High-Energy, Cosmology and Strings (IHP, Paris, 11-15 December 2006)

Transplanckian String Collisions and the information paradox Gabriele Veneziano (CERN-PH/TH & Collège de France)

Has string theory solved the information paradox?

•BH-entropy and counting of states agree for extremal BHs (Strominger-Vafa, ..)

 Spectra from quasi-extremal BH decay follow Hawking iff one traces over initial brane configuration (= density matrix)

Questions (see e.g. D. Amati, hep-th/0612061):
1. What happens if one starts from a pure state? Fails at weak coupling, may work at strong coupling.
2. Are there corrections to a pure thermal spectrum?
3. How does this extend to more conventional (Kerr) BHs?

Outline

- The string-black hole correspondence curve
- 2. Transplanckian string collisions: why and how.
 - 2.1 MGO vs ACV approach to the problem
 - 2.2 Three scales/regimes in trans-planckian string collisions
 - I) b > R, l_s II) R > b, l_s III) l_s > R, b
 - Easy Hard Easy again?
 - 2.3 Approaching gravitational collapse from region III
 - 2.4 A unitary S-matrix with precocious black-hole-like behaviour
- 3. Conclusions

The string-black hole correspondence curve

String vs Black-Hole entropy h = c = numerical factors =1 M_s, I_s = string mass, length scales

Tree-level string entropy Counting states (FV, BM ('69), HW ('70)) S_{st} = M/M_s = L/I_s = No. of string bits in the total string length NB: no coupling, no G appears! Black-Hole entropy $S_{BH} = M R_s = (R_s/L_P)^2 \sim M^2$ $(GM = R_s, 1/T_{BH} = dS/dM = R_s/h)$ to be contrasted with previous $S_{st} = M/M_s = L/l_s$

 $S_{st}/S_{BH} > 1 @ small M, S_{st}/S_{BH} < 1 @ large M$ Where do the two entropies meet? Obviously at $R_{5} = I_{s}$ i.e. at $T_{BH} = M_{s}!$ "string holes" = states satisfying this entropy matching condition

Using string unification @ the string scale,

$$(L_P/l_s)^2 = g_s^2 \sim \alpha_{GUT}$$

entropy matching occurs for

$$M = M_{sh} \equiv g_s^{-2} M_s = g_s^{-1} M_P$$

and the common value of S_{st} and S_{BH} is simply

$$S_{sh} = g_s^{-2} \sim \alpha_{GUT}^{-1}$$

In string theory g_s^2 is actually a field, the dilaton. Its value is free in perturbation theory Consider the (M, g_s^2) plane

The correspondence curve (critical collapse?)

Collapse @ fixed M. Gravitational binding can increase (log of) density of states from linear to quadratic in the physical mass.

Evaporation at fixed g_s or how to turn a BH into a string (Bowick, Smolin,... 1987)

String S-matrix at E >> M_P

Super-planckian-energy collisions of light particles within superstring theory. Why care? Theoretical Motivations I) As a geclanken experiment * To reproduce GR expectations at large distances * To probe how ST modifies GR at short distances

II) Information paradox

"Phenomenological" Motivations
Signatures of string/quantum gravity @ colliders:
* In KK models with large extra dimensions;
* In brane-world scenarios; in general:
* If we can lower the true QG scale down to the TeV

NB. Future colliders at best marginal for producing BHs!

Two complementary approaches (> 1987): A) Gross & Mende + Mende & Ooguri (1987-1990) B) 't-Hooft; Muzinich & Soldate; ACV (>1987); Verlinde & Verlinde; Kabat & Ortiz; FPVV;... de Haro; Arcioni; 't-Hooft; ... ('90s-'05) The two approaches are very different. Yet they agree incredibly well in the (small) region of phase space where both can be justified I will limit myself to describing B) and, in particular, the work of ACV (the only one, besides A) that considers the problem within string theory)

