~]},. (10.69)
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By varying (10.68)with respectto B — E’, we get the following constraintequation:

1/I’ + ~4 = ~12ço,6ço. (10.70)

In analogyto section10.2, we introducea gauge-invariantpotential

O a[bq, + (w~’~’)~’]= aLb~~+ (~~/~C)’P], (10.71)

= b~+ ~~(B— E’), (10.72)

where~ is thegauge-invariantscalar-fieldvariation. Using(10.70) and(10.71)to expressi/i’ and&~
in termsof 4, ç(i and v, and aftersomestraightforwardbut ratherlengthy calculations,we obtain the
following simple action:

b
2S = ~f (~‘~— v,v,+ ~_ + ~ d~x, (10.73)

z= acp~/~IC, (10.74)

= _3l~[2 ~ (~2) vçfr + — 2a
2~~u~— ~j~j ~I.ihI~t

~ (10.75)
a further total divergence.Once again,the final action is that of a scalarfield in flat space—timewith

time-dependentmass.

10.4. Theactionfor higher-derivativetheoriesof gravity

Finally, we considera gravity theory with metric g~Vand action

S= — ~ ff(R)\1~gd4x. (10.76)

Our goal is to find b
2S, theperturbationof S aboutahomogeneousbackgroundto secondorderin the

fluctuation variables [120].Using the conformaltransformationtechniquediscussedin chapter7, it is
easyto reducethe problemto the casediscussedin the previoussection.

We recall from (7.1)—(7. 10) that the equationsof motion for ~ which follow by varying S are
equivalentto theEinsteinequations,and thecorrespondingactionto theEinsteinactionfor a rescaled
metric,

= F(R)g~~, (10.77)

and a scalarfield ~(R) with potential V(~),provided that F(R) and V(~)are chosenappropriately,
namely
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F(R) = af/aR, V(~)= (1 /6l2)[f(R) — Raf/aR](af/aR)2. (10.78a,b)

The scalarfield itself is given by

~(R) = (1 /V~I) ln F(R) - (10.79)

At this point we can immediately apply the resultsof section10.3 and express8
2S as

b2S=
1J(~— ~ + Z ~2 + ~) d4x, (10.80)

where ~ is a total derivative term. The variable 11 is a conformalgauge-invariantpotentialdefinedby
[see(10.71)]

iT = 11[bq, + (iw,c/i’)’fr], z’= i~/~’, (10.81)

where the variableswith tilde denotethosewhich appearin theconformalmetric ~ [see(7.34)],

d12 = F ds2 = 112(n){(1 + 2~)d
77

2 — 2B,dx’ — [(1— 2c!i)~
11+ 2E,1] dx

1 dx’}. (10.82)

The relationof the variableswith tilde and thosewithout which appearin ds2wasworkedout in eqs.
(7.34)—(7.36).In particular,

11= F~2a, ~,= — (a ln F~2/aR)bR. (10.83a,b)

Using (10.79)and (10.83a,b), 11 can be written in termsof variablesrelatedto the original metric

11= aF~2(al~~R~ + R~)(R~~Ii+ ~rbR), (10.84)

or, in termsof gauge-invariantvariables ‘P and bR~’~,

IT = ~ aF~2(~
1~0~R~c+ R~)(R~’P+ ~r~ (10.85)

where we recall that

8R(gi) = bR + R~(B— E’). (10.86)

This completesour derivation of the action for perturbations.In all threecasesof interest, the

problemhasbeenreducedto that of quantizinga scalarfield with time-dependentmass.

11. Quantization

In all three casesunderconsiderationwe have beenable to reducethe action for cosmological
perturbationsabouta classicalFRW backgroundsolution to the following form:
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= J~ d4x = ~f (~— c~yuvi~ + ~ v~)v’~d4x, (11.1)

up to total derivativeswhich havebeenomitted. In the above, y” is the metric on the background
77 = constanthypersurfaces,‘y is its determinant,v is thegauge-invariantpotentialto be quantized,and
z is a time-dependentfunction. Exceptfor hydrodynamicalperturbations,c,~= 1.

The action (11.1) effectively describesa scalarfield with time-dependentmass,

m2=—z”/z. (11.2)

In the case of a time-dependentc~(for example during the transition betweenradiation and
matter-dominatedperiods of the evolution of the universe), the spatial gradientterm in (11.1) also
dependson time. Here,for thesakeof simplicity we will only considerthe caseoftime-independentc~.
If thereis a slow, time dependence,it can be treatedadiabaticallyto a first approximation.For a flat
universe,~ik = ôlk and \/~= 1.

The quantizationof the classical action (11.1) is analogousto the quantizationof Minkowski
space—timescalarfields in externalfields [127]and also hassimilarities to theanalysisof scalarfields in
an expanding universe [128].The time dependencein our case is entirely due to the variable
backgroundgravitational field. Thus, we can formulate the quantizationprescriptionin analogywith
well-studiedexamples.

The first step in canonicallyquantizing(11.1) is to determinethemomentumIT canonicallyconjugate
to o,

~ x) = a,~t/av’= 01(77,1). (11.3)

Then, the Hamiltonian is

H = J(v’IT — ~)v~ d3x = ~J(~+ c~y”vi~ 1 — ~ ~2)~ d3x. (11.4)

In quantum theory, the variables v and IT become operators t5 and ~ satisfying the standard
commutationrelationson the ~ = constanthypersurface,

[ô(
77,x), ô(77, x’)] = [‘fr(77,x), ~ x’)] = 0, [13(77,X), ~(‘q, x’)] = ic~(x— x’) , (11.5)

wherethe delta function is normalizedby

f ~(x—x’)V5~d
3x=1. (11.6)

Varying (11.1)with respectto u gives theequationof motionfor u, which is also the field equationfor
0,

— c~z1v~— (z”/z)ô = 0. (11.7)

This equationis equivalentto the Heisenbergequations
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i6’ = [6,Eu, i~= [Fr,Ii], (11.8)

wheretheoperatorHamiltonian ft is simply theHamiltonianH written in termsof operators6 and~.
We shallwork in the Heisenbergrepresentationin which thestatevectorsaretime-independentand

all the time dependenceis carriedby theoperators.Theoperator6 can beexpandedover a complete
orthonormalbasisof thesolutionof the (classical)field equation(11.7).Thesesolutionswill be denoted
1/Ij(x)v~(’q)andcanbe obtainedusing themethodof separationofvariables.i/i1(x) areeigenfunctionsof
the Laplace—Beltramioperator4 with eigenvaluek~

(4+ k~)l/I~(x) = 0. (11.9)

In particular,for a spatiallyflat universe(~= 0) we can takea basis of planewaves,

1~I1(x)= (2ir)
312exp(ik’ k). (11.10)

Substitutingthe ansatzfor thesolutions backinto eq. (11.7) yields the following equationfor vj(77):

+ E~v~(
77)= 0, E~= c~k~— z”/z. (11.lla,b)

In termsof the modesdiscussedabove,the expansionof the operator6 is

6 = (1/~)JdJ[~j(x)v~(77)aJ+ ~(x)v~(77)a], (11.12)

where the symbol 5 dJ denotessummationor integration over the modes. If the eigenvaluesk~are
discrete,then 5 dJis summation,if k~is continuous,then 5 dJdenotesactual integration.For a flat
universe(~7l~= 0),dJ= d

3k. The creation and annihilation operatorsâ’ and â~’in (11.12) satisfy the
standardcommutationrelationsfor bosons

[âJ,âJ]=[â~’,â~]=0, [a~,a~t]=8
11., (11.13)

where
5Lt~ is theusual Dirac functionfor continuousJ and theKroneckerö symbol for discreteJ. It is

straightforwardto verify that the commutationrelations(11.5) and (11.13) are only consistentif the
following normalizationconditions for v~(77)are satisfied:

— v~’(77)v~(q)= 2i - (11.14)

The secondstepin the canonicalquantizationis theconstructionof the Fock representationof the
Hilbert spaceof stateson which the operators~ and ~ act. Recall that for a free scalarfield in flat
space—timewith constantmassm thereis a uniquevacuumstate10) definedby

â~0)=0Vk, (11.15)

wherein themodeexpansion(11.12),theannihilationoperators~k aretheoperatorcoefficientsof the
positive-frequencymodes
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vk(71)—exp(iwkfl), w~= k2 + m2. (11.16)

All otherstatesin theFock basiscanbe obtainedby acting on 0) with a productof creationoperators.
Whatrendersthe aboveprescriptionuniqueis that thereis a distinguishedtime direction,and that

the notion of positive andnegativefrequencyis time-invariant. When quantizing the homogeneous
componentof a scalarfield in an expandingFRW universe,thereis no definite notionof time [128].In
addition, given somechoice of time, solutionswhich arepositive-frequencyat time t, with respectto
this time are no longer pure positive-frequencyat a later time t

2. When quantizingperturbationsabout
a curvedbackgroundspace—time,the backgroundprovidesa distinguishedtime direction. However,
the notion of a positive-frequencymode is still not time-invariant. Hence, there will be no unique
definition of the vacuumstate.

If we pick a time ~ it is possibleto find a linear combinationof the two fundamentalsolutionsof
the time-dependentmodeequation(11.1la) which is positive-frequency(for oscillating solutions)at~
This can be doneby demanding

—1/2 , - 1/2

Vj(77~) = E~ (~~), v~(77~)= iE~ (17o) (11.17)

if E1 is positive for all modesJ. The initial conditions (11.17) in most casesgive consistentinitial
conditions to solve (11.lla). A vacuumstate 0~) ~‘~)can be definedin analogyto (11.5) by

aJI0~)=OVJ, (11.18)

where the modes in (11.12) have been determinedusing the initial conditions (11.17). A more
mathematicalway to describetheaboveprocedurefor determiningthevacuum ~/i0) is to demandthat
the Hamiltonian (11.4)be diagonal in the Fock basis at time ~1= 77o [128].

The time dependenceof the notion of positive frequency has immediate and important con-
sequences.An observerat time ~ will define as the stateemptyof particlesthe state ‘/‘~) described
above. However, at a later time r~,> ~ the modeswhich are positive-frequencyat 77~accordingto
(11.17) will no longer be positive-frequencyat ~ However,an observerat time 77~will still defineas
thestateempty of particlesa state i/i,) which satisfies

9”,) =0w, (11.19)

where the bJ are the operatorexpansioncoefficients of the modes of (1L7) which are positive-
frequencyat fliP If we denotethe positive- (negative-)frequencymodesat ~ by ~ + (~ “), where
i=0,1, then

= a~v~°~”+ f3~v~°~”, u~,’~”= /3~u~,°~”+ a~u~°~, — /312 = 1 - (11.20)

Since the mode equation (11.7) is linear, it is clear that the modes defined to be positive- and
negative-frequencyat different times are relatedby a linear transformation(11.20) which is called a
Bogoliubov transformation[128].The Bogoliubov coefficients a1 and /3, are obtainedby taking the
inner products

= (v~0)’1’,0~1).f), ~ = (v~°~’~’,v~’~)- (11.21)
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From (11.20)we immediately obtain the transformationof creationand annihilation operators,

âJa~bJ+/3~l~’, â,’~’=/3,bJ+a~/,~. (11.22)

The observerat ‘ii, will define the following numberoperatorfor the numberof particles in the Jth
mode:N~= b~’b~. The transformation(11.22)canimmediatelybe invertedto obtain the operatorsb~
asfunctionsof â andâ. Then,evaluatingthe numberoperatorN~in the state I 9”o) we obtain

= l13j~2 - (11.23)

Thus, if the Bogoliubovtransformation(11.20)is nontrivial, the observerat i~ will seethestateI9”~)as
containinga nonvanishingnumberof particles.

To summarizethis section,wehaveseenthat nontrivial externalfields will leadin generalto particle
production from an initial “vacuum” state. Applied to the problem at hand, due to the time
dependenceof the backgroundspace—time,quantumfluctuations will be producedfrom an initial
“vacuum” state. This process is responsible for example for the generationof perturbationsin
inflationary universemodels.

Having defineda vacuumstate t/,~) andconstructedthe Fock basisof the Hilbert spaceof statesby
actingon ~) with productsof creationoperatorsa~,we can calculatethe expectationvalue for any
combinationof field operatorsat an arbitrarymomentof time ~1in the stateI 9”~) and in any otherstate
of the Hilbert space.However, theprescription(11.17)only makessenseif E2 >0 for all valuesof k,.
From (ll.llb) it is obvious that this will be the caseif z”/z ~ 0. For hydrodynamicalmatter with a
time-independentequationof statep = ~p the above condition is satisfied since z” = 0. This can be
verified usingthe explicit expressionfor z(-q) given in (10.42) and the expressionfor /3 from (10.15).
Hence,in a radiation-dominateduniverse

v~(77
0)1/VW, v~(770)i~v”W~,w,=k,I\/~’. (11.24)

In the generalcaseand in particularfor scalar-field matterand for higher-derivativegravity, the
applicability of (11.17) is no longer assured.In particular,during the inflationary period

z”/zrn~a”/a>0, (11.25)

and hence(11.17) is inapplicable.However, in this caseit is possibleto define theso-calledde Sitter

invariant vacuum[128]given by the conditions
Vk(7)0) = (1/k

312)(X,,+ ik) exp(ik77
0) , v~(’q0)= (i/k”

2)(~ + ik — i~’C~/k)exp(ik77
0) (11.26)

(restricting attentionto the case = 0). Here, ~ = a’(770)/a(770). Note that for k ~‘ Z~,theprescrip-
tions (11.17) and (11.26) converge.

The above result that the vacuumdefinitions (11.17) and (11.26)agreepoints to a fairly general
feature.The ambiguityin thedefinitionof thevacuumis relatedto theambiguityin thedefinition of the
notionof particlesfor modeswith wavelengthlargerthan the curvatureradiusof thebackground.For
physically reasonablevacuum definitions [in particular for thosegiven by the sameprescriptionas
(11.17)evaluatedat different times], the leadingtermsin thek expansionsof Uk(770) andv~(’q0)agree
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for largek, whereasfor small k, Uk(7J0) andv~(flo)may dependvery sensitivelyon theparticularchoice
of vacuum.

Fortunately,for the applicationswe havein mind, i.e., the computationof perturbationspectrain
inflationaryuniversemodels,the resultsdependonly on theshort-wavelengthpart of the initial vacuum
spectrumwhich is independentof most choicesof the vacuum. Quite generally,0k(17o) k~~~U2and
u~(’q

0) k”
2 as k—~~. Hence,in the following we shall usethe following generalinitial conditionsto

define thevacuumat ‘lj =

Vk(77
0)= k’’’

2M(k
770) , v~(~)= ik’’

2N(k’q
0) , (11.27)

where [asfollows from (11.14)] N andM obeythe normalizationcondition

NM* + N*M = 2; M(k’q0)~—~1, N(k770)I—~1 for k770 ~‘ 1. (11.28)

12. Spectrumof densityperturbationsfor hydrodynamicalmatter

In the following three chapterswe apply the quantizationprescriptiondevelopedin chapter11 to
calculatethespectraof densityperturbationsgeneratedfrom quantumfluctuationsin severalmodels.In
this chapter,a modelwith hydrodynamicalmatterwill beconsidered[42].Chapter13 will bean analysis
of inhomogeneitiesin modelswith scalar-fieldmatter,and in Chapter14 higher-derivativetheoriesof
gravity will be analyzed. -

In the first sectionwe will derivethemathematicalrelationbetweenthe quantitiesusedto describe
fluctuations and the quantizationvariables introducedin chapter 10. Next, the generationof long-
wavelength(wavelengthmuchlargerthantheHubble radiusduring theexcitationperiod)perturbations
will be studied. In the third section,the resultswill be applied to a pure hydrodynamicaluniverse
(p + s e), and to a model with a time-dependentcosmologicalconstant.The secondexamplewill
illustrate why quantumperturbationsare able to generatesufficiently large fluctuationson galactic
scalestodayif duringtheearlyuniversetherewasaperiod in which theenergy—momentumtensorwas
dominatedby thecosmologicalconstant,whereasin modelswith positivep thequantumperturbations
alwaysremainsmall [seealso part I, chapter6 and in particular,eq. (6.67)for anentirelyclassicalpoint
of view on this issue].

12.1. Measuresoffluctuations

In this review article only linearized theories are considered. In this case, the spectrumof
perturbations is in general Gaussian.Heuristically speaking (in the case = 0), there are no
nonrandomcorrelationsbetweenfluctuationson different wavelengths.This impliesthat thespectrum
can be characterizedentirely by the two-point correlationfunction of the gauge-invariantpotential ‘P

~ r) ‘P(77, x)’P(-q, x + r), (12.1)

whereby an overbarwe denotespatial averaging.
For thepurposeof comparingwith observations,we also needthe two-point correlationfunction of

the gauge-invariantenergy-densityfluctuation
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~~(‘h1’r) (~,x) (i~,x+ r). (12.2)

For inhomogeneitieswith length scalesmaller than the Hubble radius, be/s0to first approximation
coincideswith the energy-densityperturbationin any gauge(gaugedifferencesare only dominanton
scaleslarger than H~).The relation between~,,and ~ can be derived from (4.15). Considering
wavelengthssmaller thanthe Hubble radius, only the term on the left-handside proportionalto 4’P
contributes.Using ‘P = ‘P we obtain

~e(17’r) ~(1Il
4e2a4)42~(77,r). (12.3)

Expressions(12.1)and (12.2) ar~valid in the classicaltheory.In quantumtheorywe mustsubstitute
the HeisenbergoperatorsCj andbe insteadof the classicalvariables‘P andbe. In addition, thespatial
averagebecomesthe quantumexpectationvalue in the state 9’.’) of the system(various choicesfor
which were discussedin the previouschapter).Thus,for example,

(
77,r)=(9”I~(n,x+r)E’(n,x)I9’i). (12.4)

If thequantumstate 9’r) is homogeneous,thenthe right-handside of (12.4) is indeedindependentof x.
However,the quantizationprescription developedin chapter 11 is not in termsof’P, but ratherin

terms of the velocity potential v. To relate thesevariables,we return to the equationsfor hydro-
dynamicalmatterderivedin chapter10. Rewrittenin termsof gauge-invariantvariables,eqs. (10.44),
(10.53) and (10.54)read

— 3~’P’— 3~2’P + 3~~’P= /3(3’P — ~(gi)j) (12.5)

‘P’+ ~C’P—~ (126)

3’P — ~ = —(1 Ic~)’P— ~(cj3 ‘‘
2a~ ~)‘/c~/3a2, (12.7)

where ~ is thegauge-invariantshift vectorassociatedwith ~, definedasin (5.15). Substituting(12.7)
in the right-handsideof (12.5) andexpressing~ and ‘P’ exclusivelyin termsof ‘P and vby meansof
(10.43a)and (12.6),one finds the following relationbetween‘P andU:

= —\/~1(f3/~/t~’c~)(v/z)’, (12.8)

where/3 andz weredefinedin (10.15)and(10.43b).This relationis alsovalid on the quantumlevel if
we replace‘P andv by the correspondingoperators.

