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Summary: We re-examine previously found cosmological solutions to
eleven-dimensional supergravity in the light of the E10-approach to
M-theory. We focus on the solutions with non zero electric field
determined by geometric configurations (nm, g3), n ≤ 10. We show that
these solutions are associated with rank g regular subalgebras of E10,
the Dynkin diagrams of which are the (line) incidence diagrams of the
geometric configurations. Our analysis provides as a byproduct an
interesting class of rank-10 Coxeter subgroups of the Weyl group of
E10.
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11 - D, Binachi I supergravity solutions

Field configurations

ds2 = −N2[t]dt2 + gij [t]dxidxj

Fαβγδ = Fαβγδ[t]

Field equations
• dynamical equations
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• Constraint equations

Hamiltonian C. Ka
bK

b
a −K2 +

1

12
F⊥abcF

abc
⊥ +

1

48
FabcdF

abcd = 0

Momentum C.
1

6
NF 0bcdFabcd = 0

Gauss law ε0abc1c2c3c4d1d2d3d4Fc1c2c3c4Fd1d2d3d4 = 0

where

Kab = (−1/2N)ġab and F⊥abc = (1/N)F0abc .

(IHP-December 2006) 6 / 34



Bianchi I configurations

Diagonal field configurations

Diagonal metric implies diagonal extrinsic curvature Kab

Evolution and constraint equations imply diagonal energy-momentum
tensor: F aρστFbρστ ∝ δa

b

• Freund-Rubin ansatz: 10=3+7
ds2

11 = −N2dt2 + ds2
3 + ds2

7

F 0abc ∝ 1√
gN ε0abc (a, b, c = 1, 2, 3)

[ P.G.O. Freund, M.A. Rubin, Phys. Lett. 97B (1980) 233 ]

• Different splittings: 10 = n + (10− n), n ≥ 0
ds2

11 = −N2dt2 + R2[t]
∑

a≤n(dxa)2 + S2[t]
∑

a≥n(dxa)2

Only F 0abc 6= 0
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Einstein-Maxwell equations imply:

F 0abc =
1

N
√

g
Eabc, EapqEbpq = f2 δa

b

• n=1, 2
No non-trivial three-index tensor
• n=3
Eabc = f εabc : solution proportional to the Levi-Civita tensor
• n=4
Let Aa = εabcdEbcd : AaAb ∝ δa

b i.e. Aa = 0
• n=5
Let Bab = εabcdeE

cde, BacBcb ∝ δa
b

i.e. B2 = µ2Id in matrix notations,
but B is antisymmetric and the dimension odd: B = 0
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In dimensions greater than five Special solutions are obtained by

imposing the following conditions:

1 given a pair of indices (a, b), there is at most one c such that
Eabc 6= 0

2 for each index a there are exactly m pairs (b, c) such that Eabc 6= 0,
3 all non-vanishing Eabc are equal up to sign : Eabc = ±h

Condition 1 implies EapqEbpq = 0 when a 6= b; conditions 2 and 3 imply
EapqEbpq = mh2δa

b
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Geometric configurations
Incidence rules

The first two conditions can be reformulated in terms of geometric
configurations (nm, g3) i.e. set of n points with g distinguished subsets,
called lines, such that

0 Each line contains exactly three points and defines an Eabc

component
1 Two points determine at most one line (condition 1)
2 Each point belongs to m lines (condition 2)

[S. Kantor, “Die configurationen (3, 3)10”, K. Academie der Wissenschaften,
Vienna, Sitzungsbereichte der matematisch naturewissenshaftlichen classe, 84
II, 1291-1314 (1881).
D. Hilbert and S. Cohn-Vossen, “Geometry and the Imagination”,(Chelsea,
New York, 1952)
W. Page and H. L. Dorwart, “Numerical Patterns and Geometrical
Configurations”, Mathematics Magazine 57, No. 2, 82-92 (1984).]

