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String theory solves the ultraviolet problem of quantum gravity.

However, it has a host of infrared problems which hinder its confrontation with

the observed low-energy physics. Most serious is the problem of vacuum stability

after supersymmetry breaking, the related issue of moduli fixing with Λ ≥ 0 ,

and of course the infamous cosmological constant problem.

Many suspect that we are missing an important ingredient, beyond conventional

QFT non-perturbative phenomena. One proposal is ‘anthropic reasonning’.

Others suspect that something is wrong with the usual ideas of locality and

decoupling of scales.

see e.g. talk by Elias Kiritsis

This talk is about a search for inspiration from condensed-matter physics.

Contrary to its huge impact in QFT, this has been of little use up to now in

helping to elucidate quantum-gravity phenomena.
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The theory of capillarity originates in the brilliant, almost simultaneous work

of Thomas Young and of Pierre Simon Laplace, published in 1805.

It was the first force to be clearly understood, besides gravity. It was also the

first force to be given a geometric description, as a theory of minimal surfaces.
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Minimal surfaces arise nowdays in many areas of physics and biology, and their

study remains a very active branch of mathematics. They are usually visualized

as soap films bounded by a wire-frame, a problem associated with the name of

the 19th-century, blind Belgian physicist Joseph Antoine Ferdinand Plateau.

The helicoid
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Scherk’s surface: mirror symmetric to the saddle point of the Veneziano

high-E, right-angle scattering amplitude (CB, B.Pioline, hep-th/9909171).
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The problem of capillarity and wetting differs from the problem of Plateau

in that the boundary of the fluid surface is free to move along the (usually

solid) substrate. Understanding the dynamics of wetting is of great current

interest because of the wealth of potential applications. Here we will focus

on the equilibrium problem, which is intriguing in its own right.
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The problem of partial wetting

We consider a liquid with free surface of area A (liquid-air interface) wetting a solid

over an area A′ (liquid-solid interface). The setup may for instance consist of :

• a liquid inside a capillary tube Ω× IR , or

• a droplet resting on a solid plate.

The energy reads

E = γA− γ′A′ − pV + gravity ,

where here :

γ −→ liquid-air tension

γ′ = γSA − γSL −→ solid-air minus solid-liquid tension

p −→ liquid-air pressure difference
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A'

V π - 0

A droplet of fluid of volume V resting on a solid plate. The solid-fluid

interface has area A′. The droplet makes a contact angle θ with the plate.
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Gravity defines a length scale called the capillary length, κ−1 = (γ/ρg)1/2. Here

ρ is the fluid mass density, and g is the gravitational acceleration. The capillary

length introduces an infrared cutoff in the wetting problem. In normal everyday

conditions κ−1 ∼ mm, but it can be made much bigger

• in free-fall experiments (NASA’s Microgravity Lab)

• if the air is replaced by a second (non-mixing) liquid.

This is, in practice, also achieved by focusing at distances much smaller than the

millimeter, but much larger than the atomic-scale cutoff ∼ Angström .

e.g. Prevost, Rolley and Guthmann, 2002

Moulinet, Guthmann and Rolley, 2002

Henceforth we neglect gravity, and consider the limit κ−1 →∞ .
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Consider for definiteness the capillary tube, with Ω a region of the (x, y) plane

and IR the z direction. In ‘static’ coordinates (assuming no overhangs) the fluid

surface is defined by the height function z(x, y) and the energy reads

E = Ebulk + Ebnry =

=
∫
Ω

dxdy
(
γ
√

1 + (∂xz)
2 + (∂yz)

2 − pz

)
−
∫
∂Ω

dl γ′(l) z .

Note that gravity would have given a mass to z. Furthermore, we assumed that γ′

depends on l, either because of impurities or by design. In the first case it will in

general also depend on the height z, so that

Ebnry = −
∮
∂Ω

dl

∫ z

0
dζ γ′(l, ζ) .
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The minimum of the energy is a surface of constant mean curvature

~∇ ·

 ~∇z√
1 + |~∇z|2

 = −
p

γ
,

with mixed Dirichlet/Neumann boundary conditions:

(x, y) ∈ Ω and
n̂ · ~∇z√
1 + |~∇z|2

∣∣∣∣∣
∂Ω

= cos θ(l) =
γ′(l, z)

γ
.