For adiabaticperturbations,theoperatorsanalogof the equationof motion (5.22) for ‘P is

+ 3~~’(1+ c~)~i’— c,~zlI+ [2w” + (1 + 3c~)(~r2— X)]c~= 0. (12.9)

We can alsoexpand~Iin termsof the basis9’i,(x) ofeigenfunctionsof 4 (the samebasisusedto expand
6 in the previouschapter) and the associatedcreationand annihilationoperatorsa~and aJ,
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1/2

~=‘~/~i 1~—J dJ[ip,(x)u~(77)aJ + 9’1~(x)u~(77)afl. (12.10)

By inserting (12.10) into (12.9) we find that the temporalmodefunctionsu,(77) satisfythe following

equation:

u~(~)+ [c~k~— (1/c,z)”(l/c,z)”’]u,(’q) =0. (12.11)

Comparisonwith (12.8) leadsto the following relation betweenUj(~q) and the mode functionsUj(77)
arisingin the expansion(11.12)of the operator6:

Uj(77) = (z/k~c,)(v~(77)/z)’. (12.12)

Let usassumethat the state 9”) of thesystemis the “initial vacuumstate” 9’i,~) determinedby the
initial conditions(11.17) for the modefunctionsv,(-q). This alsodeterminesthe initial valuesat time ~
for the mode functions uj(~q)by (12.12). At this point, the correlation function ~ r) can be
computedby inserting (12.10) into the defining relation (12.4) and by using the standardcanonical
commutationrelations. Note that in this calculation,no renormalizationis requiredfor correlation
functions.The result is

1 2 sinkr dkj &.‘~(mk)~kf(r) k~
(12.13)

2 Sifl r~ 6~(77,k)~2 k ,
k=1 kf(r)

where

~ k)~
2= (3l2/8IT2)(f3/a2)Iuk~2k3 (12.14)

is ameasureof thesquareoftheamplitudeof fluctuationsin ‘P at comovingwavelength1 / kand k is the
wavenumberwhich is relatedto the eigenvaluek~of 4 by

k~=k2—~. (12.15)

As is alreadyimplicit in the notationof (12.13), for flat andopenuniversesk is a continuousvariable
rangingfrom 0 to whereasin a closeduniverse,k takeson integervalues1,2,3, - . . The functionf(r)
is

f(r)=sinhr, ~=—1; f(r)=r, 7l~=0; f(r)=sinr, X=1, (12.16)

and r is the geodesiccomoving distancebetweenx andx + r. In deriving (12.13)and(12.14),we used
the following forms of the measuredJ:

dJ=Jdk ~ , ~=0, —1; dJ= ~ , ~r=i, (12.17)
0 1=0 ,n=—! k=1 1=0 ,n=—1
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where I and m are the standardangular-momentumeigenvalues.We also madeuse of a handy
summationformula for the eigenfunctionsof 4 (seefor exampleref. [127]),

,*( \ ( \ r
~ iiJ~,XppJ~,X T

1 — 2 :i -2IT j~r

Note that the integral (sum) in (12.13) may diverge. Sometimes,physically motivatedsubtraction
schemesare possible (see,e.g., ref. [118]). However, in this article we will focus on single Fourier
modessince the main interestwill be the amplitudeand spectrum(i.e., k dependence)of the power
spectrum.

To simplify the algebra,we shall considerthe caseof a flat universe(X = 0). Combining(12.14)and
(12.12),the expressionfor the metric perturbationson scalek becomes

/ 312 \l/2 f3’’2z 1 /Vk(T7)’\’) , (12.19)
8IT ac~ k z

wherethe mode functionsUk(fl) satisfy the equation

,, 2 2 22

+ Ekvk(n) = 0, Ek = c~k— z /z, (12.20)
with initial conditions [see(11.lla, b) and (11.17)]

—1/2 , - 1/2Uk(770)= Ek (i~~), Vk(7’Jo)= lEk (flo) , (12.21)

at sometime 770 wherewe supposethat z”/z = 0, e.g.,whenp = e/3 (atwhich time thestatel’/’~)is the
vacuumstate).

12.2. Spectrumof long-wavelengthperturbations

In a radiationdominateduniversewith equationof statep = s, it follows from (10.15) and(10.43b)
that z‘(~j)= 0. Hence,the potentially time-dependenteffective potentialU vanishes,

U= —z”/z=O. (12.22)

Thus, the equationfor the modesis a simple harmonic-oscillatorequationand thereis no particle
production.

Let us now assumethat theequationof statediffers from p = s andthe condition U = 0 is violated
in some finite time interval ~ <‘71 <‘7le We will calculate the amplitude of perturbationswhose
wavelength is larger than the Hubble radius during the above time interval, i.e., k’q~41. For
applicationsto cosmology,this is a useful calculation,since in thevery earlyuniversewhendeviations
from U = 0 areexpected,galactic scalesarefar outsidethe Hubbleradius.

The solution of (12.20)with initial conditions(12.21) takesthe following form for ~ <flo:

= (1/’V~i)exp[iw(77 _‘7lo)], ~t)= c~k= (1/V~)k. (12.23)

For 77> 77e’ the potential U againvanishesand v,,, (‘ri) can be written as
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v~(n)= (1 /‘v’w){a exp[iw(77 — ‘7le)l + a exp[—iw(’q — ‘le)]}’ (12.24)

wherethe coefficientsa and a~ obey the following normalization condition [seethe third of eqs.
(11.20)],

— a~I2 = 1. (12.25)

Thesecoefficientscan be written in termsof Uw(7le) and V,~,(77e),

= (1I2j~”2)[±V,,(7
7e)+ 1wV~(~q~)]. (12.26)

To calculateu,, (‘Ic) and VL(17e) we usethe integralform of the differentialequation(12.20) for the
modesvk(71),

Vk(fl)= z(77)(~+ (v~°z0—v~z~)J~ — k~J~Jc~zvk d77), (12.27)

wherethe superscript0 indicatesthatthe expressionis to be evaluatedattime flo- ~ andu~°aregiven
by (12.21).

So far, all the equationsare exact. Now we makean approximationwhich is good only for long
wavelengths.The last (andmost complicated)term in (12.27) will be neglectedsince it is suppressed
comparedto the otheronesby a factor of k774 1. In this case,the expressionsfor Uk(77e) and v~(77~)
follow directly from (11.27),inserting theminto (11.26) we obtain

= (lI2iw)[±C + iwD”’ + WO(W’q~)], (12.28)

~ (12.29)

D~= z~/z~±z~/z~+ (Ze/Z~~ z0/z~)C, (12.30)

whereboth(12.29)and(12.30)areindependentof w. The symbolO(w’qe) indicateshigher-orderterms
in ~°17eThe integral indentity usedin (12.29) is a resultof integrationby parts.

A secondapproximationis to assumeC~~‘ wD , which will be true if the rateof changeof z for
~ is larger than w (strongviolation of the condition U = 0). In this case,the first term in

(12.28)dominatesanda ±C/2iw. Substitutingthis into (12.24) and the resulting expressionfor
u,, (1’s) into (12.19), we obtain the following result for the measureof metric perturbationswith
wavenumberk = w for times ~> n,,:

l~(n~w)I (3\/~/4IT
2)~”2(lC/aw2-q2)~wflcosw(~— 77e) — sinw(i~— ‘qe)I . (12.31)

Note thatthis resultis valid providedW77e4 1, i.e., thatthe wavelengthis largerthanthe Hubbleradius
at the endof the periodwhenthe potential U � 0. However, thereare no conditionson on,. We can
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alsousethis resultfor ‘71 after thescaleof the perturbationhasenteredthe Hubbleradius.However,as

long as this is not the case,i.e., for W41/7741/77e,it follows from (12.31) that
ô,~(77,w)~_~(,3\/~I4ir2)”2(1CIa~)’q~w; w~4 1, (12.32)

where, as we stressagain, C is independentof w.
Galacticscalesare well inside the Hubble radius at the time of recombination.When evaluating

(12.31) for thesetimesand scales,w’q ~‘ 1 and only the first termin (12.31) contributes,and

&p(11, w)I (3V~I4ir2)”2[1CIa(77)w77]lcosw(’~— 77e)~ . (12.33)

for 1 / “I 4 w 4 1 ~~‘71eIn this case,we can apply (12.3) to find 6~(71, w) I and from it to calculate the
two-point correlation functionof the energy-densityperturbation,

I
2sinkrdk

sCr(fl,t)J 5,(17,k) kr ~ (12.34)

where ~ w) in the range1In4w41/’q~is given by

~ w)J (3V’~/IT
2)”2(lC71e/ae)w~cosw(77 — fle)J - (12.35)

The importantconclusionto be drawnfrom (12.33) and(12.35)is that I&.~(k)I k’ and 3�(k)I— k on
scaleswhich were outsidethe Hubble radiuswhen the perturbationsweregenerated,but which are
inside when the fluctuationsare evaluated,i.e. 1/~4w4 1Ir~.On scaleswhich are still outsidethe
Hubble radius at time 77, i.e., w41/-q, the spectrumis different, namely 8~(k)—I~”~(k)~----kas
follows from (12.32).

It is possible to generalize the analysis to the more realistic casewhen at late times (around
recombination)the equationof stateis againtime-dependent,as it will be in a universecontainingboth
cold matter and radiation. For scalesobeying 1/c,~4 k 4 1/71e, the modeequation(12.20) can be
solved in a WKB approximationwith the result

V~c I (.1 (.1
Vk(fl) 2k312c~2L~~Yj kc~dn) — expi,~—ij kc,d

77)j - (12.36)

Substituting this solution in (12.19) and using the relationship(12.3) between
3k and ~ we obtain

~~(~i,k)Hj~ [(i+~) cs~a
4]”

2kCkin(Ikcsd’71)~—1-—4k4-~’—- (12.37)

Thus, the spectrumhasthe sameshapeas in (12.35).
To summarizethis section: for hydrodynamicalperturbationsgeneratedduring a period~ < ‘7l <~1e

whentheir scalewas outsidethe horizon, i.e. k7
7e4 1, the shapeof the spectrumis independentof the

particular mechanismfor the generation,provided that the initial quantumstate is the vacuum. The
spectraldependenceat a late time ~ ~ ~ is

8,~(k)—~,(k)----k,k4111741/77e (12.38)



V.F. Mukhanovet a!., Theoryof cosmologicalperturbations 283

(scaleoutsidethe Hubbleradiusat time ‘,~), and

&~(k)~k”, ~r(k)~~~k,1/774k41/n~ (12.39)

(scaleinside the Hubbleradiusat time -q). The amplitudeof the spectrumdependssensitivelyon the

particularmodel and will be discussedin the following section.
12.3. Theamplitudeof the spectrumofadiabaticperturbations

In this section it will be shown that in order for the quantum fluctuations in a universewith
hydrodynamicalmatterto obtaina largeamplitudeon galacticscalestoday,the backgroundmodel has
to havean equationof statewith a time-dependentcosmologicalconstantwhich, althoughnegligible
today, was dominantin the very early universe.

First, we considera universewithoutcosmologicalterm in which p = ye with 0< y < 1 andy $ 1/3
during the period ‘lo <‘77 < ~1ein which theequationof statediffers from that of a radiation-dominated
universe.We will assumethat the velocity of soundc~is constantduring this period. Then, usingthe
backgroundequationsof motion (10.14a,b) and (10.15),it can beshownthat the effectivepotentialU
is

U = —~z”/z= ~l
2ea2(1— 3c~). (12.40)

Substituting(12.40) in (12.29),one estimatesthe coefficient C, and then from (12.37) the following
estimateof densityperturbationson scales

tma(tr)/a(tm)~ A(t
1) ~ tr (12.41)

evaluatedat the time t,. of recombination:

~ (.~!~)~ (1— 3c~) (12.42)

where~ -~i’~is the Planckdensity, t = 5 a d’q is physical time andA(tr) a(t1)/k is thephysicalscale
of the inhomogeneities.The index m indicatesthat the correspondingvariablesare evaluatedat the
time tm when UIz’

2 takeson its maximum.
From (12.42) it follows that the perturbationamplitudeô,~increasesas tm decreases.However,for

tm < I the perturbativeapproachbreaks down. Thus, within the limits of the presenttheory, the
maximal value of ~ is attainedfor tm -~1. Since a(t) t2’3~4”~if “ = const,the maximum value of
(4.12) is taken on for ‘v = 0. With a(tr)/a(tp,)-~i0~we obtain the following upperbound on

~ 10~’8tr/A(tr). For scales correspondingto galaxies and clusters, tr/A(tr) —1. In order to form
structuresby linear growth of perturbations,an amplitude c5, -~i0~is required [105].Hence,we
concludethat initial quantumfluctuationsare insufficient to generatethe primordial perturbations
neededfor galaxy formationif the equationof statealwayshaspositivepressure.Thisconclusiondoes
not changeif we allow for rapid oscillationsof the equationof statep(e)during the interval~ < ‘71 <

Let us now turn to a model with a “quasi-vacuum” epoch, an epoch with a time-dependent
cosmologicalconstantwhich yields an effective equationof statesatisfyingp + s4 e. Recall that a
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cosmologicalconstantA gives

p=—e=—A/312 - (12.43)

In this subsection,we will demonstratethat in this case it is in principle possible for quantum
fluctuations to generateperturbationsof sufficently high amplitude for galaxy formation. Since the
particularmodel is not very realistic,only roughestimatesof the magnitudeof the effectswill be given.
Realisticmodelswhich yield time intervalswith an equationof statesimilar to (12.43)will be analyzed
in the following chapters.

To justify the hydrodynamicalapproximation,we shall assumethat duringsomeperiod in the early
universe, thereis someamountof radiationin addition to the cosmologicalconstant,i.e.,

EEv+Er~ p=—ev+~sr, (12.44a,b)

where 5r is the energydensity in radiation which decaysas a”’4. The vacuum energy e,, is time-
independentandhomogeneousin space.Hence,matterperturbationsareinhomogeneitiesin radiation.
Therefore, they can be describedusing the hydrodynamicalformalism discussedin this chapter.The
only role of the vacuum energyis in determining the evolution of the backgroundin the “quasi-
vacuum” epoch.We assumethat the vacuumis metastableand decaysover a time intervaltd. In order
to exclude unphysicaleffects due to instantaneousphasetransitions,the transition is taken to be
regular.The phasetransitionproducesrelativistic particles [107].

Initially at some early time when 5r e~c~= ~ and the effective potential U 0, (z cc a, a cc
U cc z”). At a time tm~Er(tm) = ~ and for t> tm the period of quasi-vacuumexpansionstarts.(We are
assumingthatthe vacuumdecayswell after tm~i.e., td ~“ tm•) Sinceduring the “quasi-vacuum”epochit
can be seenfrom the definition of z that

1/2 —1 —lz-’--a[(s+p)Ie] —a ——~~ , (12.45)

the effectivepotentialU cc z” alsovanishesfor t ~ tm~ Hence the maincontributionto the constantC in
(12.29)comesfrom times t -~ç, andwe can estimate3~as in the previoussection[seealso (10.43a)]
and obtain

~(A(tr))I (sv/spl)’’4A~[a(td)Ia(tm)]IA(tr) , (12.46)

wheretd denotesthe end of the quasi-vacuumperiod andwhereA~is the characteristicwavelengthof

the backgroundradiation at the time tr of recombination.Equation(12.46)is valid on scalessatisfying
tma(tr)Ia(tm) A~(ev/sp,)””4[a(td)/a(tm)]< A(t

1) < tr - (12.47)

This is the conditionfor applicability of the long-wavelengthapproximation(knd 4 1).

Combining (12.46) and (12.47),we may concludethat the maximum amplitude of 6.~is given by

< ~ - (12.48)

The aboveanalysisis only applicableif e,, < s,~.If e~—— 108ev,,, quantumfluctuationsin this model are
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of the right orderof magnitudeto generatethe primordial perturbationsrequiredfor galaxy formation.

This amplitudeis obtainedon scales
A(t~)— A~(ep,/ev)’’4a(td)Ia(tm)- (12.49)

Providedthat the quasi-vacuumperiod lasts long enough,td � 50(s~l2)_1/2,this scaleis largerthanor
equalto galactic scales.

The hydrodynamicalformalism can only be appliedon scaleswhichcontainmorethan oneparticle.
This condition is satisfiedon scales

A(tm)> ~ , (12.50)

or, evaluatedat t
1,

A(tr)> Aia(td)/a(tm) - (12.51)

Thus, for e~< ~ (12.51) is satisfied on scaleswhere the long-wavelengthapproximationcan be
applied [see(12.47)].

If td ~‘ 50(e~l
2)_I/2thenthe hydrodynamicalandlong-wavelengthapproximationshold only on scales

which are much larger thangalactic scales. In this casethe field-theoreticanalysis of chapter13 is
neededto calculatethe density perturbationson scaleswhich are smaller than the onesconsidered
above.