Gross-Mende-Ooguri (GMO) Calculation (GM, 1987-'88) of elastic string scattering at very high energy and fixed scattering angle θ (h+1 = number of exchanged gravitons):

$$A_{el} \sim (g_s)^{2+2h} \exp\left(-\frac{\alpha' s f(\theta)}{1+h}\right)$$

The amplitude is exponentially suppressed but the suppression decreases as we increase the number of exchanged gravitons. A resummation was performed by Mende and Ooguri (see below)

Amati, Ciafaloni, GV (ACV) et al. Work in energy-impact parameter space, A(E,b) (b ~ J/E) Go to arbitrarily high E while increasing b correspondingly: $b > R_S(E) \sim GE$ Go over to $A(E, q \sim \theta E)$ by FT trusting saddle p. contributions from above region Reach the regime of fixed $\theta << 1$ Compare w/ GMO in appropriate region

Tree level

At fixed b we have to compute (D=4 when not specified)

$$\delta(E,b) = \frac{1}{(2\pi)^{D-2}} \int d^{D-2}q \frac{A_{tree}(s,t)}{4s} e^{-iqb} , \ s = E^2, \ t = -q^2$$

For the real part we get, at large b,

$$Re\delta \sim Gs \ logb^2$$

Consequences

The graviton being "reggeized" in string theory, we also get

$$Im\delta \sim \frac{G_D \, s \, l_s^2}{(Yl_s)^{D-2}} e^{-b^2/b_I^2}, \, b_I^2 \equiv l_s^2 Y^2, \, Y = \sqrt{log(\alpha's)}$$

Since Im A has no Coulomb pole its FT is $exp.^{IIy}$ small at b $\gg b_I$

Tree level cont.^d

Tree level violates p.w. unitarity as s goes transplanckian
 Tree-level too large at fixed b, too small at fixed θ
 String loops take care of both problems!
 What do we expect from GR-type arguments?

Accretion at fixed g_s or how to turn a string into a black hole

I) Small angle scattering: relatively easy
 II) Large angle, collapse: very hard, all attempts have failed so far
 III) Stringy (easy again)

A single, compact formula covers regions I and III!

Unitary S-matrix in regions I and III

$$S = e^{2i\delta} e^{2i\sqrt{Im\delta} C^{\dagger}} e^{2i\sqrt{Im\delta} C}$$
$$[C, C^{\dagger}] = 1$$

$$\delta(E,b) = \frac{1}{(2\pi)^{D-2}} \int d^{D-2}q \frac{A_{tree}(s,t)}{4s} e^{-iqb} , \ s = E^2, \ t = -q^2$$

Actually δ becomes an operator, but we shall neglect this complication physically related to the «diffractive» excitation of each string by the tidal forces due to the other string

Another way of "cutting" the diagram

Diffractively produced closed strings

exchanged gravi-reggeons

We will instead concentrate on the operators C, C⁺ (appearing iff δ is not real) corresponding to the **«** Reggeization **»** and duality of graviton exchange in string theory.

NB: any number of gravi-Reggeons can be cut: AGK rules

heavy closed string produced

exchanged gravi-reggeons

Recall that:

$$Im\delta \sim \frac{G_D \, s \, l_s^2}{(Yl_s)^{D-2}} e^{-b^2/b_I^2}, \, b_I^2 \equiv l_s^2 Y^2, \, Y = \sqrt{log(\alpha's)}$$

Thus, for $b \gg b_{I}$ (Region I), we can forget about C, C⁺. Also:

$$Re\delta \sim G_D \, s \, \frac{b^{4-D}}{D-4}$$

Going over to scattering angle θ by FT, we find a saddle point:

$$b_s^{D-3} = rac{8\pi G_D \sqrt{s}}{\Omega_{D-2} heta}$$
 i.e. $\theta = rac{8\pi G_D \sqrt{s}}{\Omega_{D-2} b^{D-3}}$

corresponding precisely to the relation between b and θ in an AS metric*): clearly, fixed θ , large E probes large b

*) metric produced by a pointlike relativistic particle

Region III

Let us neglect (for a moment!) Im $\delta \neq 0$, C and C⁺

$$Re\delta = -\frac{G_D \, s \, b^2}{(Yl_s)^{D-2}}$$

The saddle point condition now gives the relation:

$$\theta = G_D \rho b , \ \rho = \frac{E}{(Yl_s)^{D-2}}$$

corresponding to deflection from an homogeneous beam of transverse size ~ I_s : θ_{max} ~ GE/ I_s^{D-3} reached for b ~ I_s