Here ~∇ = (∂x, ∂y) and n̂ is a unit vector normal to the boundary ∂Ω.

The boundary equation is Young’s equilibrium condition. It fixes the inclination

angle θ(l) of the fluid surface, at each point of the contact line, as a function

of the local adherence of the liquid to the container wall.
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In the ‘pure’ case, where the chemical composition of the wall doesn’t depend

on height, the problem has generally no solution. A necessary (but not sufficient)

condition for a solution to exist is the (global) tadpole cancellation:

p×Area(Ω) +
∮
∂Ω

dl γ′(l) = 0 .

This requires a fine tuning of the composition and geometry of the capillary tube.

z An example of tadpole cancellation:

p = 0 and γ′ = −γ′ 6= 0.
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In a pure system, the average height < z > is an undetermined modulus. It

would run away if there was a non-zero tadpole. This degeneracy is lifted by

wall-roughening, but it can lead to large effects at weak disorder.

The original motivation for our work was the apparent discrepancy between

measurements of the contact-line fractal dimension (see later) and theoretical

or numerical calculations .

LeDoussal, Wiese and Chauve, 2002

Rosso and Krauth, 2002

LeDoussal, Wiese, Raphael and Golestanian, 2004

A second motivation comes from the similarities between string perturbation

theory and perturbation theory of the contact line. Are there any useful lessons

for string theory to be learned?
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Formal solution

Let us first set p = 0. The problem can be solved formally in two steps:

• The minimal energy is a generalized Legendre transform of the energy

Ẽ(z(l)) of the Dirichlet problem, with γ′ a (field-dependent) source for z(l).

• The reduced-energy functional is quadratic in conformal gauge:

Ẽ =
iγ

2

∫ 2π

0
dφ

(
~r+ ·

d~r−
dφ

− ~r− ·
d~r+
dφ

)
= 2πγ

∞∑
n=1

n |~rn|2 .

where ~r = (x, y, z), w = reiφ is a conformal coordinate on the unit disk, and

one decomposes as usual into positive- (negative-) frequency parts:

~r = ~r+ + ~r− =
∞∑
n=1

(~rnw
n + ~r−nw̄

n)
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x

y

z

w

The problem is not quite yet solved, because the boundary curve ~v(s) is not

in general parametrized by the (special) coordinate φ. The reparametrization

φ = f−1(s), is fixed implicitly by the conformal-gauge condition:

d~r+
dφ

·
d~r+
dφ

= 0 with
d~r+
dφ

= −
i

8π

∮
dφ′

~v(f(φ′))

sin2(φ−φ
′

2
)
.

Note that from these relations f (and hence also the energy Ẽ) is a non-linear

and non-local functional of the boundary data ~v(s).
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The conformal conditions can be solved constructively by the Weierstrass

parametrization of the minimal surface

 x

y

z

 = Re

∫ w

fdw′ ×

 2g

−i(1 + g2)

1− g2

 ,

where g is an analytic function and fdw a 1-form (on the disk the latter is

always exact). Another parametrization is in terms of two analytic sections

of spin structures:

D. Sullivan, 1989

 x

y

z

 = Re

∫ w

dw′ ×

 2ψ1ψ2

−i(ψ2
1 + ψ2

2)

ψ2
1 − ψ2

2

 ,

The problem is then to determine (f, g) or (ψ1, ψ2) from the boundary data ~v(s).
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For non-zero pressure, i.e. surfaces of constant mean curvature, the analyticity

requirement is replaced by the following integrability condition:

∂̄ (ψ1, ψ2) =
p

γ
(ψ̄2,−ψ̄1)(|ψ1|2 + |ψ2|2) .

This can be related to the sinh-Gordon equation. Alternatively, the p 6= 0

problem is the same as the non-critical SU(2) Wess-Zumino-Witten model,

in the limit of infinite radius for the sphere and fixed density of flux.