In this section,we havedemonstratedthat it is in principle possible to generatesufficiently large
primordial densityperturbationsfor galaxy formationfrom quantumfluctuations.The physicalreasonis
the following: the amplitudeof the perturbationis definedby the smoothnessof the decay hyper-
surface. If this surfaceis very inhomogeneous,large fluctuationswill be produced.In our case,the
informationabout the smoothnessof the hypersurfaceis entirelycontainedin v andv’ which must be
continuouson this surface.

During the period tm ~ t � td of quasi-exponentialexpansion, the nondecayingmode of v is
practicallyconstantsince U —*0. Thus, it savesthe informationaboutinhomogeneitieson correspond-
ing comoving scales. If this period is sufficiently long, i.e., td � 50(s~l2)_h/2,then the comoving scale
tma(tm)-‘ on which the fluctuationscan be largeif tm is smallbecomescomparablewith galactic scales.
Now, providede~is not muchsmallerthane,,~,the metric fluctuationson this scalewill be largeat tm

sincethe physical length is comparableto the Plancklength.In fact, the relativefluctuationson Planck
scalesare of order unity. As a result of the exponentialexpansion,the information about large
inhomogeneitiesat time tm on a physicalscaletm becomesinformationcharacterizingthe inhomogeneity
of vacuumdecay hypersurfaceon galactic comovingscales.Thus, the role of the de Sitter (quasi-
vacuum)period in generatinglarge fluctuationsis to expandPlanckscaleson which fluctuationsare
large to galactic scales.

One can verify that the gauge-invariantpotential ‘P characterizingthe metric perturbationsdecays
exponentiallyduring the “quasi-vacuum”epoch.Thus the metric perturbationsat the endof this stage
arenegligibly small.However,duringthe phasetransition,the variables/3 andz in eq. (12.8)changeby
largefactorswhile v hasessentiallya constantmagnitude.As a result, significant fluctuationsof the
metric arecreated.However,theyaredueto the inhomogeneityof the vacuumdecayhypersurfaceand
occur after the phasetransition.



286 V. F. Mukhanovet a!., Theory ofcosmologicalperturbations

To calculatethe amplitude of density perturbationsmore quantitatively, an understandingof the
physicalprocesseswhich determinethe decayhypersurfaceis required.This will be discussedin the
nextchapters.

13. Spectrumof densityperturbationsin inflationary universemodelswith scalar-fieldmatter

Many of the currently popularmodelsof structureformation assumethat the primordial energy-
densityperturbationsare due‘to quantumvacuumfluctuationswhich werepresentjust beforea period
of exponentialexpansionof the scale factor a(t) in the very early universe. In this chapter,we will
calculatethe spectrumof density perturbationsproducedin an inflationary universewith scalar-field
matter [20].

Startingpoint is the equationof motion (6.49) for the gauge-invariantpotential ‘P,

‘P”+ 2(a/~0’)’(~~Ia)’P’— 4’P + 2~~(1W/~~)”P= 0. (13.1)

This equationcan also be directly derivedstarting from the action (10.68). Varying (10.68) with
respectto 9’ and9” andsettingB — E’ = 0 at theendof thecalculation(i.e., going to longitudinalgauge)
gives(~=0)

— 3~C’P’— (~“ + 2~C
2)’P= ~l2(p~b~~’~’+ V,~a2~(~t)) (13.2)

— ‘P) + ‘P”+ ~ +2~”P’+ ~ +2~’~)’P= ~ — V~,,a2~~(~t)) (13.3)

Variation with respectto B — E’ yields the constraintequation(10.70)

= ~ p,~,~ (13.4)

Substitutingbd~t)from (13.4) in (13.3) leadsto ‘P =‘P, and, combining(13.4) and (13.2) we recover
the aboveequationof motion (13.1) for ‘P.

For the sakeof simplicity, we consideronly a spatially flat universe(A’ = 0). In this case,the field
operator‘P can be expandedin a Fourier integral in termsof creationandannihilationoperatorsa and
ak,

~“ ~ = ~ I ~/2 [u~(77) e~a + uk(fl) elkxafl. (13.5)

From (13.1), it follows that the modefunctionsu~(~q)satisfy the equation

u~(~)+[k2 —(1/z)”(1/z)’]uk(77)=0, z = ~ (13.6)

TheconnectionbetweenCi andtheoperator6 usedin the generalquantizationschemeof chapter10
follows from (13.2) makinguseof (13.4) and the definition (10.71)of v to expressthe variables~
and 1J~’in (13.2) exclusivelyin terms of 6 and ‘P,
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= ~l2(co’
0

2/~t)(6/z)’. (13.7)

For the Fouriermode coefficient functionsu~(’q)and u~(’q),the relation is

Uk(fl) = — ~l2(zIk2)(vk/z)’. (13.8)

In chapter11, the initial conditionsfor 0k wereexpressedin termsof functionsM(k’q~) andN(k’-q
1) (m

beingthe initial time) which obey a simplenormalizationcondition(11.28) andtend to 1 in the limit
k77, ~ 1 [see(11.27)]. Using (13.8), the initial conditionsfor u~(’q)become

32(1 z ‘q, 1

uk(n1Y2l ~ri~N(km)— z(-q,)

(13.9)

= — ~l2[~ M(k’q~)+ 3 ~ (~hN(k’q,) — z(i M(k-qj))].

Beforeconsideringthesolutionof (13.6),wewill definethepowerspectrumof metric perturbations.
The power spectrumI 2 is a measureof the two-point correlationfunction of’P,

(0I~(x,~)~(x+r,~)I0)J~1~sin(kr) ~kL (13.10)

Insertingthe expansion(13.5) into the left-handsideof this equationandmaking useof the canonical
commutationrelations,we obtain

= (1 /41r2)(d’
0

2/a2)Iuk(77)l2k3 , (13.11)

where I 2 characterizesthe squaredperturbationamplitudeon a comoving scale k. Note that the
above definition of the power spectrum is analogousto the definition (12.14) in the case of
hydrodynamicalmatter.

We now turn to the calculationof the powerspectrumin inflationary universemodels.Thesolution
of the modeequation(13.6) for short-wavelengthperturbationfor which k2 ~ (1/z)”(l /z)1 is

Uk(fl) = uk(77
1) cos[k(~—711)] + [u~(77,)/k]sin[k(fl—m)]. (13.12)

For long-wavelengthperturbations[k
24(1/z)”(l /z)~] the solution of (13.6) is

1/11 2
uk(71)=Aki~J a dn) . (13.13)

do

To directly derive (13.13),uk is first written as

uk = Bk ! f z2 d
77, Bk = constant. (13.14)
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It canbe verified by direct substitutionthat (13.14)satisfiesthe long-wavelengthlimit of (13.7). Next,
the definition of z is insertedin (13.14). Insidethe integral, ~ is replacedby a function of a usingthe
backgroundequationH = ~I2çb~.After integratingthe resultingequationby parts,the expressionfor u,,~
reducesto (13.13).

If we considerinflationary models which solve the horizon problem, all scalessmaller than the
Hubbleradiusat the presenttime flo areinsidethe Hubbleradiusat thebeginningof thede Sitterphase
(~= q). Only suchscaleswill beconsideredin the following. As mentionedat the endof chapter11,
the ambiguitiesin the choiceof the stateof the systemare unimportanton thesescalesprovided the
asymptoticconditions on the functionsM(k

77~)and N(k’q) — mentionedabove (13.9)— are satisfied.
Thus, the perturbationswe are interestedin are initially inside the Hubble radius and evolve

accordingto (13.12). Later they leave the Hubble radius and subsequentlytheir evolution can be
describedin (13.13). One way to determinethe coefficient Ak in (13.13) is to use the junction
conditionsbetweensolutions(13.12) and (13.13)at the time of Hubbleradiuscrossing,i.e., we could
demandthatatthat time uk(71) andu~(77)arecontinuous.However, thereis a moreelegantway to join
the solutions.From (itila), it follows thatv~(~q)hasoscillatorysolutionsfor k

2 ~‘- z”/z. By (13.8), this
implies that the solution (13.12) for uk(71) is alsovalid for (1/z)”(l/z)’’ ~- k2 ~- z”/z. Hence,in the time
interval for which

(1/z)”(l/z)”’ >~k2>>z”/z (13.15)

both of the solutions (13.12) and (13.13) for uk(77) arevalid if this interval exists.
For an inflationary universe,the interval (13.15) is not empty since in this case(13.15) takesthe

form

~/~a(71)~- k ~- V~a(~). (13.16)

During inflation X ~- V’~,andthereforetheaboveinterval doesnot vanish.Thus,for fixed k, from the
time ~ when k-~~/t~a(ij)until ‘712 when k — V~a(ij

2),both solutions(13.12) and (13.13) are valid.
Comparingthesesolutionsduring this time interval, it follows that for perturbationswith k in the range

~/~‘(77)a(77)>k> H(71)a(-q1), (13.17)

the solutionfor uk(fl) can be written as

u~(’q~)cos(k771)— [u~(771)Ik]sin(k771) 1 (if 2 ‘V

Uk(7)) = {(1/~~)[(1/a)5 a
2 dn]’}~(k) ~— ~- j a d

71) - (13.18)

[To see this, evaluate(13i8) at r~,(k).The resultmust agreewith (13.12) when taking into account
that ~ ~- ln,~(k)l.]In the above,the index 77~(k)meansthat the expressioninside the bracketis to be
evaluatedat the time t,,.(k) whenthe scalek crossesthe Hubble radius.Note that (13.18) is alsotrue
after inflation for scaleswhich haveleft the Hubbleradiusduring inflation. It is worth noting that the
expressioninside the squarebrackets[with index 77~(k)]in (13.18) changesonly insignificantly during
the time interval m <77 < ~ at the inflation stage;wecould take ‘q,,,(k) for any ~j for this timeinterval.

Now, we can combinethe aboveresultsto determinethe powerspectrumôk, which is givenin terms
of Uk(fl) by (13.11). The solutionsfor U~(’tj)in the variouswavelengthintervalsareexpressedin terms
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of the initial values in (13.12) and (13.18). The initial valuesfor u~(’q)and u~(71)can be takenfrom
(13.9). We first considerthe powerspectrumduring inflation. On scaleswhich at time t arestill inside
the Hubble radius [kPh(t) > H(t)], uk(71) is given by (13.12) and the powerspectrumis

IôkI (3l2/4ir2)Icbo(t)I , k,,~(t)>H(t) , (13.19)

where t stands for the physical time t = 5 a d
71 and kPh = k/a(’q) is the wavenumberin physical

coordinates.On scaleswhich were inside the Hubbleradiusatthe beginning of inflation but which are
outsideat time t, we use(13.18) to obtain

~2 (H
2)(1 J a dt)’ , H(t)> k~h(t)>H(t,) - (13.20)

In deriving (13.19) and(13.20) we took into accountthat Ml—÷1 and INI—* 1 for 1c77, ~- 1 in (13.9),
usedthe normalizationcondition(11.28),and keptonly the leadingtermsin k in the final expressions.
Equations (13.19) and (13.20) are valid on the correspondingwavelengthsboth during and after
inflation.

Let us first apply (13.19) and (13.20) to studythe time evolution of the spectrumof perturbations
during inflation. Usingthe Fnedmannbackgroundequation(6.11) to expressH in termsof ~ andthe
equationof motion (6.27) in the slow roll approximation to express~ in termsof V,~and V, we
obtain— for a scalarfield with generalpotential V(~)— the following powerspectrum:

(l/4IT) V~/Vv2, kPh > H(t)

~kl— 1 / v3’2\ V~ (13.21)
~iç~)n~k ~ H(t)> kPh> H

1 a(t,)/a(t)

In the case of a potential V(ço) = (A/n)~~,eq. (13.21) becomes(when using a(t) = a(t1) exp{—
(3l

2/2n)[~2(t)—

1A1/2nV2 (2n ar \fl141/2
4 ~ln—~)

1, kph>H(t),

x / ln(A H) \fl/4+1/2 a(t)11+ ph H’t~>.k >H~~_!_
\ ln[a,/a(t)] / ‘ ~ ph a(t) -

Theseequationsaretrue only during inflation, i.e., for a(t)< ar, wherea~is the scalefactorat the end
of inflation. is the wavelengthin physicalcoordinates.

As an example,considerthe simplestpotential which leadsto chaotic inflation, namely V(q’) =

~m2p2.In this case(13.22)becomes

1/2 1, kPh>H(t),

I — ln[A hH(t)] a(t.) (13 23k 4IT mp
1 (i + ln[ar/a(t)])’ H(t)> kPh > H1 (t)~ -
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The time dependenceof thespectrum(13.23)is sketchedin fig. 13.1. Note that thek region for which
thereare logarithmic correctionsto a flat spectrumincreasesin time.

The period of inflation endsat the time t,. whenH2(t~) V~.Let usassumethat after inflation the
time evolutionof the scalefactora(t) is given by a(t)-~t~,wherep is somerealnumbersmallerthan1.
In the caseof a quadraticpotential,p = 2/3. On scaleswhich are inside the Hubble radius at the
beginningof inflation (t = t~)but outsideat the end (t = t

1), Le., for which

H(t1) a(tr)/a(t)> kPh(t) > H~a(t1)/a(t) , (13.24)

the power spectrumis obtainedfrom (13.20).Thus, for any t> ç

I~kI 3l~ (H
2) 31~ (~Y.~). (13.25)

4ir(p + 1) H t~(k) 21T(p + 1) V.,,, t~(k)

In particular,for the potentialV(’p) = (A/n)~”

1/2 2 n/4—1/2

I~kI— IT(p + 1)n”2 (~) [ln(APh/A~)]~’4~”2, (13.26)

where A.,, is the characteristicwavelengthof the cosmicbackgroundradiation (see fig. 13.2). From
(13.26) it follows that in inflationary universemodelsthe spectrumof adiabaticmetric fluctuationsis
nearly scale-invariant.There is a logarithmic correction factor. The strength of the logarithmic
correctiondependson the particularmodel.

It is interesting to consider two special examplesand confront the theoretical predictionswith
observationalconstraints.As discussedin part III, chapter 17 of this review, the isotropy of the
microwavebackgroundradiationconstrainsI ~k I to be smallerthanabouti05 on largescales.Note that
in the following equationsp = 2/3 is assumed.

I8I

2~ir

_~_~ X~(t
3)X,(t2) ..L. X,,~t2) Xmaj/t3)

Xph

Fig. 13.1. The powerspectrumduringinflation in themodel of chaoticinflation with potential V(q~) im
2~2.t

0 is sometime before theonsetof
inflation attime t, and t, andt, aretwo fixed timesduringinflation. Themaximal wavelengthAm,,(t) is H’a(t)a(t,)’, andA~(t)is givenin termsof
thescalefactora(t,) at theendof inflation by H~a(ç)a(t)”’.



V.F. Mukhanovet a!., Theoryof cosmologicalperturbations 291

181

I I

J~2~jL
H O(tr) H a(t,) >‘ph

Fig. 13.2. The power spectrumafter inflation in the model of chaotic inflation discussedin fig. 13.1. Note the logarithmic deviationfrom a
scale-invariantspectrum.

In a modelwith quadraticpotentialV(rp) = ~m2tp2,it follows from (13.26) that

I~kI (3/5ir\/~)(m/m~,)ln(APh/A~). (13.27)

In very large scalesthe logarithm is about 102. Hence, the observationallimits on I~kIyield the
constraint

mIme,< 106. (13.28)

For a quarticpotentialV(d) = ~Atp~,the powerspectrumis

IôkI — (3/51T)~”2A”2[ln(APh/A~)]3’2- (13.29)

In this example,the observationalconstraintsgive

A<10’4. (13.30)

Thus, in order that the quantum fluctuations from inflation do not produce too large density
perturbations,eitherextremelysmall valuesof couplingconstants(13.30)or a masshierarchy(13.28)is
required.

In modelswith a very small coupling constantasin (13.30), it is unnaturalto assumethat ~pwas in
thermalequilibrium during the very early universe.The aboveconditions on coupling constantsand
massesalso apply to new inflationary universemodels.In this case,however,thermalequilibrium was
crucial to justify the initial conditions.Hence,theconstraint(13.30)is a majorproblemfor modelsof
new inflation. In contrast,in chaoticinflation ~pis not assumedto bein thermalequilibrium in the very
earlyuniverse,and (13.30) or (13.28) do not leadto an internal inconsistency.

In conclusion,in this chaptera consistentderivationof the powerspectrumof metric perturbations
causedby vacuumquantum fluctuationsof scalar-field matter has beenpresented.Unlike earlier
derivations [53,52, 118], no artificial splitting betweena quantum generationperiod and classical
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growth phasehasto be assumed.Our methodis basedon writing the actionfor metric perturbationsin
termsof one gauge-invariantvariable, and applying standardquantizationto that action (seechapter
10). The main results are as follows. Metric perturbationsalways exist. Their amplitude increases
during inflation anddue to the exponentialexpansion,the final powerspectrumhasanamplitudewhich
is nearlythe sameoverall scalesof cosmologicalrelevance.As was shown,the resultsdo not dependon
the choiceof vacuumstate,as long as somebasicasymptoticlimits aretakenon correctly [seeabove
(13.9)].

14. Spectrum of density perturbations in higher-derivative gravity models

As discussedin chapter7, higher-derivativegravity theoriesquite naturallyleadto inflation. Henceit
is of interestto computethe spectrumof metric perturbationsin thesemodels [120].Since we shall
consider the quantumtheory of cosmological perturbations,the starting point will be the action
principle for theseperturbations.For a gravity theory given by

s_~Jf(R)v~gd4x, (14.1)

the actionfor cosmologicalperturbationshasbeenobtainedin section10.4 in the caseof a spatiallyflat
universe(X = 0),

b2S = ~J(~‘~— v,v, + ~ d~x, (14.2)

Z = \/~ (aF~/
2)’ J= ‘~(~rbR~’~+ R~I’), F= - (14.3a,b,c)

The variablesz and i~ havebeenexpressedin termsof original (nonconformal)variablesexclusively.
Note that the index 0 standsfor backgroundmodel quantities.