(IHP-December 2006) 10 / 34



Geometric configurations
Incidence rules

The first two conditions can be reformulated in terms of geometric
configurations (nm, g3) i.e. set of n points with g distinguished subsets,
called lines, such that

0 Each line contains exactly three points and defines an Eabc

component
1 Two points determine at most one line (condition 1)
2 Each point belongs to m lines (condition 2)

[S. Kantor, “Die configurationen (3, 3)10”, K. Academie der Wissenschaften,
Vienna, Sitzungsbereichte der matematisch naturewissenshaftlichen classe, 84
II, 1291-1314 (1881).
D. Hilbert and S. Cohn-Vossen, “Geometry and the Imagination”,(Chelsea,
New York, 1952)
W. Page and H. L. Dorwart, “Numerical Patterns and Geometrical
Configurations”, Mathematics Magazine 57, No. 2, 82-92 (1984).]

(IHP-December 2006) 10 / 34



Geometric configurations
Some examples

1

6

5

4
3

2

Figure: (62, 43): The first
configuration with intersecting lines.

7

1

2

3

4

56

Figure: (73, 73): The
Fano plane; the
multiplication table of
the octonions.
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Geometric configurations
Two other examples

9

1 2 3
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7 8

Figure: (93, 93)1: The so-called
Pappus configuration.
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(10)

(5)

(6)

(7)

(9)
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(2)

Figure: (103, 103)3: The
Desargues configuration, dual to
the Petersen graph.
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The “symmetric space” E10/K(E10)
Definitions

• The Kac-Moody algebra : E10

2

10

9 8 7 6 5 4 3 1

Figure: The Dynkin diagram of E10. Labels i = 1, . . . , 9 enumerate the
nodes corresponding to simple roots, αi, of the A9 subalgebra and the
exceptional node, labeled “10”, is associated to the root α10 that defines the
level decomposition.

[hi, hj ] = 0 , [hi, ej ] = Aijej , [hi, fj ] = −Aijfj , [ei, fj ] = δijhj ,

(ad ei)
(1−Aij)ej = 0 , (ad fi)

(1−Aij)fj = 0 .

[V. Kac, “Infinite dimensional Lie algebras”, 3rd Ed., Cambridge University
Press (1990).]
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• The Kac-Moody “group” : E10 = Exp[E10]
• The compact subalgebra : K(E10)
The subalgebra fixed by the Chevalley involution:
τ(hi) = −hi , τ(ei) = −fi , τ(fi) = −ei .

Hidden symmetries of M-theory

The dynamics of eleven-dimensional supergravity can be formulated as
“geodesics” on the coset space”: E10/K(E10)

[ B. Julia, “Kac-Moody Symmetry Of Gravitation And Supergravity
Theories,” LPTENS 82/22
T. Damour and M. Henneaux, “E(10), BE(10) and arithmetical chaos in
superstring cosmology,” Phys. Rev. Lett. 86, 4749 (2001)
[arXiv:hep-th/0012172].
P. C. West, “E(11) and M theory,” Class. Quant. Grav. 18, 4443 (2001)
[arXiv:hep-th/0104081].
T. Damour, M. Henneaux and H. Nicolai, “E(10) and a ’small tension
expansion’ of M theory,” Phys. Rev. Lett. 89, 221601 (2002)
[arXiv:hep-th/0207267]. ]
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Consistent Truncations
Truncations to a sub-model that provides solutions of the full
model.
•Level truncation : set equal to zero the momenta conjugate to
the σ-model variables above a given level.
[T. Damour, M. Henneaux and H. Nicolai, “Cosmological billiards,” Class.
Quant. Grav. 20, R145 (2003) [arXiv:hep-th/0212256].]
•Subgroup truncation : restrict the equations of motion to a well
chosen subgroup (subgroups obtained from the exponentiation of
regular subalgebras)
[ F. Englert, M. Henneaux and L. Houart, “From very-extended to
overextended gravity and M-theories,” JHEP 0502, 070 (2005)
[arXiv:hep-th/0412184].]
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From geometric configurations to regular

E10 subalgebras

Regular subalgebras
• Definition
Let ḡ = n̄− ⊕ h̄⊕ n̄+ be a Kac-Moody subalgebra of g, with
triangular decomposition.
Assume ḡ canonically embedded in g, i.e., that the Cartan
subalgebra h̄ of ḡ is a subalgebra of the Cartan subalgebra of
g:h̄ = ḡ ∩ h.
Then ḡ is a regular subalgebra iff :