Either way, the bulk equations are classically integrable (F. Helein, ETH Lecture

Notes 2000) , but the boundary-value problem becomes even more formidable.

In any case, p will not play a special role in what follows.

From now on we will therefore set p = 0.
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Quasilocal perturbation theory

The reduced energy functional defines a reparametrization-invariant, parameter-

free and background-independent theory for the contact line. The background

is fixed by the shape and composition of the container walls. These introduce

new (infrared) length-scales in the problem, in addition to κ−1 and to γ/p.

One question we set out to address is whether these infrared scales decouple

from the (universal?) physics of the contact line at shorter distances, i.e. from

the response of the contact line to localized forces and/or localized disorder.

This is not a priori obvious, because of the fine tuning required for tadpole

cancellation. As I will now try to explain, the answer to this question within

perturbation theory is affirmative, but the story is less clear beyond.
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The scale-invariant background consists of a homogeneous planar wall at x = 0,

meeting a planar liquid surface at fixed contact angle θ0 = arccos(γ′0/γ). We will

be interested in the energy Ẽ of the deformed contact line z = h(y) or, for fixed

chemical disorder ∆γ′(y, z), in its generalized Legendre transform E .

σ1

σ2

θ

θ

z

z

y

x

g
κ −1

0

0
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It is convenient to choose a conformal coordinate 2w = σ+ iτ defined in the

upper-half plane τ ≥ 0, rather than in the interior of the unit disk. Using the

fact that x(σ, τ) is harmonic, we may further set x = sinθ0 τ . This is analogous

to the proper-time gauge of string theory. The perturbed surface is then

~r = ~r0 + ∆~r = (sin θ0 τ, σ, − cos θ0 τ) + (0, ỹ, z̃) ,

where ỹ and z̃ are also harmonic functions. They are thus determined by their

restrictions to the real axis, which obey the coupled equations:

z̃(σ) = h
(
σ+ ỹ(σ)

)
,

dỹ+
dσ

+ i cos θ0
dz̃+
dσ

= −
(

dỹ+
dσ

)2
−
(

dz̃+
dσ

)2
.

Here ỹ+ and z̃+ are the positive-frequency parts of ỹ and z̃. This system of

equations can now be solved by a formal expansion in powers of h(y).
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To calculate the energy one must use a gauge-invariant infrared cutoff, e.g.

a capillary tube with Ω a rectangle of size Lx × Ly. For tadpole cancellation

we must choose opposite tensions on the x = 0 and x = Lx walls, and zero

tension for the walls at y = ±Ly/2. One must furthermore define Ẽ so as to

include the boundary contribution of the pure system. The final answer is:

Ẽ[h]− Ẽ[0] =
γ

2

∫ ∞

−∞
dσ
[
iỹ+

dỹ−
dσ

+ iz̃+
dz̃−
dσ

− cos θ0 z̃
dỹ

dσ
+ c.c.

]
= γ

∫ ∞

0

dk

2π
k
(
|ỹk + i cos θ0z̃k|2 + sin2 θ0 |z̃k|2

)
.

The energy is quadratic in ỹ and z̃, where y(σ) = σ+ ỹ(σ) relates the natural

to the conformal parameterization of the contact line. As explained before,

the problem is non-linear because this change of coordinate depends explicitly

on the pinning profile.
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The expansion of the energy reads Ẽ[h]− Ẽ[0] =
∑∞

n=2 Ẽn. The leading term is

the non-local, linear-elasticity energy of Joanny-de Gennes :

Ẽ2 = γ sin2 θ0

∫ ∞

0

dk

2π
k |hk|2 =

γ

4π
sin2 θ0

∫ ∫
dσ dσ′

[h(σ)− h(σ′)]2

(σ − σ′)2
.