Analysis of final state in Region III

Take into account Im $\delta \neq 0$. C and C⁺ are now "activated". Recall:

$$S = e^{2i\delta} e^{2i\sqrt{Im\delta} C^{\dagger}} e^{2i\sqrt{Im\delta} C}$$

The elastic amplitude, $\langle 0|S|0\rangle$, is suppressed as exp(-2 Im δ):

$$\sigma_{el} \sim exp(-4Im\delta) = exp\left[-\frac{G_D \ s \ l_s^2}{(Y l_s)^{D-2}}\right] \equiv exp\left[-\frac{s}{M_*^2}\right]$$

 $M_* = \sqrt{M_s M_{sh}} \sim M_s g_s^{-1}$ (= M_P in D=4, M_{*} > M_P for D>4) If we go to E= E_{th} we find: $\sigma_{el} \sim exp(-g_s^{-2}) \sim exp(-S_{sh})$

Amagingly: M* is just the DO-brane mass scale!

Which final states saturate unitarity?

Recall once more:

$$S = e^{2i\delta} e^{2i\sqrt{Im\delta} C^{\dagger}} e^{2i\sqrt{Im\delta} C}$$

→ The final state, 5|0>, is a coherent state of quanta associated with C, C⁺. These quanta are just the closed strings dual to the gravi-reggeon (CGRs for "cut gravi-reggeons") The probability of producing n CGRs thus obeys a Poisson distribution with an average given by:

$$\langle N_{CGR} \rangle = 4Im\delta = \frac{G_D \ s \ l_s^2}{(Y l_s)^{D-2}} = O\left(\frac{s}{M_*^2}\right)$$

At this point we can compute the average energy of a final state/string associated with a single CGR:

$$\langle E \rangle_{CGR} = \frac{\sqrt{s}}{\langle N_{CGR} \rangle} \sim M_s Y^{D-2} \left(\frac{l_s}{R_s}\right)^{D-3} \sim T_{eff} \equiv \frac{M_*^2}{E} = \frac{M_s^2}{g_s^2 E}$$

We have thus found that final-state energies obey a sort of «anti-scaling» law

$$\langle E \rangle_{CGR} \sqrt{s} = M_*^2 = M_s^2 g_s^{-2}$$

This antiscaling is very unlike what we are familiar with in HEP

It is however similar to what we expect in BH physics! In particular: For D=4, T_{eff} ~ T_{Haw} even at E < E_{th}

We conclude that, at least below E_{th} , there is no loss of quantum coherence, but the spectra aren't thermal either

Above E_{th} we can no-longer neglect "classical" corrections corresponding to interactions among CGRs: these will hopefully turn the Poisson distribution into an approximately Planckian one

No reason to expect a breakdown of unitarity. If we could prepare as initial state:

$$|in\rangle = S^{\dagger}|0\rangle = e^{-2i\delta^{*}}e^{-2i\sqrt{Im\delta}C^{\dagger}}|0\rangle$$

the final state would be just a two-particle state!

Summarizing

- String theory pretends to be the way to combine the principles of quantum mechanics and general relativity in a consistent framework. As such it should provide answers to the physics of black holes and cosmology in regimes where quantum effects are important/dominant
- So far, most of the progress has been in the former problem as seen from an outside observer (the physics inside a black hole is similar to that of a big crunch in cosmology)
- We have seen that string theory may be able to provide a microscopic, stat. mech. interpretation of black hole entropy

We have also been able to recast the main results of ACV in the form of an approximate, but exactly unitary, S-matrix, whose range of validity covers a large region of the kinematic energy-angular-momentum plane; We have found a sort of precocious black-hole behaviour, in particular an « anti-scaling » dependence of $\langle E_f \rangle$ from E_i , reminiscent of the inverse relation between black-hole mass and temperature; this may have phenomenological applications in the context of the string/quantum-gravity signals expected at colliders in models with a low string/quantum-gravity scale.