1 the step operators of ḡ are step operators of g

2 the simple roots of ḡ are real roots of g

It follows that the Weyl group of ḡ is a subgroup of the Weyl
group of g and that the root lattice of ḡ is a sublattice of the root
lattice of g.
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•Theorem
Let Φ+

real be the set of positive real roots of a Kac-Moody algebra A.
Let β1, · · · , βn ∈ Φ+

real be chosen such that none of the differences
βi − βj is a root of A. Assume furthermore that the βi’s are such that
the matrix C = [Cij ] = [2 〈βi|βj〉 / 〈βi|βi〉] has non-vanishing
determinant. For each 1 ≤ i ≤ n, choose non-zero root vectors Ei and
Fi in the one-dimensional root spaces corresponding to the positive real
roots βi and the negative real roots −βi, respectively, and let
Hi = [Ei, Fi] be the corresponding element in the Cartan subalgebra of
A. Then, the (regular) subalgebra of A generated by {Ei, Fi,Hi},
i = 1, · · · , n, is a Kac-Moody algebra with Cartan matrix [Cij ].

[A. J. Feingold and H. Nicolai, “Subalgebras of Hyperbolic Kac-Moody
Algebras,” [arXiv:math.qa/0303179]. ]
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•Comments

We obtain subalgebras by defining simple roots within the root
lattice of the larger algebra. But there are consistency conditions
to be satisfied in order that the Chevalley-Serre relations can be
fulfilled. For instance for the simple roots βi and βj , βi−βj cannot
be a root otherwise the relation [Ei, Fj ] = δijHi will be violated.
When the Cartan matrix is degenerate, the corresponding
Kac-Moody algebra has non trivial ideals. Verifying that the
Chevalley-Serre relations are fulfilled is not sufficient to guarantee
that one gets the Kac-Moody algebra corresponding to the Cartan
matrix [Cij ] since there might be non trivial quotients.
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If the matrix [Cij ] is decomposable, say C = D ⊕ E with D and E
indecomposable, then the Kac-Moody algebra KM(C) generated
by C is the direct sum of the Kac-Moody algebra KM(D)
generated by D and the Kac-Moody algebra KM(E) generated by
E. The subalgebras KM(D) and KM(E) are ideals. If C has
non-vanishing determinant, then both D and E have
non-vanishing determinant. Accordingly, KM(D) and KM(E) are
simple and hence, either occur faithfully or trivially. Because the
generators Ei are linearly independent, both KM(D) and KM(E)
occur faithfully.

[V. Kac, “Infinite dimensional Lie algebras”, 3rd Ed., Cambridge University
Press (1990).]

(IHP-December 2006) 19 / 34



The link
• Level zero elements: gl(10, R) with commutation relations:

[Ka
b, K

c
d] = δc

bK
a
d − δa

dK
c
b. (a, b = 1, . . . , 10)

• Level ±1 generators: Eabc at level 1 and their “transposes”
Fabc = −τ(Eabc) at level −1; they transform contravariantly and
covariantly with respect to gl(10, R):

[Ka
b, E

cde] = 3δ
[c
b Ede]a , [Ka

b, Fcde] = −3δa
[cFde]b.

• Diagonal metric : Ka
b = 0 if a 6= b. i.e.no level zero root.

• Electric regular subalgebra : all the simple roots, αi1i2i3 , are at
level one (α123 ≡ α10).

From [Eabc, Fdef ] = 18δ
[ab
[deK

c]
f ] − 2δabc

def

∑10
a=1 Ka

a we obtain

αi1i2i3 − αi′1i
′
2i
′
3
∈ ΦE10 if and only if the sets {i1, i2, i3} and

{i′1, i′2, i′3} have exactly two points in common.
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The rules
• One must choose the set of simple roots of the electric regular
subalgebra S in such a way that given a pair of indices (i1, i2),
there is at most one i3 such that the root αijk is a simple root of
S, with (i, j, k) the re-ordering of (i1, i2, i3) such that i < j < k.
• To each of the simple roots αi1i2i3 of S, one can associate the line
(i1, i2, i3) connecting the three points i1, i2 and i3 i.e. the set of
points and lines associated with the simple roots must fulfill the
third rule defining a geometric configuration, namely, that two
points determine at most one line.
•The first rule, which states that each line contains 3 points, is a
consequence of the fact that the E10-generators at level one are
the components of a 3-index antisymmetric tensor.
• The second rule, that each point is on m lines, is less
fundamental from the algebraic point of view; it was imposed in
order to allow for solutions isotropic in the directions that
support the electric field. It implies that each node of the Dynkin
diagram has the same number of nodes.
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Incidence diagrams and Dynkin Diagrams
Geometric Configuration (31, 13)

321

Figure: (31, 13): The only allowed configuration for n = 3.

