Holographic Cosmology

IHP

December 2006

Thomas Hertog

w/ G. Horowitz, hep-th/0503071 w/ B. Craps and N. Turok

Holography

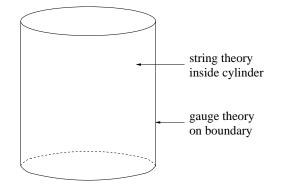
Singularity Theorems: quantum origin

 \rightarrow predictive cosmology needs quantum gravity.

String theory: natural framework

 \rightarrow dual quantum description of cosmology?

Gauge/Gravity Duality: [Maldacena '97]

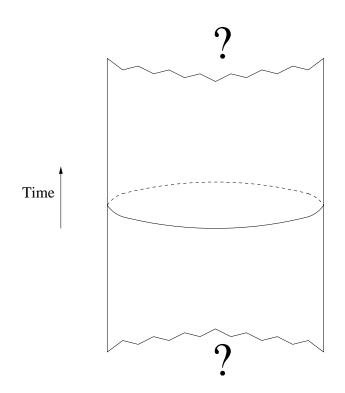


 $l_{AdS} = (4\pi g_s N)^{1/4} l_s = \lambda^{1/4} l_s$

 \rightarrow Finite N gauge theory viewed as *nonperturbative* definition of string theory on asympt AdS spacetimes.

Holographic (AdS) Cosmology

Generalization: SUGRA solutions where smooth asymptotically AdS initial data emerge from a big bang in the past and evolve to a big crunch in the future.



The dual finite N gauge theory evolution should give a fully quantum gravity description of the singularities!

Outline

- Cosmology with AdS boundary conditions
- Dual Field Theory Evolution
- To Bounce or not to Bounce?

Setup

We consider a consistent truncation of the low energy regime of string theory compactified on ${\cal S}^7$,

$$S = \int d^4x \sqrt{-g} \left[\frac{1}{2}R - \frac{1}{2}(\nabla\phi)^2 + 2 + \cosh(\sqrt{2}\phi) \right]$$

 \rightarrow string theory with $AdS_4 \times S^7$ boundary conditions.

Scalar, $m^2 = -2 > m_{BF}^2 = -9/4$

AdS in global coordinates,

$$ds^{2} = -(1+r^{2})dt^{2} + \frac{dr^{2}}{1+r^{2}} + r^{2}d\Omega_{2}$$

In all asymptotically AdS solutions, ϕ decays as

$$\phi(t, r, \Omega) = \frac{\alpha(t, \Omega)}{r} + \frac{\beta(t, \Omega)}{r^2}$$

Boundary Conditions

Standard (susy) boundary conditions on $\phi:\ \beta=0$

$$\phi = \frac{\alpha(t,\Omega)}{r} + \mathcal{O}(1/r^3)$$

$$g_{rr} = \frac{1}{r^2} - \frac{(1 + \alpha^2/2)}{r^4} + O(1/r^5)$$

More generally: $\beta(\alpha) \neq 0$

$$\phi = \frac{\alpha(t,\Omega)}{r} + \frac{\beta(\alpha)}{r^2}$$

Conserved total energy remains finite, but acquires an explicit contribution from ϕ .

e.g. with spherical symmetry

$$M = 4\pi (M_0 + \alpha\beta + \int_0^\alpha \beta(\tilde{\alpha})d\tilde{\alpha})$$

AdS-invariant boundary conditions

One-parameter class of functions $\beta_k(\alpha)$ that define AdS-invariant boundary conditions,

 $\beta_k = -k\alpha^2$

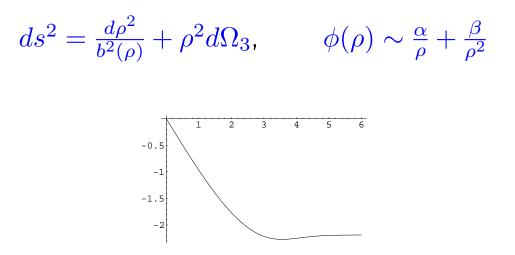
$M = 4\pi (M_0 - \frac{4}{3}k\alpha^3)$

Claim: For all $k \neq 0$, there exist smooth asymptotically AdS initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.