The quantizationof the systemwith action (14.2) hasbeenconsideredin detail in chapterii. The
operatoriJ correspondingto t~can be expandedin the usualway in termsof creationand annihilation
operatorsâ~andâ~,

f i3,

1 U ~ _~ ik-x’-—
v(~,x) = —~=j 3/2 [v k(71) e ak + Uk(77) e a,,], (14.4)

v2 (21T)

wherethe temporalmodessatisfythe equation

+ (k2 — Z”/Z)Vk(71) = 0, (14.5)

with initial conditions

Uk(Th) = k”2M(k
71~), tJ~(’~)= ik”

2N(k
771), (14.6)

at the initial time ~ The functionsM andN havethe asymptoticlimits I M(k77,) I —~ 1 and I N(k77,) I —p 1
when k77, ~- 1. They also satisfythe normalizationcondition (11.28).
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Sincethe observablesarecorrelationfunctionsof the operators~ and~‘,it is necessaryto first find
the relationsbetween‘P,1P and ô. As was shown in chapter7, the gravity theory given by (14.1) is
conformallyequivalentto an Einsteintheoryfor theconformal metric,~ = F(R)g~p,with scalar-field
matter, the scalar field ‘P being related to the Ricci scalar curvatureR of the ori~inalmetric via,

‘p = (1 /V~1) ln F(R). Hence,we can use(13.7) to expressthe conformal potentials‘P and ‘P in terms
of t

T,

= i (~)‘ ~(~)‘, (14.7)

where z was defined in (14.3a). On the other hand, the relation betweenthe conformal potentials
‘P = ‘P and the original potentials‘P and ‘P was derivedin chapter7 [see(7.42)],

‘P = —~(F2/F’a)[(aIF)’P]’, ‘P= ~(1/FF’a)(aF2t~1’)’. (14.8)

Thus,from (14.7) and(14.8)we can immediatelyexpress‘P and ‘Pin termsof iT. Thesamerelationsare
valid in the quantumtheory for the correspondingoperators.

To calculate the perturbationspectrum,it is necessaryto evaluatethe correlationfunction of the
potentials‘P or ‘P. Theoperator‘P can be expandedin termsof the creationandannihilationoperators
definedin (14.4),

~ x) = ~ f d3k [‘P*() e~xâ+ ‘Pk(77)e~’â], (14.9)\/~ (2-w)

wherethe modefunctions ‘Pk(fl) arerelatedto the functionsv~(~q)appearingin (14.4)by the identities
(14.7)and(14.8).The time dependenceof ‘P~(q)was studiedin chapter7 [seeeqs. (7.51) and(7.52)],

1 I/i~’ 5 F ik’\ /. I dt\ 1
‘Pk(71) = — ~ ~ — + H + —)ck expI,~ikJ —) + c.c.] (14.10)

(wherec.c. standsfor complexconjugate)for short-wavelengthperturbationswith k2a~(1 /z)”(i Iz)’
and

‘Pk(
71)_-~Ak(-~fai’cit)’ (14.11)

for long-wavelengthperturbationswith k
2 4 (1 Iz)”(l Iz)~.

To fix the coefficients Ck and Ak in theseequations,we use (14.7) and (14.8) to relate the initial
valuesof ‘Pk and ‘P~to the valuesof iT and iT’ at the initial time~ which in turnaregiven by (14.6). In
inflationary universemodels, scalesof interestto cosmology are far inside the Hubble radiusat the
beginningof inflation. Hence,the relevantwavenumbersk satisfy k-q

1 a- 1. Thus, from (14.6)—(14.8)
andkeepingonly the leadingtermsin an expansionin powersof k’ we obtain

_______________ _______________ 1/2

1/2 —~+O(k771), ‘Pk(flj)=~~~~ 1/2 k +O(k~j~),v2 a(771)F0 (~~)k v2 a(n~)F0~ 14 12

where O(kq1) denotestermswhich can be neglectedwhen k-q1 ~ 1.
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In orderto makethe following considerationsspecific, theaboveformalismwill now be applied to
the inflationary model in R2 gravity. The actionfor this theory is

~ (14.13)

As discussedin section7.2, a period of inflation rises under quite natural initial conditionsin this
model. We are interestedin perturbationswhich were inside the Hubble radiusat the beginning of
inflation. From (14.10) and (14.12) it follows that on scaleswhich satisfythe condition

k a- (1 /z)”(l /z)” (14.14)

for the applicability of the short-wavelengthapproximation,the solutionsfor ‘Pk(~)are

= V~1/2 ( — + H + ~)(~1~’2 +0(k
77)) exp[ik(~—n,)]. (14.15)

In the inflationaryphaseof theR
2-gravity theory, eq. (14.14) takesthe form k> Ma(71).

Oncethe scalek comesto satisfythe conditionk 4 Ma(
77) during the inflationaryperiod, then‘Pk(77)

evolvesaccordingto (14.11). To fix the coefficient Ak in (14.11) for valuesof k which correspondto
scaleswhich were initially inside the Hubble radius the solutions(14.11) and (14.15) mustbe joined.
The method is analogousto the considerationin chapter13 for scalar-fieldperturbations.For fixed k,
both solutions (14.11) and (14.15) must be valid in the time interval when H(77)a(77)~ ka~Ma(~)
(during inflation). Comparingthesesolutions in the time interval whenboth are valid and taking into
accountthat during inflation F —4H

2/M2 one obtains

31 H2 i~ r~ —ik,~ ~M(”~)
‘Pk(77)_~,~r~~ M (~-~jaFdt) (14.16)

for perturbationson scales with Ma(-q) ~ ka- H(77
1)a(71~).Note that in (14.16), the time when

k = Ma(-q) is denotedby tM(k). Equation(14.16) is valid alsoafter inflation, but only for scaleswhich
havecrossedthe Hubbleradiusbefore the end of inflation.

The power spectrumI &P,k I of metric perturbationsis definedas in chapter13 [see(13.10)],

(0Ii(x,fl)~(x+r~77)I0)=1 ~ sin(kr) I&,kI2, (14.17)

andis relatedto the modefunctions ‘Pk(77) via

I~~k(71)I2= (1/42)1 ‘Pk(n)I
2k3 - (14i8)

Sincewe havealreadydetermined‘P~(q),thepowerspectrumcanbe calculatedin a straightforward
mannerby evaluating(14.16) using the equationsof chapter 7 for the backgroundmodel. During
inflation, the result is
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1/APhM, APh4 1/H(t),

l6~(APh,t)I = (1 I4-7T’\/~)MI 1 + ln(APhM) 1 A 1 a(t) (14.19)
ln[a(tr)/a(t)] ‘ 11(t) ph ~11(t,) a(t)

The answerhasbeenexpressedin termsof physicaltime t and physicalwavelengthA~h= a(t)/k. As
before, t,. is the time correspondingto the end of inflation.

The spectrum(14.19) coincides up to a numericalcoefficient with the spectrumin a scalar-field
modelwith potentialv = ~M2’p2 but only for the long-wavelengthperturbationsAPh > 1 / H(t). For short
wavelengthsthe amplitudeof the powerspectrumin R2-gravityincreasesasA~,while it is constantin
the caseof scalar-fieldperturbations.

To find the power spectrumafter inflation, we use eq. (7.56) (which statesthat up to oscillating
terms, ‘P is constantfor long-wavelengthperturbations),and eq. (14.16) to definethe amplitude in eq.
(7.56). Hence,the following spectrumresultsafter inflation:

I8~(APh,t)I~’o(3I101r\/’~)Mlln(APh/A~),A~=(1/M)a(t)Ia(t
1), (14.20)

where A~is the characteristicwavelengthof the backgroundradiation. Equation (14.20) is valid on
scalessatisfying

< APh< [1IH(t1)]a(t)Ia(t1) , (14.21)

i.e., scaleswhich areinside the Hubbleradiusat the beginningof inflation but havecrossedby the end.
The observationalconstraintsfrom the absenceof detectedmicrowave backgroundradiation

anisotropiesgive an upperbound I ~ (APh )I < i0~’on cosmologicaldistancescales.This implies a bound
M < 1014 GeV. For M in the range iO’

3 GeV—1014GeV, the power spectrum has the appropriate
magnitudefor galaxy formation.

15. Conclusions

In part II of this review article we studiedthe quantumtheory of cosmologicalperturbations.This
enabledus to consider the main problem which cannot be addressedin a classical theory of
perturbations,namelythe origin of fluctuations.Thespectrumof densityinhomogeneitiesoriginatingin
quantumfluctuationswas calculatedin threeclassesof cosmologicalmodels: Friedmancosmologies
with hydrodynamicalmatter,inflationary universemodelsin which the exponentialexpansionis driven
by a scalarfield, and higher-derivativegravity models.

The calculation of the spectrumof densityperturbationscan be reducedto the evaluationof the
two-point function of either the gauge-invariantmetric potential ‘P or of the gauge-invariantdensity
perturbation&s~/e for the initial quantumstate 9”) of the system.In modelswith inflation, it was
shown thatthe spectradependonly weaklyon the stateI i/i) if the lengthscalesunderconsiderationare
smaller than the Hubble radiusat the time when initial conditionsare imposed.We concludedthat
quantumfluctuations in universeswith hydrodynamicalmatter are insufficient for galaxy formation.
However,in inflationaryuniversemodelsthe amplitudeof densityperturbationsat the presenttimecan
be sufficiently largefor galaxy formation. In fact, the dangeris that theymight betoo largewithout fine
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tuning the particle physicsmodel. It was shownthat in inflationary universemodelsthe spectrumis in
generalnearly scale-invariant.

The main advantagesof the formalism presentedin this article aregaugeinvarianceand physical
consistency.In addition, the treatmentgives a unified picture of the generationand evolution of
perturbations.The first step in the analysis is the reduction of the action to that of a single
gauge-invariantvariable.This reducedactionis thenquantizedaccordingto the canonicalquantization
prescription.This allows for the evaluationof the two-point correlationfunction of physical, gauge-
invariant operators.Theseoperatorscan be expandedin creation and annihilation operations.The
coefficient functions are shown to satisfy the same classical equationsas the classical perturbation
variablesof part I. This establishesadeepconnectionbetweenthe first two partsof thisreviewarticle.

PART III. EXTENSIONS

16. Introduction

In this part we demonstratethe power of the gauge-invariantformalism by consideringseveral
importantphysicalapplicationsof cosmologicalperturbationtheory. Specifically, we considermicro-
wave backgroundanisotropies,gravitationalwaves,entropyperturbationsand statisticalfluctuations.
All of thesetopicsaddressissueswhich directlyrelateprimordial perturbationsto observablequantities,
henceprovidingconstraintson modelsof theearlyuniverse.A gauge-invariantapproachsimplifies and
clarifies the analysis in all four cases(the analysis of gravitational waves is automaticallygauge-
invariant).

Chapter 17 is devotedto a study of anisotropiesin the cosmicmicrowave backgroundradiation
(CBR). At the presenttime, the most stringentconstraintson the largewavelengthpower spectrain
modelsof structureformation come from the absenceof detectedCBR anisotropies(exceptfor the
dipole componentwhich is due to the motion of the solar system) [130]. In our analysis,the CBR
temperatureanisotropiesaredirectly relatedto the gauge-invariantpotentialfor metric perturbations.

In chapter18, the theory of generationand evolution of metric perturbationsis extendedto the
tensorperturbationswhich describegravitationalwaves. In principle,gravitationalwavesprovide away
to discriminate betweenvarious theoriesof formation of structure in the universe,since different
modelslead to different spectraof gravitationalradiation. Becauseof the weak coupling between
gravitationalwavesandmatter,informationaboutthe earlieststagesof the evolutionof the universeis

storedin the gravitationalwave spectrum.We considerthe generationof gravitationalwaves in an
inflationary universe. The quantum fluctuationsduring the period of inflation lead to a late time
spectrumof gravitationalwaveswhich hasa flat logarithmicenergy-densityspectrumovera wide range
of wavelengths.In addition,we extendthe analysisto demonstratethat interestingspecific featuresin
the spectrumof gravitationalwavesin double-inflationmodelscan be produced.

In partsI andII of thisreviewarticle— especiallyin the chapterson scalar-fieldperturbations— most
of the emphasiswas on adiabaticperturbations.However, in models with several componentsof
matter,e.g., in a modelwith severalscalarfields, entropyperturbationsare generic. In the simplest
examples,entropyperturbationsin inflationaryuniversemodelsalsoleadto a scale-invariantHarrison—
Zel’dovich spectrum.Recentobservationsof large-scalestructure[129]indicatethat sucha spectrum
might not provide sufficient power on large scales. It is fairly easy to construct models with
non-scale-invariantspectrafor entropy perturbations.In chapter19 we use a simple model of two
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interactingscalar fields to illustrate the different featuresin the spectrumwhich can be obtained.
However,it is worth noting that all of thesemodelsarequite unrealisticsincethey demandfine tuning
of the parametersin order that the specific features in the spectrum appear on cosmologically
interestingscales.

In chapter20, we apply the quantumtheorydevelopedin part II to give a physically consistentand
gauge-invariantdefinition of statistical fluctuations in models with hydrodynamicalmatter. These
perturbationsare shown to be insufficient for galaxy formation in usual scenarioswithout inflation.

17. Microwave backgroundanisotropies

The observationalupperboundson temperatureanisotropiesin the cosmic microwavebackground
radiation (CBR) provide strong constraintson the spectrumof metric perturbations.In fact, the
approximateisotropy of the CBR yields strongevidencethat the earlyuniversecan be consideredto be
approximatelyhomogeneouson largescales.

Photonstravel on geodesies.Therefore,asfirst realizedby SachsandWolfe [2], metric perturbations
will induce anisotropiesin the temperatureof the CBR. The basicideais illustratedin fig. 17.1. There
are threecontributionsto anisotropiesof the CBR. Density fluctuationsat the time of last scattering
leadto differencesin the length of the geodesicson which photonsreachthe observerat the present
time t0 from differentdirections.Secondly,densityperturbationsbetweenthe time trec of last scattering
andt0 leadto deviationsof the geodesicsand henceto temperaturefluctuations. Finally, any peculiar
velocity of the observeror of the atoms emitting photonsat last scatteringgives rise to Doppler
temperatureperturbations.Apart from the dipole contribution[130],which is believedto be dueto our
peculiarvelocity relative to the restframe of the CBR, no anisotropiesin the microwavebackground
havebeenobservedat a sensitivity of i0~or better. For detailedreviews of the observationalstatus
see,eg., refs. [131,1]. The upperlimits on temperaturefluctuationsleadto interestingboundson the
amplitudeof the spectrumof densityperturbations.In fig. 17.1, the lastscatteringsurfaceis idealizedas
being infinitesimally thin. This is only a good approximationon angularscalescorrespondingto a
distanceat last scatteringlarger than the Hubbleradiusat that time. In the following, we shall only
considersuchlarge angularscales.We also neglectDoppler type anisotropies.

There has been a lot of theoreticalwork on microwave backgroundanisotropiesfollowing the
pioneeringpaperby SachsandWolfe [2]. Someearlypapersarelisted in refs. [132—134].Peebles[135]

77

77

Fig. 17.1. Conformalspace—timediagram showing two sourcesof fluctuationsin the CBR: perturbationsof the last scatteringsurfaceS and time
delaysdue to inhomogeneities(like regionA) alongthe geodesics-y reachingtheobserver0 from different directions.
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hasperformeda detailedanalysisof CBR fluctuations, including small scaleanisotropies,which were
alsoconsideredin ref. [136].More recentanalysesarein refs. [137,138], wherethe causalityconstraints
on large-scaleCBR anisotropieswere studied. The first studies of CBR anisotropiesproducedby
densityperturbationsin inflationary universemodelsweregivenin ref. [139].BondandEfstathiou[140]
havedone detailedanalyticaland numericalanalysesof the CBR fluctuationsin various cosmological
modelsbasedon inflation (for a recentview see,e.g., ref. [141]).

Most of the analysesin the literatureusesynchronousgaugeandareverycomplicated.Here,wewill
give an analysisof the large-scaleCBR anisotropiesusingthe gauge-invariantframework(basedon ref.
[142]). A similar formalism was developedin ref. [143]. The observedanisotropywill be directly
connectedto gauge-invariantcharacteristicsof the perturbation.A differentgauge-invariantapproach
to CBR fluctuationshasalso beenput forward in ref. [144].

In this chapter the gauge-invariantframework will be applied to derive the relation betweenthe
relativetemperaturefluctuation~T/ Tandthe metricpotential‘P. In particular,thisgeneralrelationwill
be appliedto the quadrupoletemperatureanisotropy.Since lastscatteringoccursafterthe timeof equal
matter and radiation, the equationsfor metric perturbationsas specializedto a matter-dominated
universemaybe applied. We shall againonly considera spatially flat metric (~= 0). From (5.19), it
follows that the equationof motion for the potential ‘P is

(17.1)

The generalsolution of (17.1) is

‘P(x, ~) = A(x) + B(x)77
5. (17.2)

The B modedecaysrapidly andcan hencebe neglected.
Fromthe (0, 0) and (0, i) Einstein equations,the gauge-invariantenergy-densityperturbation~e/e

andthe gauge-invariantpeculiarvelocity v’ can be expressedin termsof thepotential ‘P [see(5.28)and
(5.29)],

= (772/6)z1’P— 2’P , = —~o”a’PIax’, v~= a &u’, (17.3)

where we omitted the superscript(gi). Until last scattering,radiationis coupledto matter.Sincethe
energydensityin radiationscalesas —— a~while theenergydensityin matterobeysEm ~ a3, we have

~Er/Er= 4 ~E/E (17.4)

(using Er ~ Em) Also, sincePr = ~r’ it follows that

(T’
0)~= 4ErV’ (17.5)

(wherea subscriptr indicates“radiation”). Equations(17.4) and(17.5)specifythe initial conditionsfor
radiation at the time of last scattering.