• Only one generator E123; the diagonal metric components correspond
to the Cartan generator h = [E123, F123].
• A1 regular subalgebra {e, f, h} with e ≡ E123, f ≡ F123 and
h = [e, f ] = −1

3

∑
a 6=1,2,3 Ka

a + 2
3(K1

1 + K2
2 + K3

3).
• Cartan matrix : (2) not degenerate.
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• The Killing form on the CSA of A1 is positive definite, thus one
cannot find a solution of the Hamiltonian constraint if one turns on
only A1.
• One needs to enlarge A1 (at least) by a one-dimensional subalgebra
Rl of hE10 that is timelike;
• The choice ` = K4

4 + K5
5 + K6

6 + K7
7 + K8

8 + K9
9 + K10

10,
(`2 = −42), ensures isotropy in the directions not supporting the
electric field.

Conclusion

The appropriate regular electric subalgebra of E10 corresponding to the
geometric configuration (31, 13) is A1 ⊕ Rl. ( An “SM2-brane” solution
describing two asymptotic Kasner regimes separated by a collision
against an electric wall).

[ A. Kleinschmidt and H. Nicolai, “E(10) cosmology,” JHEP 0601, 137
(2006) [arXiv:hep-th/0511290].]

(IHP-December 2006) 23 / 34



• The Killing form on the CSA of A1 is positive definite, thus one
cannot find a solution of the Hamiltonian constraint if one turns on
only A1.
• One needs to enlarge A1 (at least) by a one-dimensional subalgebra
Rl of hE10 that is timelike;
• The choice ` = K4

4 + K5
5 + K6

6 + K7
7 + K8

8 + K9
9 + K10

10,
(`2 = −42), ensures isotropy in the directions not supporting the
electric field.

Conclusion

The appropriate regular electric subalgebra of E10 corresponding to the
geometric configuration (31, 13) is A1 ⊕ Rl. ( An “SM2-brane” solution
describing two asymptotic Kasner regimes separated by a collision
against an electric wall).

[ A. Kleinschmidt and H. Nicolai, “E(10) cosmology,” JHEP 0601, 137
(2006) [arXiv:hep-th/0511290].]

(IHP-December 2006) 23 / 34



• The Killing form on the CSA of A1 is positive definite, thus one
cannot find a solution of the Hamiltonian constraint if one turns on
only A1.
• One needs to enlarge A1 (at least) by a one-dimensional subalgebra
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Configuration
Dynkin dia-
gram

Comments

(31, 13)
321

1

A1 ⊕ R `

` =
P10

i=4 Ki
i

(61, 23)

1

654

32

21

A2 ⊕ R `

` =
P10

i=7 Ki
i

level 2 : mag.fields

(62, 43)

1

6

5

4
3

2

1 3 42

A1⊕A1⊕A1⊕A1⊕R `

` =
P10

i=7 Ki
i

Four SM2-branes

Table: All configurations for n ≤ 6 and their dual finite dimensional Lie algebras.
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Configuration
Dynkin dia-
gram

Comments

(73, 73)
7

1

2

3

4

56

3 7651 2 4

g(73,73) = A1 ⊕ A1 ⊕
A1⊕A1⊕A1⊕A1⊕A1
⊂ A1⊕A1⊕A1⊕D4 ⊂

A1 ⊕D6 ⊂ E7

` =
P10

i=8 Ki
i

(83, 83)

1

87

6

5

4

3

2

2

87

65

43

1

g(83,83) =

A2 ⊕ A2 ⊕ A2 ⊕ A2
⊂ A2 ⊕ E6 ⊂ E8

` = K9
9 + K10

10

Table: All configurations for n = 7, 8 and their dual finite dimensional Lie
algebras.
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Infinite affine subalgebras — n = 9

Configuration
Dynkin dia-
gram

Lie algebra

(91, 33)

1

987

654

32

1

3

2

g(91,33) = AJ
2

c = −K10
10

(92, 63)1

1

987

654

32

6

1 2

3

4 5

g(92,63)1 =
(A2 ⊕A2)