Example: Solutions obtained by analytic continuation of Euclidean instantons.

AdS Cosmology

O(4) symmetric Euclidean instanton,



Lorentzian cosmology by analytic continuation:

- Inside lightcone from $\phi(0)$: FRW evolution to big crunch that hits boundary as $t \to \pi/2$.
- Asymptotically (at large r) one has

$$\phi = \frac{\alpha(t)}{r} - \frac{k\alpha^2(t)}{r^2} + O(r^{-3}), \qquad \alpha(t) = \frac{\alpha(0)}{\cos t}$$

Dual Field Theory

M Theory with $AdS_4 \times S^7$ boundary conditions is dual to the 2+1 CFT on a stack of M2 branes.

• With $\beta = 0$, $\phi \sim \alpha/r$ is dual to $\Delta = 1$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr T_{ij} \varphi^i \varphi^j$$

and

$$\alpha \leftrightarrow \langle \mathcal{O} \rangle$$

• Taking $\beta(\alpha) \neq 0$ corresponds to adding a multitrace interaction $\int W(\mathcal{O})$ to the CFT, such that [Witten '02, Berkooz et al. '02]

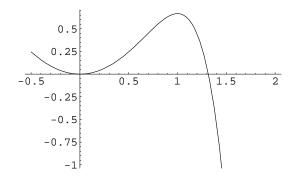
$$\beta = \frac{\delta W}{\delta \alpha}$$

Dual Field Theory

With $\beta_k = -k\alpha^2$,

$$S = S_0 - \frac{k}{3} \int \mathcal{O}^3$$

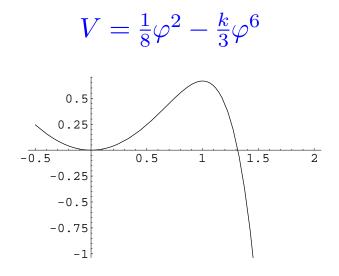
The dual description of AdS cosmologies involves field theories that always contain an operator \mathcal{O} with an effective potential that (at large N) is unbounded from below.



What is the CFT evolution dual to AdS cosmologies? To leading order in 1/N, $< O > \rightarrow \infty$

Semiclassical Evolution

Neglecting the nonabelian structure ($\mathcal{O} \leftrightarrow arphi^2$),



Exact homogeneous classical (zero energy) solution,

 $\varphi(t) \sim \frac{1}{k^{1/4} \cos^{1/2} t}$

reproduces time evolution of SUGRA solutions.

 \rightarrow semiclassical analysis suggests CFT evolution ends in finite time...

Quantum Mechanics

Consider first homogeneous mode $\varphi(t) = x(t)$.

"Quantum mechanics with unbounded potentials."

A right-moving wave packet in V(x) reaches infinity in finite time.

To ensure probability is not lost at infinity one constructs a self-adjoint extension of the Hamiltonian, by carefully specifying its domain. [Carreau et al. '90]

The center of a wave packet follows essentially the classical trajectory. When it reaches infinity, however, it bounces back.

 \rightarrow Quantum mechanics indicates evolution continues for all time, with an immediate big crunch/big bang transition.

Quantum Field Theory

In the full field theory inhomogeneities develop as ϕ rolls down, in a process similar to "tachyonic preheating".

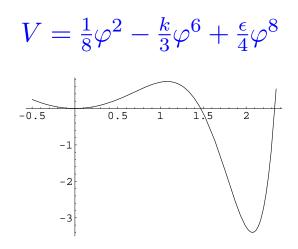
Does this significantly change evolution?

If tachyonic preheating efficiently converts most of the potential energy in gradient energy, then a bounce through the singularity would be extremely unlikely...