To derive the relation between~TI T and ‘P, we will work in longitudinalgaugein which the line
elementis

ds
2 = a2(77)[(1 + 2~)d

71
2 — (1 — ~ dx’ dx’], (17.6)
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with 4 equalto the gaugeinvariantpotential ‘P (seechapter3). The equationof motion for photonsis
the geodesicequation.If Pa standsfor the four-momentumof the photon, thenthe geodesicequation
can be written as

dPa/d77= 2p a’PI9x’° , dx’/d77 = 1’(l + 2’P), (17.7)

where by definition 1’ = —(1 Ip)p, and p
2 = p,p,. These equationsare obtainedby evaluating the

Christoffel symbolsin the metric (17.6).
The temperatureenters the system of equationsthrough the phase-spacedistribution function

f(xa,p,) for the ensembleof photons;

dN= f(x”, iv,) d3x”~d3pk (17.8)

gives the numberof photonsat time x°in the infinitesimal phase-spacevolume d3x” d3p,, about the
point (x’, p,). After last scattering,f obeysthe collisionlessBoltzmannequation

(df/d
77) of/ax” + (dp,Id-q)afIap~= 0. (17.9)

Small fluctuationsin the microwavebackgroundmayconvenientlybe describedby perturbationsof

the temperatureparameterT in the unperturbedPlanckdistributionf
f(x”, p,) = f(p/[T + ~T(x’°,1’)]). (17.10)

We stressthat f is a function of a single variablev which in an unperturbeduniversewould simply be
v = pIT. In a perturbedmetric,f dependson ~a and1’ via the dependenceof Ton thesevariables.Note
that~T is independentof p since the equationsof motion (17.7) are homogeneousin p.

Inserting (17.9) and (17.10) and making useof (17.7), we obtain

(a~+ I a,) ~TIT= —2z” a,’P - (17.11)

Sincein the matter-dominatedperiod t3,, ‘P = 0 for the nondecayingmodeof the metric perturbation[see
(17.2)], eq. (17.11) can be rewritten as

(a~+ 1’ a,)(~T/T+ 2’P) = 0. (17.12)

However, the operator(a,,, + 1’ a,) is just thetotal time derivativealongthe world lines of the photons.

Hence,we find that along a null geodesicx(~)
(~T/T+ 2’P)(x, -,~)= const. (17.13)

As the final stepin the derivation,the initial conditions(17.3)—(17.5) at the time of last scattering
areusedto determinethe constantin (17.13).Radiationwith distributionfunctionf will have[134]the
stress-energytensor

— 1
1d~ ~ 1714( í~)r_vr~j pf—~. ( . )
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Hence,

1 ~r f d21 6T (~T’o)r I d21 ,

4T’ 4e, =j ~ ~ (17.15a,b)

To obtain (17.15a)from (17.14), the null vectorconditionp”p~= 0 is usedto expressp°p
0in termsof

p
2. The squareroot of g, the determinantof the metric tensor,is also expandedto first order in the

perturbationvariable ‘P. To performthe integration,it is usefulto introducez = pIT as a newvariable.
We separatethe integrationd3p into a radial integraldp andan angularintegral. Keepingonly termsof
first order in the perturbationvariables‘P and~T, subtractingEr anddividing by Er gives (17A5a).The
analysisfor (17A5b) is similar.

Comparing(17.15a,b) with (17.3)—(17.5)we find that before last scattering

~T/T= —~‘P + 12~’P — ~ a,’P . (17.16)

Thus,using (17.16) as the initial conditions in (17.13), we can rewrite (17.13) in the following final
form:

(~T/T+ 2c13)(x
0,~ = (~‘P+ 1

1
477

2~~t’P— ~771’O.’P)(x
0 — 1(77~ — 77rec), 71rec) , (17.17)

where
77o is the presenttime, and ~ the time of recombination(last scattering).

Let usbriefly discussthe physicalmeaningof the result(17.13) and (17.17).From (17.13) it follows
that

(~TIT)(’q
0)= (&TIT)(77rec) — 2[’P(n~)— ‘P(77rec)] , (17.18)

whereeachterm is evaluatedalongthe light ray x(q) at the correspondingtime. Therefore,if the last
scatteringsurfaceis unperturbed,only the secondtermon theright-handside of (17.18)would remain.
This term is the line-of-sightcontributionto ~TIT. In thecaseunderconsideration,the last scattering
surfaceis perturbedand (17.17) can be rewritten [using(17.3)] as

(6TIT)(770)+2’P(77~)= ~‘P(77rec) + l’vj(~q,~~)— T~77~ec~1’P(77rec), (17.19)

where all termsare evaluatedon the samenull geodesicof the unperturbedmetric. On scaleslarger
than the Hubble radiusat the time of recombinationthe last termon the right-handside of (17.19) is
negligible.The first term is the Sachs—Wolferesultwhich includesboth the energy-densityperturbation
on the last scattering surface and the line-of-sight distortions. The second term is the Doppler
contributionwhich is nonvanishingif the emittershavea nonzeropeculiar velocity.

We now considertwo light raysapproachingtheobserverwith anangleof separation0. The relative
temperaturedifference~ TIT)(O) betweenthe two photonsis obtainedby taking the differenceof
6T1T(770) correspondingto the two photonpaths.(Note that ~ Tstandsfor the temperaturedifference
betweentwo specific light rays, whereas ~iT denotesthe deviation of the temperaturefrom its
backgroundvalue.) On large angularscales,

(iXTIT)(O) ~l’P(O,‘7lrec) + L1(l’Vj)(’q,~~). (17.20)
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It is importantto keepin mindthe conditionsunderwhich (17.17)and (17.20)arevalid. It hasbeen
assumedthat metric perturbationsare linear, and that the decayingmodecan be neglected.Further-
more, the finite thicknessof the last scatteringsurfacehas not beentakeninto account.Therefore,
(17.17) and (17.20)arevalid only on angularscaleslargerthanabout 10, correspondingto the Hubble
radiusat last scattering.In addition,possiblereionizationof the universeafter flrec hasbeenneglected.
If the universeis reionizedbetweentimes ~ and 772>711, then (17.17)will hold only on scaleslarger
than the Hubble radiusat 772-

As an exampleof the applicationof (17.19),the quadrupoleanisotropy~2TITof theCBR becomes
(in the absenceof a quadrupolecomponentto the velocity perturbationon the last scatteringsurface)

~2TIT= ~2’P, (17.21)

where ~2 ‘P is the quadrupolemomentof the potential ‘P. Recentobservations[145] constrain the
magnitudeof ~2TIT to be smallerthan 3 X iO’

5.
The potential ‘P on ascalek is proportionalto the magnitudeof the energy-densityperturbationon

that scaleat the time when the correspondingwavelengthcrossesthe Hubble radius. Thus, on an
angularscale0, the temperaturefluctuation~T is proportionalto the amplitudeof 6EIE on thescalek
which dominatesthe contributionto L~T(O)evaluatedat the time t~(k)when k entersthe Hubble
radius, and the observationallimits on temperaturefluctuations translate into constraintson the
amplitude of the primordial density perturbations.Many low 12 models are already ruled out
[146,140, 176] by recentobservationalresults. Oneway to circumventthe tight constraintsis to havea
recentphaseof loitering [147],a phaseduring which the scale factor of the universe is essentially
constant,which leadsto an exponentialgrowth of perturbations.

18. Gravitational waves

Linear tensorperturbationsof themetric,gravitationalwaves,do not coupleto energyand pressure
andhencedo not contributeto gravitationalinstability. Nevertheless,gravitationalwavesareof interest
in their own right as a specific signatureof metric theoriesof gravity. The classicaltheory of the
evolutionof gravitationalwavesin expandingspace—timebackgroundswasfirst analyzedin someof the
basic articleson cosmologicalperturbations(see,e.g., refs. [3, 5]). It wasshown that in synchronous
gaugethe growing modeswhich exist for scalar-typemetric perturbationsare absentfor gravitational
radiation.

The quantumtheoryof gravitationalwaveswas first consideredby Grishchuk[148]who introduced
the term “parametricamplification” to describethe evolution of tensor-typemetric perturbations.It
was found that the expectationvalues of operatorswhich measurethe amplitude of gravitational
radiation have a nontrivial time dependence.A statewhich initially hasvacuum-stateoccupation
numbers,at later times correspondsto a squeezedstatewith occupationnumberswhich differ from
those of the later-time vacuum state [149—151].Thus, in an expandinguniverse gravitonscan be
produced.

As we shall see,the evolutionof gravitationalwaveperturbationsis closelyrelatedto the evolution
of minimally coupledscalarfields on the backgroundspace—time.As seenin chapter13, scalar-field
perturbationsare generatedin inflationary universe models from initial quantum fluctuations. In
analogy,we expectthat gravitationalwaveswill begeneratedduring a periodof inflation from quantum
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fluctuations.The detailedprocesswill be analyzedin this chapter.In thecontextof inflationary universe
models,the first computationsof thespectrumof gravitationalwaveswerepresentedin refs. [152—155].
For laterwork see,e.g., refs. [144, 156—160].

The outline of this chapter is as follows: first, the connection betweenthe quantizationof
gravitationalwavesand of a scalar field in de Sitter universeis shown. Next, the methodsusedin
chapter13 to quantizea scalarfield are appliedto derivea generalexpressionfor the tensoroperator
correspondingto gravitationalwaves. The third major topic is a discussionof the observableswhich
measurethe strengthof gravitationalradiation. The fourth issue is the evaluationof the spectrumof
gravitationalwaves in de Sitter space.We then proceedto study the spectrumat late times in an
inflationary universe. The chapter concludeswith an analysis [161] of special signaturesin the
gravitationalwavespectrumin modelsof doubleinflation [162].

18.1. Quantization

We shall considerthe generationof gravitationalwaves in inflationary universescenarios.Since
inflation can easilybe realizedin higher-derivativegravity theories,we will for the sakeof generality
considera theory given by the action

s=— ~ (18.1)

As discussedin chapter7, the theory definedby the aboveaction is conformallyequivalentto a pure
Einstein theory with scalar-fieldmatter. In linear theory, the gravitational wavesdecouplefrom the
matter fields. Thus, the only role of this matterin the problemat handis to define the background
modelandto determinethe relationbetweenthe conformalmetrics. To simplify thediscussionwe will
assumean exact de Sittermodelfor the inflationary period.As shown,e.g., in ref. [156],the analysis
and resultsin modelsof generalizedinflation are quite similar.

The backgroundmetric is given by

ds2 = a2(
71)(d77

2— y,
1 dx’ dx’). (18.2)

As mentioned in chapter2, gravitational wave perturbationsare given by a modified line element
2 2 -ds +~ds with

~ds
2 = —a2 (‘q)h~

1dx’ dx’ - (18.3)

Here, h,1 is a symmetric,tracelessand divergencelessthree-tensor,i.e., it obeysthe constraints

(18.4)

wherethe notation of chapter2 hasbeenused.In particular,the indices areraisedandlowered using
the metric y~,and its inverse.

Tensormetric perturbations(18.3) are gauge-invariant.They arealso invariant under a conformal
transformationof type (7.4),

= h.1 - (18.5)
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Conformal invariancecan be usedto give an easyderivationof theaction for tensorperturbationsin
modelswith action(18.1). In the Einsteinframe,the actionis expandedto secondorderin perturbation
variables.At the end, for the backgroundfunctionsin the Einsteinframetheir expressionsin termsof
functions in the original frame can be substituted.We obtain the following second-orderaction for
tensorperturbations:

~2S= 12 1 iT
2(h~’h~’— — 2~h~h~’)V~d4x, (18.6)

where12 ~8irG/3, ff= F~a(,’j)andF= of/aR.In deriving(18.6),theconformalinvariance(18.5)and
the identities (18.4) havebeen used.By varying the action (18.6) with respectto h~,we obtain the
following equationof motion:

+ 2(ã’/ã’)h’,’ —

1ih’, + 2~rh,= 0 - (18.7)

Equation (18.7) is applicableto describethe evolution of gravitationalwavesat any stageof the
evolution of the universe,even in higher-derivativetheoriesof gravity. We will be interestedin the
generationof gravitationalwavesduring a period of inflation. Thus, we shall focus on the quantum
theory of gravitonsin a de Sitter phaseof a universewith spacecurvature~ = 0. This background
model evolvesaccordingto

a(-q)= —1/H77, 11= a’/a
2 =const., (18.8)

where q rangesfrom —~ to 0.
To study theevolutionof gravitationalwavesin a de Sitterbackground,it is convenientto makethe

following changeof variablesin (18.7):

= (1IiT2)[a~lJ~(x,n)]’ , (18.9)

wherethetensorfunction is tracelessand divergenceless,

(18.10)

Substituting(18.9) into (18.7) we find

(~~“— 4~~)’+ (iT’Iâ~)(~~”— zi91~)= 0 , (18.11)

andhenceby integrating(18.11)one obtains

— zl~= C~(x)Iã’, (18.12)

where C’,(x) aretime-independentfunctions. It is possibleto set C’,(x) = 0, sincea nonvanishingC(x)

would leadto the following particularsolutionof (18.12):
~(x, i~) = F’,(x)IiT, iiF~(x)= C~(x). (18.13)
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As is obvious from (18.9),this solutioncorrespondsto vanishingh’,. Hence,from (18.12)it follows that
~ ~,(x,~i)satisfiesthe usual flat space—timewave equation

~“ —i.1~=0. (18.14)

Substitutingthe ansatz(18.9) into theaction(18.6),and taking into accountthat in de Sitter spacethe

Hubble parameterH is a constantyields the following result:

= ~4~2 f ~ — ~k~””) d4x, (18.15)

wheretotalderivativeshavebeenomitted. Undervariation with respectto a’,’, we obtain the first time
derivativeof (18.14).

The quantizationof gravitationalwavescan be reducedto the quantizationof ascalarfield ‘p(x, ~) in
the backgroundgiven by (18.2). As a first step,we expand~l3’,’(x,~) in a Fourier series

~‘(x, 77) = J d3k e’~G~(k)uk(fl), (18.16)
(2ir)

whereG i,(k) is called the polarizationtensor.Note that in units of k, both G and Uk havedimensions
—3/2. Using the aboveexpansion,we can define a scalarfield ‘p(x, ~ in the following manner:

‘p(x, ~)= ~ f (2)~ [G~(k)G~(k)]”2vk(n) - (18.17)

In termsof this scalarfield, the action (18.15) can be rewritten in the form

~
2s= ~ f(12. ço~’p”) d

4x. (18.18)

It canbe shown [by substituting(18.17) in (18.18)and (18.16)in (18.15)] that the two actions(18.18)
and (18.15) are identical up to total derivativeterms.

The field equationfor ‘p is the usual flat-spacewave equation.It can be obtainedby varying the
action (18.18)with respectto cp,

(18.19)

To expressh’
1 in termsof’p, we usetheequationof motion (18.14) to rewrite (18.9) in the form

zih~,= (1Ii
2)(ã’~.”)’. (18.20)

The quantizationof thescalarfield ‘p(x, ~) is standard.The quantumoperator9”(x, ~) corresponding

to the classicalfield ‘p(x, ~) can be expandedin termsof creationandannihilationoperators

= 2 1 (21T)~ç~[F(k~) e~/~ + F*(k
77~)e~~’)h], (18.21)
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where/~and i~satisfythe canonicalcommutationandexp[±i(k~— k x)] area basisof solutionsof
(18.19).The exact form of the functionsF(k-q1) is definedby the stateof the gravitonfield at the time

77k. Since h’,(x, ~) can be expressedin termsof ‘p(x, 77) using (18.20), (18.16) and (18.17), we can
immediately write down the expansionof the operatorsh’1 in terms of creation and annihilation
operators,

— 61~1/2 1 f d
3k k312 G~(k)

— ~ iT~J (2~)~~

x [F(k
771)(a.”— iki) e~?1~~ + F*(k771)(ä” + iki) e~

6]. (18.22)

Recall that ff = F’ ‘2a, where F = af(R)I OR is constantin the de Sitter phasesinceR is constant.
The spectrumof gravitationalwavescan be calculatedby taking expectationvaluesof productsof

operatorsh’
1 for the quantumstateof the system. It is important to considerwhich are the important

physicalobservables.

18.2. Observables

We will focus on two physicalquantities:thepowerspectrum~h(k)
2andthe logarithmic spectrum,

i.e., the gravitationalwaveenergydensityper logarithmick intervalwhich will bedenotedkdpg(k)/dk.
The “energy density” in gravitationalwavesis the 0—0 componentof theenergy—momentumpseudo-
tensor(see,e.g., ref. [5]).For a singleplanegravitationalwave traveling in thezdirection, theenergy
density is

Pg = (k218-irG)(1e
111

2+ e
221

2) , (18.23)

wheree~,is the classicalpolarizationtensor.For a superpositionof planewaves,

h~(x, ~ =Jd3k e~(k,
77)h(k, ~)e’~, (18.24)

with expectationvalue of e.1 normalizedto a delta function,

(e~(k)e(k’)) = 8
3(k — k’) , (18.25)

the expressionfor the energydensitybecomes

Pg = Jd3k ~ h2(k)= ~ Jdk k4h2(k). - (18.26)

Hence,the logarithmic spectrumis

kdPg(k)Idk = (1 /2G)k2~h(k)2, (18.27)

where ~h(k)2 denotesthe powerspectrum
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‘~h(1~)= k3h(k)2 - (18.28)

Note that a flat logarithmicenergy-densityspectrumof gravitationalradiationrequires5
6(k)

2-~k2. As
we shall see, this spectrumemergesat late times in inflationary universemodelsover a largerangeof
wavenumbers.The stochasticgravitational backgroundradiationfrom cosmicstrings also hasa flat
logarithmicspectrumovera wide bandof wavenumbers[163].In both examples,the resultis connected
to the scale invarianceof the fluctuation generationprocess[164] which also results in a Harrison—
Zel’dovich spectrumof densityperturbations[165].

18.3. Spectrumof gravitational wavesin de Sitterspace

We will first evaluatethespectrumof gravitationalradiationin aneternaldeSitter universe.In order
to calculatethepowerspectrumin gravitationalwaves,we must calculatetheexpectationvalue of the
squareof h in the quantumstateof the systemdenotedby 10). The significant difference between
gravitationalwaves(gravitons)andmassivescalarmatterfields is that the state 0) can be definedto be
the de Sitter invariant vacuumstateof the systemat all times.This meansthat from the pointof view of
someobserver,thereis no graviton productionin de Sitterspace.