Joanny and de Gennes, 1984

Pommeau and Vannimenus, 1985

It is invariant under SL(2, IR) and arises in many other contexts, e.g. in models

of dissipative quantum mechanics.
Caldeira and Legget, 1981

Callan and Thorlacius, 1990

The linear dispersion relation implies that the deformations of the contact line

decay and propagate at constant velocity. This behaviour has been experimen-

tally verified by Ondarcuhu and Veyssie.
de Gennes, 1986; Ondarcuhu and Veyssie, 1991
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A contact line (above an example of Helium on Cesium at 1.93K, from Guthmann,

Rolley et al ) is characterized by a roughness exponent : width ∼ (length)ζ. The

JdG energy Ẽ2 predicts correctly ζ = 1/3 for weak disorder. It seems however to fail

at the depinning threshold, where ζexp = 0.5 while ζth = 0.4. A possible explanation

is that one cannot neglect the higher-order terms (Golestanian and Raphaël, 2002).
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The corrections to the JdG elastic energy break the accidental SL(2, IR) symmetry,

but preserve the scale covariance of the problem:

Ẽ[h(λ)] = λ2 Ẽ[h] if h(λ)(y) ≡ λh(λ−1y) .

These terms can be generated systematically with the help of diagrammatic

rules as follows: first integrate out the bulk fields keeping their values on the

boundary fixed, then eliminate the field z with the help of a Lagrange-multiplier

field that imposes z = h(y). This leads to the variational area functional

Ã(α, ỹ;h) =
1

2

∫
k

|k| ỹk ỹ−k −
1

2

∫
k

1

|k|
α̃k α̃−k +

∫
k

α−kHk ,

where αk = cos θ0 2πδ(k) + α̃k and Hk is the Fourier transform of h(σ+ ỹ(σ)):

Hk = hk +

∫
ik1 hk1

ỹk2
+

1

2

∫
(ik1)

2hk1
ỹk2

ỹk3
+ · · · .
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The integrals in the last expression run over
∑
kj = k, consistently with momentum

conservation. The reduced energy functional can then be computed by summing

tree-level diagrams of this non-local one-dimensional theory.

The result for the cubic and quartic terms, for instance, reads:

Ẽ3 = γ cos θ0 sin2 θ0

∫
hk1
hk2
hk3

|k1|k2k3

|k3|
≡ −γ cos θ0 sin2 θ0

∫
hk1
hk2
hk3

k1k2 Θ(k1k2)

Ẽ4 =
γ

2

∫
hk1
hk2
hk3
hk4

k1k2k3k4

[
sin4 θ0

{Θ(k1k2)Θ(k3k4)

|k1 + k2|
+

2k1

|k1|
Θ(k3k4)

(k3 + k4)

}

+ sin2 θ0 cos2 θ0
{ k1k4

|k2k3k4|
+

k 2
2 − k 2

1

|k1||k4||k1 + k2|

}]
.
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This expansion is potentially both UV and IR divergent. Ultraviolet finiteness

can be established if and only if k2hk → 0 as k →∞. Thus the contact line

must be continuously differentiable (this excludes in particular kinks and cusps).

The result follows by a scaling argument, using the scale covariance of p. 24.

Infrared finiteness is subtler, because individual diagrams diverge. The necessary

and sufficient requirement is that khk → 0 as k → 0, i.e. h must vanish at y → ±∞.

The proof can be established iteratively, from the perturbative expansion of the

coupled equations in p. 20.

Finally, the Legendre transformation of the energy Ẽ[h] is manifestly finite for any

sufficiently-smooth and localized source δγ′.

This shows that a decoupled, quasilocal perturbation theory can be

indeed defined at scales between the container size and the atomic

scale, as claimed.

26



Interaction of two contact lines

To illustrate the IR decoupling explicitly, consider the interaction of two contact

lines on parallel walls at x = 0 and x = L, and with opposite solid-fluid tensions

(barring disorder). The equilibrium surface is thus an inclined plane, with contact

angles ±θ0. Letting h1(y) and h2(y) be the deformed contact lines, one finds the

following leading-order energy :

Ẽ strip
2 = γ sin2 θ0

∫ ∞

0

dk

2π
k

((
|h1,k|2 + |h2,k|2

) cosh(kL/ sin θ0)− 1

sinh(kL/ sin θ0)

+ |h1,k − h2,k|2/ sinh(kL/ sin θ0)

)
.