Whether or not this happens depends on what are the 1/N corrections to the potential.

1. Regularization at Finite N

Regularize by adding quartic interaction $\epsilon \mathcal{O}^4$,



Does this change nature bulk singularity?

With bulk boundary conditions

$$eta_{k,\epsilon} = -k lpha^2 + \epsilon lpha^3$$
 ,

- small change instanton initial data, $M_i \sim -\epsilon$
- potentially significant change bulk evolution in regime $\alpha^2 > k/\epsilon$, i.e. near the singularities

Black Holes with Scalar Hair

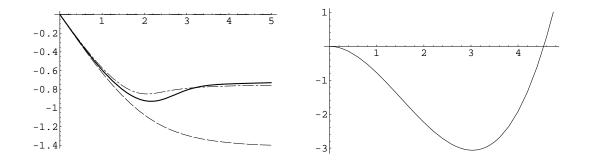
 ${\rm Metric}; \quad ds_4^2 = -h(r)e^{-2\delta(r)}dt^2 + h^{-1}(r)dr^2 + r^2d\Omega_2^2$

Asymptotic scalar profile; $\phi(r) = \frac{\alpha}{r} + \frac{\beta}{r^2}$

Regularity at horizon R_e determines $\phi_{,r}(R_e)$.

Integrating field equations outward yields a point in (α, β) plane for each pair (R_e, ϕ_e) .

Repeating for all ϕ_e gives curves $\beta_{R_e}(\alpha)$ for each R_e :



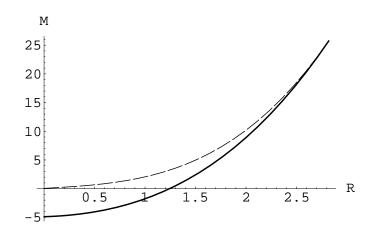
Black hole solutions are given by intersection points

$$\beta_{R_e}(a) = \beta_{k,\epsilon}(\alpha)$$

 \rightarrow two branches of black holes with scalar hair!

Back to Cosmology

Mass of hairy black holes:



 \rightarrow Finite N regularization of the dual field theory modifies bulk dynamics, turning the big crunch into a giant hairy black hole. This is dual to an equilibrium field theory state around the global minimum that arises from the regularization.

What would it mean?

Conjecture: Evolution would continue for all times, but cosmological singularities would be quantum gravitational equilibrium states, described in terms of dual variables.

 \rightarrow minisuperspace approximation would miss key physics

 \rightarrow asymmetry between past and future singularities.

A note on predictive cosmology:

Testing the theory would require the evaluation of conditional probabilities for observables, as well as a good understanding of the quantum state \rightarrow major challenge

2. No Regularization at Finite N

- Black hole formation even without global minimum, as long as \u03c6 does not reach infinity in finite time. Equilibration happens when inhomogeneous modes 'unfreeze'.
- By contrast, when V" remains negative, inhomogeneities remain frozen, no black hole forms and the homogeneous evolution may in fact be accurate.

Conjecture: A big crunch/big bang transition does happen, and cosmological singularities are qualitatively different from black hole singularities.

What are the 1/N corrections?

String theory with $AdS_5 \times S^5$ boundary conditions may offer guidance,

$$S = \int d^5x \sqrt{-g} \left[\frac{1}{2}R - \frac{1}{2}(\nabla\phi)^2 + 2e^{2\phi/\sqrt{3}} + 4e^{-\phi/\sqrt{3}} \right]$$

Scalar has $m^2 = -4 = m_{BF}^2$

Asymptotically, ϕ decays as

$$\phi(t, r, \Omega) = \frac{\alpha(t, \Omega) \ln r}{r^2} + \frac{\beta(t, \Omega)}{r^2}$$

One again finds instantons for boundary conditions

$$\beta_k = -\lambda \alpha$$

Dual field theory action is given by

$$S = S_{YM} - \frac{\lambda}{2} \int \psi^4$$

which remains unbounded ...