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The initial-boundary value problem

@ Consider Einstein’s equations on compact spatial domain Q with
smooth outer boundary 02

@ 5y

) 90 % [0,1]

2(0)
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The initial-boundary value problem

@ Consider Einstein’s equations on compact spatial domain Q with
smooth outer boundary 02

@ 5y

) 90 % [0,1]

2(0)

@ Boundary conditions should
@ yield a well-posed initial-boundary value problem
@ be compatible with the constraints (constraint-preserving)
© minimize reflections, control incoming gravitational radiation
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Previous work

@ [Friedrich & Nagy 1999] formulation that satisfies all three
requirements for the fully nonlinear vacuum Einstein equations
(tetrad-based, evolves Weyl tensor)
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Previous work

@ [Friedrich & Nagy 1999] formulation that satisfies all three
requirements for the fully nonlinear vacuum Einstein equations
(tetrad-based, evolves Weyl tensor)

@ Necessary conditions for well-posedness can be verified using
pseudo-differential techniques (Fourier-Laplace analysis)
[Stewart 1998, Calabrese & Sarbach 2003, Sarbach & Tiglio
2005, Kreiss & Winicour 2006, R 2006]
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Previous work

@ [Friedrich & Nagy 1999] formulation that satisfies all three
requirements for the fully nonlinear vacuum Einstein equations
(tetrad-based, evolves Weyl tensor)

@ Necessary conditions for well-posedness can be verified using
pseudo-differential techniques (Fourier-Laplace analysis)
[Stewart 1998, Calabrese & Sarbach 2003, Sarbach & Tiglio
2005, Kreiss & Winicour 2006, R 2006]

@ Alternate approach to proving well-posedness via semigroup
theory [Reula & Sarbach 2005, Nagy & Sarbach 2006]

@ Improved absorbing boundary conditions [Lau 2004-5, Novak &
Bonazzola 2004, Buchman & Sarbach 2006]

@ Some alternatives: spatial compactification, Cauchy-characteristic
and Cauchy-perturbative matching, hyperboloidal slices, . ..
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(Generalized) harmonic gauge

@ Harmonic coordinates
Ox2 =0
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(Generalized) harmonic gauge

@ Generalized harmonic coordinates [Friedrich 1985]

Ox® = H3(x, )
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(Generalized) harmonic gauge

@ Generalized harmonic coordinates [Friedrich 1985]

Ox® = H3(x, )

@ Principal part of Einstein equations becomes wave operator on
metric ¥ 4p,
0 =Rap =~ _%Dwab
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(Generalized) harmonic gauge

@ Generalized harmonic coordinates [Friedrich 1985]

Ox® = H3(x, )

@ Principal part of Einstein equations becomes wave operator on

metric ¥ 4p,
0 =Rap =~ _%Dwab

@ Symmetric hyperbolic system, Cauchy problem is well-posed
[Choquet-Bruhat 1952]

@ Subject to constraints

CaEHa—DXa:Ha+rabb:O

6/33

Oliver Rinne (Caltech) GH Boundary Conditions: Stability&Accuracy GeoNum 11/21/2006



First-order reduction

@ [Lindblom et al. 2006] Introduce new variables for first time and
spatial derivatives of metric

MNap = —t°Octap, Piab = GiVap

(t* normal to t = const hypersurfaces, indices i,j,... = 1,2, 3)
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First-order reduction

@ [Lindblom et al. 2006] Introduce new variables for first time and
spatial derivatives of metric

MNap = —t°Octap, Piab = GiVap

(t* normal to t = const hypersurfaces, indices i,j,... = 1,2, 3)
@ New constraints

Ciab = Oitbap — Piap = 0,  Cijap = 29} Pjjap = 0
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First-order reduction

@ [Lindblom et al. 2006] Introduce new variables for first time and
spatial derivatives of metric

MNap = —t°Octap, Piab = GiVap

(t* normal to t = const hypersurfaces, indices i,j,... = 1,2, 3)
@ New constraints

Ciab = Oitbap — Piap = 0,  Cijap = 29} Pjjap = 0
@ To principal parts, obtain

OhvYan ~ O,
OMap =~ N¥OMap — Ng¥ 0 Diap + 72N O thap,
K DPiap ~ NKODiap — N Map + Nv20i1ap,

Jab = Yap + taty spatial metric, (0;)? = Nt? + N2 lapse & shi
( () ial ic, ()2 a4 N2 | & shift)
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Characteristic structure

@ System is symmetric hyperbolic, characteristic variables in
direction n; are

Ugb = Yab, speed O,
ualt:)t = Map =+ Pnap — V2%ab, speed — N" £ N,

2 n
Uaap = Paab, speed — N

(Vo = niv', va = PV, boundary metric P = gj — nin;)
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Characteristic structure

@ System is symmetric hyperbolic, characteristic variables in
direction n; are

u%, = va, speed O,
ab = MNap &= Pnap — Y2Yab, speed — N" £ N,
uAab = Ppap, speed — NP

(Vo = niv', va = PV, boundary metric P = gj — nin;)
@ Note dependence of speeds on normal component N" of shift
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9 Construction of boundary conditions
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Constraint-preserving boundary conditions

@ Constraints obey subsidiary system

OCa~0
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Constraint-preserving boundary conditions

@ Constraints obey subsidiary system

OCa~0

@ Set incoming modes of this system to zero at the boundary
(in contrast, [Kreiss & Winicour 2006] use Cy = 0)
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Constraint-preserving boundary conditions