We define the state 10) by setting F(k
771) = 1 in the basic expansion(18.21). In this case, the

operatorsb~andb~arethecreationand annihilationoperatorsfor gravitons.In particular,b~JO) = 0

for all k. At this point, the two-point function can be calculatedexplicitly,

31
2H2 k h 2 sin(k hr h) dk h

(OIh’,.(x)h,’(x + r)J0)= IT2F f [i + (~) I k~r~ f~. (18.29)

where thesubscriptph standsfor physicalquantities.In particular,k~h= k/a. To obtain this result,the
expansion(1822) is insertedinto the left-hand side of (18.29), the normalization (18.25) for the
polarizationtensoris usedto reducetheexpressionto onek integral,andthe angulark integralis done
explicitly, transformingthe exponentialexp(ik- r) into the window function sin(kPhrPh) /kPhrPh. Since

(0Ih~(x, 77)h(x + r, ~i)I0)= f d3k eik.rh(k)2_j ~ ~ k3h(k)2, (18.30)

we concludethat the powerspectrumin eternalde Sitter spaceis

— (H1IF”2)2[1 + (kPh/H)2] . (18.31)

Figure 18.1 is a sketchof this spectrum.
As is apparentfrom (18.29),thespectrumof gravitationalwavesleadsto aninfrared singularityof

logarithmic type in the correlation function. However, in an eternal de Sitter universe the “flat”
coordinatesusedhere do not cover the whole manifold. In a completecoordinatesystem which
correspondsto the closedde Sitter universe,there is a maximumlength scaleand hencea small k
cutoff. Sincewe aremainly interestedin finite-durationde Sitter periodsofa Friedmanncosmology,we
shallnot furtherdiscussexactde Sitterspaceresults.For moredetailson the gravitonpropagatorin de
Sitterspace,see,e.g., ref. [166].
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18h1

H’ H’~ H~(77,/~~)
>‘ph

Fig. 18.1. Power spectrumof gravitational radiation in eternalde Fig. 18.2. Power spectrum of gravitational radiation at conformal
Sitter space. time ~ during a periodof inflation beginning at ~=

18.4. Spectrumof gravitational wavesin the inflationary universe

Next, we will computethe spectrumof gravitational waves during the inflationary phase of an
inflationaryuniverse.Thesymbol ~ is usedto denotetheconformaltime atthebeginningof theperiod
of exponentialexpansion.Also, the quantumstatelO) of the systemis takento be thevacuumstate
well before thebeginningof the de Sitter phase.The expansionof the field operator~(x, ,~)is again
given by (18.21), and the operatorsb,,~and b~appearingin this expansioncan be interpretedas
creation and annihilation operators relative to the state 10). The coefficient functions F(k) are
determinedby theevolutionbefore ~, andby the junction conditionsat ~,. In particular,Fdependson
thewavenumberk, in contrastto thecaseof eternalde Sitterspaceandcan beexpressedasa function
of k771. Modeswith k77,> 1 areinsidethe Hubble radius at the beginningof the de Sitter phase,those
with k771 < 1 are outside.

For k771 4 1, the form of F(k771) is determinedentirelyby the evolutionbeforethe de Sitterphase,
while modeswith k’q1 a-i do not dependsignificantly on the evolution before the de Sitter phase.
Hence,

F(k771)=1+0(1/k771) for k771a1. (18.32)

We choosea state10) without infrared divergences.Hence,

as k771—~0. (18.33)

Figure 18.2 is a sketch of the resulting spectrumfor 6~which, as before,can be readoff from the

two-point function
31

2H2 dk sin(k r ) k 2 k 2
(0I/~,(x,

77)h(x+r,n)IO)= i~
2FJ ~ ~ F(f ~ [i+ (-#) ] (18.34)

Finally, we shall computethespectrumof gravitationalwavesat late times, long after the endof a
finite length deSitter phase.The key point is that thegraviton vacuumstateis different in thede Sitter
phaseand in the post-inflationaryperiod.Therefore,the statewhich smoothlymatchesto the de Sitter
vacuumstate is seenin the late time period as a statecontaining much larger gravitationalwave
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perturbationsthan the minimal vacuum quantum fluctuations. This result can be interpretedas
productionof gravitonsduring the phasetransition.

To simplify the calculations,weshall consideronly thecaseX = 0. The time L~tdSis the durationof
the de Sitter phase.For generala(77), the asymptoticforms of the solutionof the momentum-mode
evolution equationswhich follow from (18.7) are

hf~~1k C2,,Jd77Ii2(7l)), k7741, (1835)
~G~,(k)i’(Clksink77+C2,,coskfl), k’qa-’l.

Note thatat late timesi = F”
2a a since F 1. In turn, this follows sinceat late times R is small,and

thusthe correctionsto the Einsteinactionfrom higher-derivativetermsarenegligible.On scalessmaller
thantheHubble radius,thesolutionsaredampedperiodicoscillationsin conformaltime 77; whereason
scaleslarger than H’, the dominant mode is constantin time. The coefficients C,,,, and C

2,, are
determinedby the de Sitter phaseresults and by the junction conditions at the time of the phase
transition. Considerfirst scaleswhich crosstheHubble radiusduring the inflationary phase,i.e.,

Hexp(—H i~tds)‘~ kPh 411, (18.36)

wherekph is the physicalwavenumberat the endof inflation. In this case,the powerspectrum~~has
constantamplitude—(lH)

21Fat theendof inflation. In order to calculatethelate time powerspectrum,
we shall take the standardFriedmanncosmologyin which the universeis radiation-dominatedand
a(t) -= i”2 from theendof inflation at time t

1 -= i0~ s until the time i’eq of equalmatter andradiation
(teq 1011 s) after which the universebecomesdominatedby cold matter and a(t) -~t

213.

Combining the resultsof fig. 18.2 and (18.35) it follows that on length scalesk> k,, which were
smaller than the Hubble radius at the beginningof inflation [k

1correspondsto the lower bound in
(18.35)] the powerspectrumremainsconstantif the scaleis largerthan the presentHubble radius. If
the scalehasenteredthe Hubbleradiusafter teq~ the spectrumô6 scalesas k

2, whereason scalesthat
enterbefore teq~ oh goesas k1. (Here,k is physicalwavenumberat the presenttime t

0 —3h~10’
7s).

To summarize(see fig. 18.3),

~Hj - ~VF

/ -..x \
toz4(_~Y~2 to(I+z.q1112 x

Fig. 18.3. Powerspectrumof gravitationalradiation in an inflationary universeafter reheating.



V.F. Mukhanovet a!., Theoryofcosmologicalperturbations 309

IF(k)I, 0<k~czk1,

1, k,<k<t~,
106(k)I —(lHIV~iiF

1’2) (t
0k)

2 , t~’< k< t~(1+ Zeq)1’2 ‘ (18.37)

(t
0k)z~’

2, (1 + Zeq)”2ti;~1< k< t~’z~”4(t
0/t,)”

2

where Zeq ~ is the redshiftat teq• ThefunctionF(k) reflectsthe ambiguityon very largewavelengths
which were outsidethe Hubble radius at t,, and for which thepower spectrumis determinedby the
pre-inflationaryevolution.

For most physicalquestions,only the powerspectrumfor k> t~ is relevant. Fromthe discussion
following (18.28) we see that the logarithmic energy spectrumin gravitational waves is flat for
k> z~2t~’.This is an interestingpredictionof inflationary universemodels.

Note that in inflationary universemodels in R2 gravity, f(R) = R — (1 /6M2)R2. As discussedin
chapter7, during the de Sitter phaseRa M. Hence,

F(R) — — ~R/M2= 4(HIM)2. (18.38)

In this case,the intrinsic amplitudeof Oh in (1836)is

— lM/2-zrV~. (18.39)

For a largemassparameter(1M— 10-6), thegravity wavebackgroundis in the rangeof what could be
observedin plannedgravitywavedetectors[167].The comparisonbetweenthepredictedspectrumof
gravitationalwavesand observationallimits is given in fig. 18.4. In this figure, the fraction 12

6~(A)of
thecritical densityin gravitationalradiationis comparedwith someplannedand futuredetectorlimits.

0 •
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Fig. 18.4. Thefraction‘
2~~(A) of the critical energydensity in gravitationalradiationper octaveasafunctionof thewavelengthA divided by the

Hubble radius. The prediction from inflation with lM — 10_6 is comparedwith the sensitivitiesof the LIGO gravitational wave detectors
(CALTECH—MIT experiment)andof theproposedlaserinterferometerin space.
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The quantity flGw(A) is obtainedby inserting the spectrum(18.37) into (18.27) and dividing by the
critical density.

Note that in modelsof extendedinflation [1111,thereis an extracontributionto the gravity wave
backgroundwhich comesfrom bubblewall collisions [168].The spectralshapeof that contribution is
very different from the componentdiscussedhere.

18.5. Spectrumofgravitational wavesin doubleinflation models

In manyscenariosof thevery earlyuniversethereareseveralinflationaryphases[162].This property
is rathergenericfor modelswith two ormorescalarfields. Herewe focuson a model of double inflation
andaskif thereareobservationalpredictionswhich arespecific to this model.Sincegravitationalwaves
interactonly weakly with matter,it is convenientto look for featuresspecific to doubleinflation in the
spectrumof gravitational waves. The specific predictionsfor scalar metric perturbationswill be
consideredin the following chapter.This sectionis basedmainly on the recentwork of ref. [161].

Let us considerthedoubleinflation model in which theHubbleparameterevolvesassketchedin fig.
18.5, i.e.,

111, a<a
1,

H(a) = H,(a1/a)”, a, <a<a2, (18.40)
~H2

wheren is a constantwhich specifiesthe equationof state in the interval a1 <a < a2 betweenthe two
periods of inflation. If the universe is radiation-dominatedduring this phasethen n = 2, whereas
n = 3/2 if the equationof statecorrespondsto dust-like matter.

Since our main interest is the qualitativephysical results, we will only considerthe asymptotic
solutionsof theequationof motion for gravitationalwaves.For a moredetailedanalysisseeref. [161].
The modeequationfor gravitationalperturbationsin a ‘K =0 universeis [see(18.7) and (18.24)]

h +2(a’/a)h~+k
2hk=0, h~nsh(k,,j)- (18.41)

As seenin (18.34), the generalform of the solution of (18.41) is

hk~—Cl,,+C
2,~f~4 (18.42)

for long-wavelengthgravitationalwaves(1k71I ~ 1), and

H

a1 o~

Fig. 18.5. The time dependenceof theHubble parameterin thedouble inflation model of (18.40).
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hk _ (l\/k) e11” (18.43)

for short-wavelengthgravitationalwaves (JknI a~1) with the quantuminitial conditions discussedin
section18.3.

Using the junction conditionsat the time
71k = —1 whenthe gravitationalwavewith given k crosses

the Hubbleradius,andneglectingthe decayingmodein (18.42), it follows that theamplitudeof h,, for
long-wavelengthgravitationalwaveswhich were initially inside the Hubble radius is

hk AkH1/k
3’2, (18.44)

whereAk is a numericalconstantof the orderunity.
The specialfeatureof doubleinflation is that someof the scaleswhich leavethe Hubbleradiuslate in

the first period of inflation reenteragainin the intermediateperioda
1 <a < a2 before the onsetof the

secondinflationary phase.This is illustrated in fig. 18.6. Thus, afterreenteringthe Hubble radius,the
correspondingwaveswill begin to oscillateagain. From fig. 18.6 it is obviousthat only gravitational
wavesin the wavelengthinterval

H2a2nsk2<k<k,nsH,a, (18.45)

will experiencean intermediateoscillating phase.
Let us denoteby ~ the value of the scalefactorwhen the scalek [asssumedto lie in the interval

(18.45)]reentersthe Hubble radius,and by a~the value of a when it exits againduring the second
periodof inflation. Taking into accountthat for a1 <a < a2 whenH — a” the Hubbleradiusincreases
as

H1~.-t_~J~_~an, (18.46)

oneimmediatelyobtains

a~’~(H,/k)”~”’~a~”~- (18.47)

Sincethevalueof hk at the time of reentryis given by (18.43)with H = H,, the evolutionof hk during

,,..H’(a)

~i 02 a
Fig. 18.6. A comovingscalek can leavethe Hubbleradiusduringthefirst period of inflation, reenterin thetime interval betweena1 anda2, and
leavefor asecondtime during thesecondperiodof inflation.
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the periodof oscillation is describedby

hk = Ak(H,lIk312)(a~’~Ia)cos[k(
77 — 77(1)) + a] , (18.48)

wherea is independentof k (a very important fact.). Equation (18.48) is valid for k valuesin the

interval (18.45),and for fixed k in the rangea~<a <ar, where
a~

2~= k/H
2. (18.49)

After leaving the Hubble radius at a = a~, the value of hk is onceagain constant.Hence the
nondecayingmodeof h,, is

(2)

ak
H11 a~’~ / I da

hk~Ak~—~cos~kj—~+a
k (1)

ak

H2! /Ha \n/(n_1) / n k
cosI\—i~-——+f3). (18.50)

Thus, at the endof the secondperiod of inflation, the power spectrumin gravitationalwavesis as
follows:

H11, H,a14k4112a2,

= (h~k
3)~2H

2l(~’) cos(__~_1. + ) , H2a24k 4 H,a, (18.51)

H2l, H,a,4k4H2af,

wherea1 and a~denotethevalueof the scalefactorat thebeginningof the first andendof thesecond
period of inflation, respectively.Note that for H2a2 4k 4 H,a,, the amplitudeof 81 is modulatedby
Icos[n(n — i)’k/H2a2 + 1311 (see fig. 18.7).Thus, a characteristicsignalfor doubleinflation would be a

I8~I

:::~i~~~
H2a2 H1a1

Fig. 18.7. Powerspectrum5~ h of gravitationalradiationin thedoubleinflation modelof (18.40)with theratioof HubbleconstantsH,IH, = 10.
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power spectrumof gravitationalwaveswhich is flat for largeand small valuesof k andwhich manifests
the characteristicmodulationanddecreasein amplitudesketchedin fig. 18.7. The rate at which the
amplitudedecreaseswould give information abouttheequationof statein thephasebetweenthe two
inflationary periods.

Note that (18.51) is the power spectrumat the endof inflation. In order to obtain the power
spectrumatlate times in the subsequentFriedmanncosmology,thesamecalculationsasat the endof
section3.4 must be done. Note also that in order for the range of k valueswith nontrivial power
spectrumto be observable,the secondperiod of inflation must last less than 60 H~~. This involves
significant fine tuning of the theory.

19. Entropyperturbations

19.1. Genera!remarks

The perturbationsconsideredin mostof partsI andII havebeenadiabaticperturbations,for which
the densityfluctuationis proportionalto the pressureperturbation[see(5.3)]. Typically, only adiabatic
perturbationsarisein models with a single componentfor matter. In theorieswith more thanone
mattercomponent,other types of perturbationsmay develop. In fact, the fluctuationswill only be
adiabaticif the perturbationsin the differentcomponentsof matter areproportional. If they are not,
then, in general,entropyperturbationswill result, in which case the density fluctuation dependsnot
only on thepressurefluctuation. An isocurvatureperturbationis a specialcaseof entropyperturbations
in which the energydensityandhencethe curvatureare spaceindependentat someinitial momentin
time. On scaleslarger thanthe Hubble radius,entropyand adiabaticperturbationsare decoupledby
causality (i.e., an entropy perturbationcannot generatean adiabatic fluctuation). However, on
sub-Hubbleradiusscales,entropyperturbationsinducean adiabaticcomponent.

In thecontextof cosmologicalmodelswith hydrodynamicalmatter,entropyperturbationsariseif the
fluctuationsin cold matterandradiationarenotproportional.Specific modelsfor theirformationhave
beendiscussed,e.g.,in refs. [169,74, 85]. They receivedspecialconsiderationsincetheir growthrateis
different from that of adiabaticperturbationson scaleslargerthantheHubble radius(seesection5.4)
[6]. Hence,different powerspectracan be generated.

In the context of modern cosmological models in which matter is describedby fields, entropy
perturbationsarise quite generally if more than one scalar field contributessubstantially to the
energy—momentumtensor. Inflationaryuniversemodelswith axion fields providea good example[74].
A scalarfield x generatesthe inflationary periodwhereasfluctuationsin the axion field ‘Pa developinto
entropyperturbations.It wasfirst believed[74] thatin thesemodelsthe adiabaticperturbationswould
be the dominant ones. However, it was later realized [76,75] that in many cases the entropy
perturbationscould in fact dominate. An important reasonfor the increasinginterest in entropy
perturbationsis thepossibility of generatingnonflatspectrain thesemodels[76—78].In addition,a few
yearsagoPeebles[170]initiated adetailedstudy of structureformation in a particularmodel denoted
the “minimal isocurvaturemodel”. Recently, a mechanismwhich yields the requiredspectrumof
primordial perturbationswas suggested[171,172].

In the pastfew years,the kindsof spectrawhich can begeneratedin modelswith severalscalarfields
havebeenstudiedextensively[79].Theresultsdependon theevolutionof the fields in the model andin
particularon the couplingbetweenthe fields. In the following, we shall illustratethe basicmechanism
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for generatingnonflatspectra.The analysisis basedon ref. [80].Weconcludethis sectionby noting that
the evolution of entropyperturbationshasalso beenstudiedby Kodama andSasaki[72,86] using a
gaugeinvariant formalism.The quantumgenerationof axionfluctuationswas investigatedin ref. [173]
using similar methods.It is also worth noting that interesting limits on the energyscale at which
inflation takesplacein axion modelshavebeenderivedby Lyth [174].

19.2. A modelfor entropyperturbations

We considera model consistingof two or more scalarfields. The field x will be the inflaton. It is
assumedto dominatethe energy—momentumtensor~ at very early times. It simplifies the following
analysisto assumethat the potentialV( x) and the initial stateof x are chosensuchthat a period of
exactde Sitterexpansionresults,i.e., the scalefactora(t) increasesas a(t) — exp(Ht), whereH is the
Hubbleconstant.Theotherscalarfields aredenoted‘p~ i = 0, 1,. . . We assumethat only oneof these
fields, (0) ~,becomesimportantat later times in influencing T,LV. Note, however, that the other
fields may contributesignificantly to the interaction terms in the equationof motion for cp.