J

c1 = c2

(92, 63)2

9

1 2 3

4 5 6

7

8

6 2

1

3

4

5

g(92,63)2 = AJ
5
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Infinite affine subalgebras — n = 9 continuation

Configuration
Dynkin dia-
gram

Lie algebra

(93, 93)1

9

1 2 3

4
5

6

7 8

9

1 2

3

4 5

6

7 8

g(93,93)1 =

(A2⊕A2⊕A2)
J

(93, 93)2

1

98

7
6

5 4 3

2

2
9

8

7

6 5

4

3

1

g(93,93)2 = AJ
8
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Infinite affine subalgebras — n = 9 end

Configuration
Dynkin dia-
gram

Lie algebra

(93, 93)3

1 9

8

7

6

5

4

3

2

9

2

1

3

4

5

6

7 8

g(93,93)3 =

(A5 ⊕A2)
J

(94, 123)
8

9

1

2

3

4

5

6

7

7

3

21 4 5

6

12

1110

9

8

g(94,123) =
(A2 ⊕ A2 ⊕
A2 ⊕A2)

J

Table: n = 9 configurations and their dual affine Kac-Moody algebras.
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Lorentzian Kac-Moody algebras

Configuration n = 10 Dynkin diagram
Det. of
A

(103, 103)1

1

10

9

8

7

6

5

4

3

2

(1)(2)(3)

(4)

(5)

(6)

(7)

(8)
(9)

(10)

1

9

53

8

6

4 7

2

10

−121

(103, 103)2

1

10

98

7

6

5

4

3

2

1

2

34

5

67

8 9

10

−256
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(103, 103)3

1

10

9

8

7

6

5

4

3

2(1)

(3) (4)

(10)

(5)

(6)

(7)

(9)

(8)

(2)

10
2

1

34

5

6 7

8 9 −256

(103, 103)4

1

2

3

4

5
6

7

8

9

10

(1)

(2)
(3)

(4)

(5)
(6)

(7)

(8)
(9)

(10)

1
10 2

6
7 5

9 3

8 4

= 0

(103, 103)5

1 10

9

6

4

8

75

2

3

(7)

(10)

(3)

(2)

(1)

(4)

(5)

(6)

(9)

(8)

1 9

8

56 7

2 4

= −16
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(103, 103)6
(1)

(7)

(8)

(5)

(7)

(6)

(10)

(2)

(4)

1 9

8

56 7

2 4

= −16

(103, 103)7
(1)

(8)

(3)

(7)

(10)

(6)

(9)

(2)

(5)

(4)

1
10 2

6
7 5

9 3

8 4

= 0
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(103, 103)8
(7) (9) (4)

(5)

(3)

(2)

(10)

(6)

(1)

(8)

5

1

2
3

4

6

7

10

9 8

= −64

(103, 103)9

(4)

(1)

(8)

(2)

(7) (10)

(9)

(5)

(3)

(6)

1
2

3
4

5

6

7
8

9

10

= −49

(103, 103)10

(3) (4)

(5)

(6)

(7)

(8)

(9)

(10) (1)

(2)

1 2

3

4

5

67

8

9

10

−25

Table: n = 10 configurations and their dual Lorentzian Kac-Moody algebras. Note that some of the
configurations give rise to equivalent Dynkin diagrams. Here, we have ceased to number the points of the
geometrical configurations as this information is not needed in order to draw the Dynkin diagram.
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Conclusions

• Each geometric configuration (nm, g3) appears as the Dynkin
diagram of an associated regular subalgebra of En

• Possible explicit new solutions are available
• Magnetic solutions also
• Relaxing of some rule, we still have supergravity solutions :

6

1 2 3

4 5

Figure: This set of six points, four lines containing three points each, with
two lines through each point, is not a geometric configuration because it
violates Rule 3: two points may determine more than one line.

• Seven rank-10 Coxeter subgroups of the Weyl group of E10 have been
obtained.Configurations with n > 10 : it exists 31 (113, 113)
configurations from which we obtain 28 Coxeter subgroups of the Weyl
group of E11 (among the 252 rank 11-I = 4 Coxeter groups). They
provide several interesting mathematical questions.
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Le mot de la fin

”...there was a time when the study of configurations was considered
the most important branch of all geometry.”

- David Hilbert
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