For wavevectors k � sin θ0/L the interaction decays exponentially :

Ẽ strip
2 ' Ẽ2(h1) + Ẽ2(h2) + O (exp(−2kL/ sin θ0)) .
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In the opposite limit of a thin strip, or short-wavelength deformations:

Ẽstrip
2 ' γ sin θ0L

∫ ∞

0

dk

2π

[
|h1,k − h2,k|2

(
sin2 θ0

L2
−
k2

6

)
+

k2

2

(
|h1,k|2 + |h2,k|2

)
+ O(k4)

]
.

The leading term is proportional to the increase in area of a planar strip, whose

boundaries undergo a relative displacement h1 − h2 along the walls, with which it

made initially an angle θ0. If h1 = h2, the next term in the above energy is

that of an elastic rod with effective tension γeff = γL sin θ0. This has also a simple

geometric interpretation: The rod is a thin surface strip of width L/ sin θ0, which

is deformed by an amount h1(y) sin θ0 in the transverse direction.

The exact expression for Ẽstrip
2 thus extrapolates continuously between local

elasticity and the JdG behavior of the contact line.
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A capillary wormhole

Perturbation theory breaks down for h′(y) ∼ o(1). One potential cause are

coordinate singularities, which can be seen to arise in numerical solutions of

the coupled equations for ỹ and z̃. Indeed, the choice of proper-time gauge

amounts to setting f ∝ g−1 in the Weierstrass formula. This is globally allowed

as long as g does not develop zeros in the upper half plane.

Besides coordinate singularities, capillary minimal surfaces can exhibit many

gauge-invariant non-perturbative phenomena. These include topology change,

continuous and discontinuous phase transitions, and a geometrical obstruction

known as the wedge phenomenon.

see R. Finn, Notices of the AMS 46

This can be understood as follows:
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Integrate the bulk equation over some subregion Ω′ ⊂ Ω:

γ |∂Ω′
interior| ≥

∣∣∣ γ ∫
∂Ω′

interior

n̂ · ~∇z√
1 + |~∇z|2

∣∣∣ = p |Ω′| + γ′ |∂Ω′
exterior| .

Take Ω′ to be an infinitesimal triangle of opening angle 2α. Then there is no

solution to the problem if

γsinα < γ′ = γcosθ0

In this case the contact line cannot close locally, and the minimal surface is

forced to develop a second sheet !

This is a local obstruction similar to a wormhole, in that it forces the fluid

surface to develop (mathematically) a second infinite sheet. In NASA’s ICE

experiment, the fluid could be seen to creep up the wedge and out of the tube.
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Capillary tubes from the Interface Configuration Experiment (Concus, Finn and

Weislogel, 1995). One of NASA’s motivations was the need to understand fuel

behavior in low-gravity conditions inside reservoirs.
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The wedge and other non-perturbative phenomena pose a threat to the UV/IR

decoupling of the contact-line theory, since the microscopic structure of

∂Ω can affect the global properties of the fluid surface. From the mathematical

viewpoint the problem lies with the Legendre transformation: indeed, in the

pure Dirichlet problem small-scale fluctuations can be neglected thanks to the

scaling property of Ẽ[h], even if the perturbative series does not converge.

In the transformed variables, on the other hand, perturbation theory breaks down.

From the physical point of view, these divergenences are presumably cured by

locality in field (target) space: normal roughening will never produce a wedge

extending all along the z direction. ‘Small perturbations of the (x, y) loop ∂Ω

must be localized in the z direction.

Should we be thinking about string-perturbation theory that is ‘local’ in

dilaton, moduli etc space?
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Conclusions

• Capillarity and wetting phenomena are complex phenomena

of great interest for engineering and applied physics. Many of

their aspects are still ill-understood.

•Capillarity is a geometric theory, which may hold lessons for

theories of gravity.

♣♣♣
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