The action for our model is given by

S = f ~ — V(~)+ ~ — ~m~’p2— V
1(x,’P,. - .)]~ d~x, (19.1)

where V, is the interactionLagrangian.The first two terms in (19.1) are simply the action for the
inflaton x. Thethird andfourth termsspecify theactionof ‘P in theabsenceof interactionterms.In the
casewhere‘P is the axion, m~= 0 at temperatureshigherthanthe scaleof confinement.In themodel
given by (19.1), fluctuations in x induce adiabaticperturbations.Their amplitude can be made
arbitrarily small by reducing the coupling constantsin V(~). Hence, we shall neglect adiabatic
perturbationsin the following discussion.The field cp also inducesfluctuations.However, if the energy
densitycontributedby ‘p is small comparedto V(x) during the periodof inflation, its effect on metric
andtemperatureperturbationsis negligible during and immediatelyafterinflation. Hence,only entropy
perturbationswill be induced.

19.3. Evolution of the homogeneousfield

Before discussingthe spectrumof entropyperturbations,we will determinethe evolutionof the
homogeneouscomponentdo of the field ‘p. On a given background,theevolution is definednot only by
the scalarfield do but also by other typesof matterfields (e.g.,x)- This is the main differenceof the
caseunderconsiderationwith the modelof a homogeneousuniversewhich was consideredin chapter5.
The readeronly interestedin fluctuationsmay skip to the final result, eq. (19.14), and proceedfrom
there.

The equationof motion for do becomes

- —2
do + 3H’p0 — meff(t)’Po = 0, (19.2)

wherethe effective mass1~ett(t) is determinedby

rneec(t)= m~+ ‘P~’(O/O’P)V1(X, (p,. . .). (19.3)
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We shallsolve (19.2)for thecasewheniñeff is constant.A particularexampleis whenthe couplingof p
to other fields is only importantduring some finite time interval. In this case,outsidethe interval
meff = m0.

To solve(19.2) [withi~eff(t)= m0] it is convenientto usea(t) as temporalvariableand to introduce
therescaledfield

u = H”
2a2’p

0. (19.4)

In termsof u, eq. (19.2) takesthe form

d
2u ( m~ 1 d2 1/2 2’\

+ ~Jf2~2 — H”2a2 ~2 (H a = 0. (19.5)

During theperiod of inflation H is constantand (19.5) becomes

d2ulda2+ (m~/H2— 2)(1Ia2)u = 0, (19.6)

thesolutionsof which are

1/2±w 9 2 2 1/2

u—a , v=(g —m
0IH ) . (19.7a,b

Thus,from (19.4) it follows that

— a
3’2~. (19.8)

Note that if m~/H2>9/4, thenv is imaginaryand ‘Po(t) containsan oscillatingfactor,

do a3’2(±iIvI ln a). (19.9)

On the other hand, if m~4 H2, then to a good approximationdo const., and in this case,during
inflation the energydensityin ‘p remainsconstant.In particular,this appliesto axion models.

After the end of inflation, H is no longer constantand hence(19.5) mustbe solvedin a different
way. It is, however,still possibleto solve the equationof motion (19.5) in the interestingasymptotic
limits. If m~4 H2, the first term in the bracketsin (19.5) can be neglected.Thus, one obtains the
solution

u = C,H”2a2 + C
2H”

2a2 fda H~a4, (19.10)

where C, and C
2 arethe two integrationconstants.The dominantmodeyields ‘p~— const.

Once H(a) dropswell below m0, the secondterm in the bracketsin (19.5) can be neglected.If
H~ a “ (a behaviorwhich arisesin most interestingapplications),then(19.5) becomes

d
2ulda2+ ~ = 0, (19.11)
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whereH0 anda0 areconstants.The solutionsof (19.11)can be expressedin termsof Besselfunctions
[175],

1/2 n n 1/2

u a J1,2~((m0InH0a0)a) = a J,,2~(m0InH(a)), (19.12)

whereJ~,,standsfor any of the Bessel (Hankel) functions of order p. Using the asymptotic large-
argumentform for the Besselfunctions [175]we obtain

u-- H”
2a”2 sin[m

0InH(a) + a], m0InH(a)~ 1, (19.13)

where a is somephaseconstant,and hence

do a
3’2 sin[m

0/nH(a) + a] - (19.14)

In conclusion,our discussionhasshown (seesection19.2) that while m04 H(a), the nondecaying
modeof do is constantboth during and afterinflation. Hence,theenergydensityin ‘P is constant.Even
if during inflation thecontributionof ‘P to ~ is negligible,it may cometo dominateat somelatertime
after the end of inflation. Note that this conclusion does not dependon what determinesthe
backgroundevolution. If the field ‘P itself determinesthe evolution of the background,then the
conditionm~4 H

2(a) for which do — const.(andhenceits equationof stateis p — r) takesthe form
li~a~1, since in this caseH2(a) l2m~ço2The above is the well knownconditionfor chaotic inflation
[100].

The secondconclusionwhich can be drawn from the preceding discussionof the background
evolutionis that if m~a~H2(a), then[asfollows from (19.9) and (19.14)] do oscillateswith anamplitude
decreasingas a3’2. Hence,the energydensityin do decreasesasa3, whichis the casefor coldmatter
with an equationof statep = 0. Note that since the backgroundenergydensityof the ultrarelativistic
matterdecreasesasa4(t), the p field maystill cometo dominatetheenergydensityat latetimes. Thus,
in a hydrodynamicalapproachwe canconsiderthe homogeneousscalarfield do on a givenbackground
as vacuum-likematter(p —e) if H~(a)< m~,whereasif H~(a)> m~’thenit behavesasdust-like
matter(p=~O).

Takinginto accountthe aboveconsiderations,it follows that in themodeldiscussedin this chapter,
in which two scalarfields x and ‘P dominatethe evolution, the materialcontentof the universeafter
inflation can be well approximatedas consistingof one ultra-relativistic medium (radiation) which
appearsas a result of the decayof the scalarfield .~‘ and one cold componentcorrespondingto the
oscillating quasihomogeneousfield ‘P. Then, to analyzethe evolution of entropyperturbationsgener-
atedby fluctuationsin d~the resultsobtainedin section5.4 can be applied.

19.4. Perturbations

In order to calculatethe spectrumof entropyperturbations,we needto know the initial value of

~m1’rtm’ the relative fluctuationof the energydensityin the cold-mattercomponent.Sincein our model
the field ‘P acts as cold matter,the relativeperturbationis

~ (gi) ~ (gi) F~~o(~t)1 — - - . (gi) 2

— eg, — L 0 Jq~ —. do do ‘P 1fl
0d0 ‘P 19 15)

EmE~ (T~ — ~(çb~+m~ço~)
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where the subscript‘P denotesthecontribution of the field ‘P to the respectivequantity. In (19.15),
contributionsfrom the interactionLagrangianV1 in (19.1)wereneglectedsincethey areby assumption
negligible. It is possible to further approximate(19.15). Because,as follows from (19.8), during
inflation

(ii — ~)Hp0— ~(m0IH)m0’p04 m~ço0,m04 H, (19.16)

andsinceat the endof inflation

—‘ ~~(~I)/ — ~(EcIEx)~(~i)/~ 4 ~(gi)/~ (19.17)

(using r~4 e~at the end of inflation), we canneglectall but the last termin both the numeratorand

denominatorof (19.15)and obtain
2b’P~/d0, ‘P 0, (19.18a,b)

for scaleswhich areoutsidetheHubble radiusat theendof inflation. Equations(19.18a,b) hold atthe
end of inflation. However, by continuity at the time of the transition, the equationsare also true
immediatelyafterinflation andcanbe usedasinitial conditionsfor theevolutionin thepost-inflationary
phase.Note that in the first stepof (19.17)we haveused(5.55)which relatesthemetric potential‘P to
thegauge-invariantdensityperturbationon scaleslargerthanthe Hubble radius.

Equations(19.18a,b) demonstratethat fluctuationsin the scalarfield ‘p generateentropyperturba-
tions. Their evolution in time is shown in fig. 5.2. By (19.18a), the determinationof the spectrumof
entropyperturbationshasbeenreducedto theevaluationof thespectrumof fluctuationsin ‘p attheend
of inflation. The equationof motion for ~ wasderivedin chapter6 [see(6.46)]. Since [asfollows
from (19.12)] themetric potential ‘P canbe neglected,(6.46) takesthe form

+ 311~(gi) — a
2V2 b~(~I) + mCff(t)~~(gi) = 0, (19.19)

where theeffective massmeff(t) [whichin generalcan be different from the mass?~ett(t)appearingin

thebackgroundequation(19.2)] is
meff(t)= m~+ (02/02’p)V,(~(a),‘p(a),. . . , a(t)). (19.20)

The interactionterm V
1 is crucial in determiningthespectrumof ~ Different time dependenceof

theeffectivemassmeff(t)cangiveriseto nontrivial spectra(seerefs. [79,80]). In the following, weshall
omit the superscriptgi for thegaugeinvariantscalarfield perturbation.

Our goal is to study the different typesof spectrawhich canbe generatedby appropriatechoicesof
meff(t).As initial fluctuationsfor &p we will considerthequantumfluctuationsdiscussedin part II of
this review. Theoperator&~correspondingto 8ç canbeexpandedin termsofcreationandannihilation
operatorsas follows:

1. ~
8ç(x, t) = I 3/2 [&p~(t)e’ a,~+ &dk(t) e ‘~k] (19.21)

v2j (
21T)
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As discussedin chapter9 [seealso(13.10)and(13.11)], theroot-squareperturbationsaregiven by the

correlationfunction

(0J~(x,t) 6~(x+ x,t)JO)= J~ sin(kr) O,,(t)J2, (19.22)

where the powerspectrumI8,,(t)I is

I5,,(t)I = (1 /21r)Ibd,,(t)Ik3’2 , (19.23)

and completelycharacterizesthe fluctuationson a comoving length scaleA -- 1/kat time t. The mode
functionb’p,,(t) obeys (19.19) with V2 replacedby k2.

The initial conditionsfor ~p,,(t) which correspondto choosingthe quantumstateasthevacuumstate
at time t~are (seechapter11)

= [1/a(tjk’’2]M(k/Ha(t~)) , 8ço,,(t~)= [ik”2/a(t
1)]N(kIHa(t,)) , (19.24)

where the functionsM and N obey the normalization condition (11.27) andhave the asymptotic
behaviorIMI—~1and INI—~iwhenk>)’Ha(t1).

If meff andH areconstant,thenthe solutionof (19.19)is given in termsof Besselfunctions(ascan
be seendirectly by introducing the variable u = a

3’2c0,, andworking in conformal time),

~p,,(t)= a3’2[A,,L~(k/Ha) + BkJP(kIHa)] = ~p,,(a), (19.25)

= (~— m~/H2)”2- (19.26)

The coefficients Ak and B,, are fixed by the initial conditions (19.24). The asymptoticlimits for the
solutions(19.25)canbe obtainedby combiningtheasymptoticlimits of theBesselfunctions[1751with
the initial conditions(19.24). We obtain

6~P,,(a) (1 Iak”2) exp{i(k/H)[1 Ia — 1 /a(t~)]}, ka~Ha, (19.27)

~d,,(a) H(Ha)_3/2(k/Ha)_v, Ha ~ k ~‘- Ha(tI). (19.28)

To obtain (19.28), we match the small- and large-argumentasymptotic solutions at the time of
Hubble-radiuscrossing,i.e., whenk = Ha. Equations(19.27)and (19.28)will be usedto calculatethe
spectrumof perturbationsin variousexamples.

If theeffective massmeff(t) is constantduring the entireperiod of inflation, then [asfollows from
(19.26),(19.27)and (19.23)] at the time t~correspondingto the end of inflation,

1 IkPh, kph>H,
~k(tr)I 21T ~H(kph/H)3/2~, H~ k

0h ~‘ Ha(tj)Ia(tr), (19.29)
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wherekPh = k/a is the physical wavenumber.If m~t4 H2, thenthespectrumis nearlyflat on all scales
which haveleft the Hubble radiusduring inflation.

We concludethat fluctuationsin ascalarfield with an effectivemassmCff which is constantin time
andsatisfiesrneff4H generateentropyperturbationswith a nearlyscale-invariantspectrum.In orderto
obtain derivationsfrom such a flat spectrumit is necessaryto considermodelswith nontrivial time
dependenceof meff. In the following we shall demonstratesomeexamplesof nonflatspectrawhich can
be obtained.Note that many modelswith scale-invariantisocurvaturespectraproducea large-angle
microwaveanisotropyin excessof observationalbounds[176].

19.5. Mountainand valley spectra

To illustratethe basicmechanismwhich leadsto nontrivial spectra,considera modelin whichat time
t, theeffective massjumpsfrom someinitial valuem, to somefinal valuem

2with both massessmaller
than~H.

In eachof the time intervalst~< t < t, and t1 <t < ti., thesolutionsfor ~p,, aregivenby (19.25)with
the respectivevaluesof v. Short-waveperturbationsare alwaysdescribedby (19.27).Perturbationson
scaleswhich are larger thanthe Hubbleradiusat t = t, aregiven by

&dk(t) = A~’~a”
3’2+ B~’~a~’i3’2, (19.30)

with j = 1, 2 in the two time intervals. By matching&p,, and bço,, at t = t, we obtain

A~2~[(v, + v
2)/2v2]A~,’~. (19.31)

Thus, if v2 41 the amplitudeof the dominantmode is amplified. This leadsto a spectrumin which
modeswhich leave the Hubble radiusbefore t, havea largeramplitudethanthosewhich leaveafter t,

(see fig. 19.1). In addition, the short-wavelengthpartof the spectrumwill not be scale-invariant.
Let usnowconsideran examplein which the massevolvesas in fig. 19.2 (solid line). Froman initial

value m, with rn,, I 4 H the massjumpsto a largervaluem2 at a time t, [thescalefactorat this time is
a(t1) a,]. At a latertime t2, thequantity~ abruptlydecreasesto a negativevaluem~,andfinally at
time t3 it returnsto a valuem~with 1m414 H. Thescalefactorat time t2 (t3) is a2 (a3). In this case,the
junction conditionscanbe appliedrepeatedlyat a,, a2 anda3, following the procedureexplainedin the
previousexample.Forwavelengthswhich leavethe Hubbleradiusbetweena, anda2, thespectrumwill

1098k m•ff

9 H24 _______

0 ---J j~~’~---~
a

H~a~(t
1) x

Fig. 19.1. Thepowerspectrumin amodel in whichtheeffectivemass Fig. 19.2. Thetime dependenceof the effective massin toy models
jumps from somesmall initial value m, to a final value m2 with for mountain(solid line) andvalley (dashedline) spectra.
1v21 -~ 1.
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rise ask increases,whereason scaleswhich leavebetweena2 anda3, thespectrumwill decrease.If the
parametersare fine-tuned,the amplitudesof I 8,, I on scaleswhich leave theHubble radiusbeforea, or
after a3 can be madeequal. Onepossible fine tuning which achievesthis is ~2 + = 3 togetherwith
a3Ia2 = a2/a,. The resultingspectrumis

A(Ha,)P1~2(Ha2Y2~3(Ha3Y3~V4k
3’2~P1, Ha(t

1) 4k 4 Ha1

B(Ha2)V23(Ha3)P3~’4k
3’2~2, Ha, 4k 4 Ha

2
IO,,H ~i932C(Ha3)~3~4k

3’2~3 Ha
2 4k4 Ha3,

Dk
3’2”~, Ha

3 4k 4 Ha(t1),

whereA,B, C andD areconstantsof orderunity [whichincludethe jumpsin thespectrumanalogous
to (19.1) in the previousexample]. This spectrumis sketchedin fig. 19.3 (solid line). It is called a
“mountain spectrum”.

To obtain a “valley spectrum”we takeamodel in which ~ first decreasesto somenegativevalue
andlater jumps to a positive value largerthanthe initial one, asillustratedin fig. 19.2 (dashedline).
The resulting spectrumis sketchedin fig. 19.3 (dashedline).

19.6. Suppressionof long-wavelengthperturbations

By introducinga periodin the evolutionof theuniversewith m~ff(t)>~H
2 andby tuningparameters

carefully, it is possibleto obtain a suppressionof the long-wavelengthpart of cosmologicalperturbation
spectra.This is of potential physical relevancewhenconstructingfluctuationspectrafrom inflationary
universemodelswhich give a lot of poweron scalesof 10—100Mpc buthavelittle poweron the scales
which dominatethe microwavebackground.

Letus considera modelin which m~ff(t)is almostzerofor a < a, anda> a
2 butgreaterthan~H

2 for
a, s a � a

2 (seefig. 19.4).A nonzeromassis requiredto ensurethat theenergydensityin thedfield is
dominatedby the homogeneouscomponentof d. This, in turn, is necessaryin order that our basic
formula(19.18a) for entropyperturbationsbevalid. Thereis, obviously,also anupperboundon m~ff(t)
which stemsfrom requiring that ~pdoesnot dominatethe energydensity. A minimal requirementis
meff4 1 / I sincethe energydensityin the inflatonx is = H212 and theenergydensityin p is at least
Sq,> ~meff(t)~2 wheretheminimal valueof ‘P from quantumfluctuations[177]is of the orderH.

2

log&~ ~~-H
2 -

I I

H~a~H’a~ H~a1 a
1 a2

Fig. 19.3. The power spectrain the two models defined by the Fig. 19.4. Thetime dependenceoftheeffectivemassin thetoy model
time-dependenteffectivemassesof fig. 19.2. for suppressionof the long-wavelengthfluctuations.
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181

H~a~H’a~ x

Fig. 19.5. The powerspectrumin themodel with effective masssketchedin fig. 19.4.

The evolutionof ~‘P,,is determinedby (19.27)and (19.28).The crucial differencecomparedto the
previousexamplesis that for a1 <a < a2, thevalue v is imaginary.Hence,for perturbationswhich are
outsidethe Hubble radius at a = a,, we have

&‘p,,(a)=const; a<a,, a>a2, (19.33)

~dk(a)~Aka
312sm(IpIlna + a,,), a

1 <a<a2 (19.34)

I ~I= (m~IH
2— 9)1/2 - (19.35)

where a~is a phase. Thus, perturbationswhich are outsidethe Hubble radius at a = a, oscillate in
amplitude betweena, and a

2. This can lead to a suppressionof the long-wavelengthpart of the
spectrum.Scaleswhich leavethe Hubble radiusbetweena, anda2 experiencea partial damping.The
preciseform of the spectrumfollows from the above solutions, taking into account the junction
conditions.The result is

(a,/a2)
312sin[a+ IvIln(a

2/a1)] , Ha(t,)4k4 Ha1,

o,,I— (k/Ha2)
312[cosh(irIvI)—cos(/3+2IvIlnk)]u2 , Ha,,4k4Ha

2, (19.36)
1 , Ha24k4Ha(tr),

whereaand f3 areconstantsof orderunity. The spectrumis sketchedin fig. 19.5. Thereare evidently
two effects which contribute to the suppressionof the long-wavelengthpart of the spectrum.First,
betweena, and a2 the amplitudeof ~iç,,decreasesas a

312 for scalesoutsidetheHubble radius,leading
to the suppressionfactor (a,/a

2)
3~.Second,thereis a resonanceeffect which may leadto additional

suppressionif the argumentof the sine function is close to irn for someintegern.

19.7. Modulationof the spectrumin doubleinflation models

Let usnowreturnto the doubleinflation [162]modelof section18.5 in which the Hubbleparameter
decreasesfrom an initial valueH

1 for a < a1 to a final value H2 for a> a2 [see(18.40)].For thesakeof
simplicity we assumeI meff(t)I 4 ~H. In this case,theequationof motion (19.19)for &p,, is identical to
theequation(18.41)for gravitationalwaves.Thus, theanalysisof section18.5 appliesand it is possible
to immediatelywrite down thespectrumof perturbationsof ‘p (seealso ref. [178]). From (18.50) and
(18.51) it follows that
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H~l, H1a,4k4H2a2,

I8kI H2l(H1a1Ik)~Icos{[nkI(n— 1)H2a2] + P}I , H2a24k 4 H,a1 (19.37)

I~I2l , H,a,4k4H2a~,

where13 is a constantphaseanda~anda~arethevaluesof thescalefactor atthebeginningof the first
andtheendof thesecondperiodof inflation, respectively.For a sketchof this spectrumseefig. 18.7.

The modulationof the spectrumfor k values betweenH2a2 and H,a, is similar to Sakharov
modulation[7].The slopeof thespectrumin this intervaldependson theequationof statein the time
intervalbetweenthe two periodsof inflation, whereasthe frequencyof the modulationdependson the
ratio of the Hubble parameters.For example,if the universe is matter-dominatedbetweena1 and a2
(i.e., n = ~),thenif H11H2 = 20, the spectrumhasfour distinct maxima.

Note that the effect discussedin this sectioncan arisefor both adiabaticandentropyperturbations.
However,for thedistinctiveeffects to haverelevanceon cosmologicallyinterestingscales,extremefine
tuningof themodel is required.Generically,thenontrivial featuresin thespectrumwill ariseon scales
muchlarger thanpresentHubbleradius.This criticism appliesnot only to the doubleinflation model,
but to all modelswith particularfeaturesin thespectrum.In order for thesefeaturesto ariseon scales
of cosmologicalinterest,the modelsmust be fine-tunedsuchthat they occurabout50 expansiontimes
before the end of the final period of inflation.

Note that nontrivial spectrawith mountains and valleys can also be obtained from adiabatic
perturbations.In fact, we canfix an arbitraryspectrumandconstructa family of potentialsV(tp) which
leadsto sucha spectrum[179].It is also possibleto generatenon-Gaussianfluctuationsin modelswith
nontrivial potentials[180](see also ref. [181]for a discussionof non-Gaussianinhomogeneitiesfrom
higher-orderpeturbativeeffects). However,this procedureis extremelyunappealingsinceit implies a
completelossof predictability.Wemustconcludeby stressingthat withoutfine-tuningmodels,inflation
will genericallyproducea flat spectrumon scalesof cosmologicalinterest.

20. Statistical fluctuations

Herewe shall investigatehowit is possibleto definestatisticalfluctuationsof theenergydensityin an
expandinguniversewith hydrodynamicalmatterin aconsistentway. Obviously, thedefinition mustbe
independentof the gaugeusedin the analysis.To be specific, a universedominatedby radiationwith
equationof statep = r will be considered.In this case,there is no phononcreationand thus the
amplitudeof thestatisticalfluctuationsshouldbeindependentof thetime whentheseperturbationsare
defined.

In the original work by Lifshitz [3], statistical fluctuationswere definedin synchronousgaugeby

(~eIr)(k)— X(k)’’
2 , (20.1)

whereX(k) is thenumberof particlesin a box of radiusk ~.Sincein synchronousgauge,beIc increases
in time as conformaltime 77 on scalesoutsidetheHubble radius,whereasthe numberof particlesper
crossing volume does not, the above definition is not independentof the time when the initial
conditions are set. In addition, this definition is gauge-dependent.Thus, (20.1) does not form a
consistentdefinition. Note that if (as in theoriginal article [3]), the fluctuationsareestablishedat the
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time of nucleardensity,thenthe resulting amplitudeat the presenttime is much smaller thanwhatis
requiredfor galaxy formation, whereasif the Planck time is chosen as the initial time, then the
amplitudeof fluctuationsat late times is much too large.

In the following, we shall usethe quantumtheorydevelopedin part II of the review to providea
consistentdefinition of statisticalfluctuations[63](seeref. [182]for a different analysis).This will be
basedon thegauge-invariantfield v on which thequantizationschemeof chapters10 and 11 wasbased.
In termsof thevariablev, the fact that in a radiation-dominateduniverseno photonsareproducedis
reflectedin theconformalinvarianceof theequationof motion ofthe operator0 associatedwith v [see
(12.20)and (12.22)],

(20.2)

In particular,conformal invarianceimplies that the occupationnumbersn,, do not dependon time.
Our definition of statistical fluctuations statesthat the occupationnumbern~of the mode with

wavevectork is given by the Bose—Einsteindistributionat temperatureT,

= [exp(w/aT) — 11_i , w = k/V~. (20.3)

Note that the right-handside of this equationis time-independent(w is the comovingfrequency).
To find thepowerspectrumof statisticalmetric fluctuations,we calculatethe two-point functionof

the gauge-invariantpotential ‘P in a statewith occupationnumbersgiven by n,,. Recall that the
expansionof 0 in termsof creationand annihilation operatorsis

= 1 f d 3/2 [e v~(77)â~+ e V,,(71)akl - (20.4)

2 (2ir)

From (20.2), it follows that the solutionsfor u,,(ri) are ~1/2 exp(iw~),wherethe normalizationfactor
is a consequenceof the initial conditionsdiscussedafter(11.28). Thus

I I~ ~
— I U 1k 1 ~.i(k-x—wfl)-— + _u1_~)-+ 20 5

u — ~ ~ (2~)3/2 ~ ke a,, e a,, -

Substitutingthe abovemodefunctions into theequation(12.19) for thepowerspectrum6~(77,k) and
multiplying by (2nk + 1)1/2 yields the result

2 2 1/2

I6~(77,k)I = 31/4 ~ [coth(w/2aT)]~’
2(1 + (t)77 ) , (20.6)

wheretheproportionalityz a hasbeenused.Note that the full two-point function (12.4) is multiplied
by 2n,, + 1. Thus, the power spectrumis multiplied by the squareroot.

The power spectrum (20.6) contains both the contributions from vacuum and from statistical
fluctuations. When n~41 [i.e., when A4 (aT)’], quantum fluctuationsdominate,whereaswhen
nk ~- 1 [i.e., A ~- (aT)’], statisticalperturbationsare dominant. Evaluating(20.6) for a scalek at the
time t,,~.(k)whenk entersthe Hubble radius, andexpressingthe result in termsof the numberX of
particlesin a sphereof radiusk~= A,
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.A”—a3T3A3, (20.7)

yields the result

I6~(t~(k),k)I -- (20.8)

From theabove,we can relate thedefinition of statisticalfluctuationsgiven herewith theoriginal one
[3]. Since at the time of Hubble-radluscrossingbE~t)Ic—‘P, our definition implies that inside the
Hubbleradius

(20.9)

On scales inside the Hubble radius, energy-densityperturbations do not grow in the radiation-
dominatedphaseas was shown in section5.3 [seein particulareq. (5.44)]. Also, the leadingterm in
bc/c when expanding in (

77k)~is independentof gauge and equals 8e~Ie.Hence,while being
consistentand gauge-invariant,our definition of statisticalfluctuationsreducesto the naivedefinition,
but only on scalessmallerthanthe Hubble radius.

Finally, we shall show that statistical fluctuationsin models without inflation do not give large
enoughdensityperturbationsfor galaxy formation. The amplitudes6~(k) of energy-densityperturba-
tions in the caseof statisticalandquantumfluctuationsare relatedas follows:

I66 statis(1~)I= (2nk + 1)
112I6~quan

tum(1t)I . (20.10)

Hence,from (12.37)we find

I8Estatis(k)I~kt3~
2°~1”~2. (20.11)

Multiplying the right-handsideof (12.42)by (1 + 2nk~1/2 the following maximalvalueof the amplitude
8~(trec) of energy-densityperturbationsat the time of recombinationcan be derived:

1/2

8E(trec, A) U! ~ (~) (Em!4)~/2(1— c~)< 108, (20.12)

whereA~is the characteristicwavelengthof the microwavebackground,and the othersymbolswere
definedin chapter12. For galaxy formation, an amplitude of 8,, -- i0~ is required.Hence,statistical
fluctuationsin a modelwithout inflation are too small for galaxy formation.

21. Conclusions

In partIII of this review articlewe haveconsideredfour importantphysicalexamplesfor which the
gauge-invariantapproachto cosmologicalperturbationtheory developedin the previoustwo partscan
easily be applied. The four topics were the derivation of the theory of microwave background
anisotropies,the generationand evolution of gravitational radiation, entropy perturbations,and
statisticalfluctuations.
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There are quite obvious advantagesof using the gauge-invariantapproach. For example, the
derivation of the Sachs—Wolfeformula relating densityperturbationsat last scatteringto the CBR
anisotropiesbecomesquite simple. Also, a consistent definition of statistical fluctuationsbecomes
possible.Gravitationalwaveperturbationsaregauge-invariantab initio. However, the analysisof the
generationand evolution of gravitational waves is a straightforwardextensionof the techniques
developedfor scalar metric perturbations.The analysis of entropy perturbationsin chapter 19
demonstratesthat the formalism developedherecan be applied in many physically interestingcases.
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Appendix A. Notation

The appendixis organizedas follows. First we explain somegeneralrules and describethe units,
thenwe definevariableswhich areusedthroughoutthe article. The variablesare alphabetizedand are
divided into four sections:backgroundand perturbedvariablesand Latin and Greek symbols. We
presenttablesA. 1 and A.2 which summarizethemain equationswhich maybe useful when applying
the theory.

A.i. Generalcomments

A.1.1. Basics
Greekindices a, 13, p., ii, etc. run over the four space—timegeneralcoordinatelabels 0, 1, 2, 3 or

t, x, y, z.
Latin indices i, j, k, etc. run over the threespatialcoordinatelabels1,2, 3 or x, y, z.
Einsteinsummationconvention(repeatedindices aresummed)is employedthroughout.
The signaturefor the metric usedthroughoutis + 1, —1, —1, —1.

We usethe sameRiemannand Einstein tensorconventionas in Misneret al. [183].

A.1.2. Units
The units employedthroughoutarec = /i = 1 wherec is the speedof light in vacuum, /1 is Planck’s

constant.
G is Newton’sgravitationalconstant.
The Plancklength is 1 = (~1TG)”2= 4.7 X i0~ cm.



326 V.F. Mukhanoveta!., Theoryofcosmologicalperturbations

TableA.1

Hydrodynamicalmatter.51 = 0, ±1 Scalar-fieldmatter51 = 0 Higher-derivativegravity

Action _J\/9d4x(~~ _~) —Jv’9d~x(~-~_E’~t/(~)l) — l6irG

Metric ds2= a2(s~){(1+ 24,)do2 — 2B!, dx’ do — 1(1 — 2t/i)~’,,+ 2E
1,~]dx’ dx’}

Gauge-invariant “I’ = 4, + (1 Ia)E(B — E’)al’, !P = i/i — (a’/a)(B — E’)
metricvariables

Gauge-invariant be(s)= be+ ej(B— E’)
mattervariables bp~’

1= &p + p~(B— E’) ~ =6~+ g~(B— E’) 6R~”~= hR+ R~(B— E’)
= bu

1 + a(B— E’)1,

Gauge-invariant 4!!’— 351(51(1)+ ‘I”) + 351!!’ = 4irGa
28T?’1° sameasscalar-fieldmatterwith

EoM forperturbations (51(1)+ V”)~= 4irGa2hT~”1° p—~j.~,Y’—sV
a-~i, St’-+X

51!!’ +(251’ + 512)(1 + sr~p’+ j4D]o’ where
— 1”D = —4irGa2bT~~’~’ ) = 1) + (~In F~’2I,3R)8R~~’~

= ‘I’ —(~In F~’2IaR)hR1~’~

(1/a2)[ç~bc1’1’ — ~‘2(1’ + a2V,,, 8c1”11 tT= F’”a, X= a’Ia
(e,, + p,,) hu~”1 (1Ia2)ç~~ = V~7T6~rGIn F

(1 /a2)[—c~he1”1’ + P2,1, + a2V,, be1”1] V(c)= (116l2)(f—RF)1F2
F=3f/aR

Table A.2

Hydrodynamicalmatter51 = 0, ±1 Scalar-fieldmatter51 = 0

ReducedclassicalEoM u’ — c,~4u— (O”I9)u = a2(e
0 + p0~‘

2r hS u” — 4u — (O”/8)u = 0

u (4irG)’(1’(e
1, +P,)”

2 (aI~o~)(1’

B (X/a)[~(X2— 51~)]_h/2

Actionb,S ~ J(u’~—c~’~v,v

1+ ~ d”x di~ ~ J(v’~ — o,v1+ ~- 02)d4x

ReducedquantumEoM v’ — c;’4v — (z”Iz)v = 0 U” — 4v — (z”/z)v = 0

v (1I\~!)(hp~,’
1— 2z’P) a[8e1’1 +

z 1/c,O 1/0

Relationshipbetweenu andv 4u(~)= (z/c,)[v(-q)/z]’ 4u(~)= —4~Gz(v(~)Iz)’

Relationshipbetween(1’andv zl’l’ —Vi! [(512 — 51’ + 51)/Xc~j(v/z)’ 4’~=4irG(g~2/X)(ô/z)’

A.1.3. Derivatives
q.~,covariantderivative.
q

11 covariantderivativeon the backgroundhypersurfaceof constanttime.
q~ = t3qIax~Lpartial derivative.
q time derivativeof q.
q’ conformal time derivativeof q.

= dVldcp.



V.F. Mukhanovet al., Theoryof cosmologicalperturbations 327

A.i. 4. General variables

g1,,~metric.
GIL. Einsteintensor.
TIL,, energy—momentumtensor.
R,~,,Ricci tensor.
R Ricci scalar
In generalfor any variableq its backgroundunperturbedvalueis denotedq0, its perturbedvalueis

bq and the gauge-invariantform of theperturbationvariable is denotedbq~’~.

A.1.5. Generalcoordinates
t physicaltime.
~ conformal time, d77 = a’ dt.
x four-space—timecoordinatevector (t, x, y,z).
x Cartesianthree-vector.

A.1.6. Subscripts

q~’q,,, denotevariablesin the radiationand matter dominatedperiods,respectively.
qrec, qeq denote variables at the time of recombination and at equal matter and radiation,

respectively.
denotesquantitiesmeasuredin physicalcoordinates.

b~qdenotesthe nth orderperturbationterm of q.

A.2. Variablesusedthroughoutthe text

A .2.1. Latin — background

a = a(t) the scalefactor of the universe.
c, the soundvelocity for hydrodynamicalmatter.
H = ala the Hubble parameterin physical time.
(~)g1,~thebackgroundmetric.
g det(gb,,,) thedeterminantof the metric.
~ the Lagrangian.
p, s unperturbedpressureand energydensity, respectively.
S the action.
u’ three-velocityfield.
u” four-fluid-velocity field.
v the gauge-invariantpotential. In part II this variable is the single gauge-invariantvariable from

which we derive all necessaryequationsto find thepower spectra.
t
7 the conformal gauge-invariantpotential.
V(ço) thescalar-fieldpotential.
w = p

0
1e

0 variabledescribingthe equationof stateof matter.

A.2.2. Latin — perturbations
B, E, 4’, ~‘ scalarperturbationvariables.
bg~,,perturbationof the metric.
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h.1 tensorperturbationvariables.
bp, be perturbedpressureand energydensity, respectively.

A.23. Greek— background
the backgroundmetric of a constanttime hypersurface.

y det(’y,1).
e0, p0 unperturbedenergydensityandpressure,respectively.

= a’Ia = aH.
~‘Cspatial curvatureconstant(X = ±1,0).

A cosmologicalconstant.
= 77’

177eq where 77eq the time at equalmatterand radiation.

‘p scalarfield (usually the inflaton field).

A.2.4. Greek— perturbations
be, bp perturbedenergydensity and pressure,respectively.
~,,(r) the two-point energydensity correlationfunction.
4,, ii,, B, E metric scalarperturbations.
‘P,1I’ gauge-invariantmetric scalarperturbations,respectively.
b’P perturbedpart of the scalarfield.
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