@ Constraints obey subsidiary system

OCa~0

@ Set incoming modes of this system to zero at the boundary
(in contrast, [Kreiss & Winicour 2006] use Cy = 0)

@ Obtain conditions on normal derivatives of 4 components of main
incoming fields u',

PSC0,uly = (tangential derivatives),

where PC is projection operator with rank 4

Oliver Rinne (Caltech) GH Boundary Conditions: Stability&Accuracy GeoNum 11/21/2006



Constraint-preserving boundary conditions

@ Constraints obey subsidiary system

OCa~0

@ Set incoming modes of this system to zero at the boundary
(in contrast, [Kreiss & Winicour 2006] use Cy = 0)

@ Obtain conditions on normal derivatives of 4 components of main
incoming fields u',

PSC0,uly = (tangential derivatives),

where PC is projection operator with rank 4
@ If N">0 then u%_, also need boundary conditions, obtained by
requiring
Cnhaab = 0 = OnPapc = IaPnnc

Oliver Rinne (Caltech) GH Boundary Conditions: Stability&Accuracy GeoNum 11/21/2006 10/33



Physical boundary conditions

@ Incoming gravitational radiation < Newman-Penrose scalar
\Uo = Cabcdlamblcmd,

{12 = (t2 4+ n?)/v/2,k? = (t2 —n?)/v/2,m?, Mm?} complex null tetrad
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Physical boundary conditions

@ Incoming gravitational radiation < Newman-Penrose scalar
\Uo = Cabcdlamblcmd,

{12 = (t2 4+ n?)/v/2,k? = (t2 —n?)/v/2,m?, Mm?} complex null tetrad
@ We impose the BC
Vo =0
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Physical boundary conditions

@ Incoming gravitational radiation < Newman-Penrose scalar
\Uo = Cabcdlamblcmd

{12 = (t* + n?)/v/2,k?® = (t* —n?)/v/2,m?® m?} complex null tetrad
@ We impose the BC

@ Rewrite as
PFR9o,ul, = (tangential derivatives) + hf,,

where PP has rank 2 and is orthogonal to P¢
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Physical boundary conditions

@ Incoming gravitational radiation < Newman-Penrose scalar
\Uo = Cabcdlamblcmd

{12 = (t* + n?)/v/2,k?® = (t* —n?)/v/2,m?® m?} complex null tetrad
@ We impose the BC

@ Rewrite as

PFR9o,ul, = (tangential derivatives) + hf,,

where PP has rank 2 and is orthogonal to P¢

@ Lowest level in a hierarchy of perfectly absorbing BCs for
linearized gravitational waves [Luisa Buchman’s talk]
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Gauge boundary conditions

@ Remaining gauge freedom x# — x2 + £2 provided that

062 =0
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Gauge boundary conditions

@ Remaining gauge freedom x# — x2 + £2 provided that
062 =0
@ Induced metric change

Yab — Yab — 20(alb)
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Gauge boundary conditions

@ Remaining gauge freedom x# — x2 + £2 provided that
02 =0
@ Induced metric change
Yab — Yab — 20(alb)

@ Ideally, impose absorbing BC on £2
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Gauge boundary conditions

@ Remaining gauge freedom x# — x2 + £2 provided that
02 =0
@ Induced metric change
Yab — Yab — 20(alb)

@ Ideally, impose absorbing BC on £2
@ To leading order in inverse radius, a suitable BC is

Pa?de(UéJ + v2%ap) =0

where P€ has rank 4 and P€ + PP + PG =1
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Gauge boundary conditions

@ Remaining gauge freedom x# — x2 + £2 provided that
02 =0
@ Induced metric change
Yab — Yab — 20(alb)

@ Ideally, impose absorbing BC on £2
@ To leading order in inverse radius, a suitable BC is

P%“(Ui; + Y2%ap) = hS,

where P€ has rank 4 and P€ + PP + PG =1
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e Stability analysis
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Fourier-Laplace analysis

@ Consider high-frequency perturbations about any given spacetime
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Fourier-Laplace analysis

@ Consider high-frequency perturbations about any given spacetime

@ Obtain linear symmetric hyperbolic system with constant
coefficients
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Fourier-Laplace analysis

@ Consider high-frequency perturbations about any given spacetime

@ Obtain linear symmetric hyperbolic system with constant
coefficients

@ Solve by Laplace transform in time and Fourier transform in space
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Fourier-Laplace analysis

@ Consider high-frequency perturbations about any given spacetime

@ Obtain linear symmetric hyperbolic system with constant
coefficients

@ Solve by Laplace transform in time and Fourier transform in space

@ Boundary conditions imply linear system of equations for
integration constants
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Fourier-Laplace analysis

@ Consider high-frequency perturbations about any given spacetime

@ Obtain linear symmetric hyperbolic system with constant
coefficients

@ Solve by Laplace transform in time and Fourier transform in space

@ Boundary conditions imply linear system of equations for
integration constants

@ Study zeros of its (complex) determinant = necessary conditions
for well-posedness (determinant condition and Kreiss condition)
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Fourier-Laplace analysis

@ Consider high-frequency perturbations about any given spacetime

@ Obtain linear symmetric hyperbolic system with constant
coefficients

@ Solve by Laplace transform in time and Fourier transform in space

@ Boundary conditions imply linear system of equations for
integration constants

@ Study zeros of its (complex) determinant = necessary conditions
for well-posedness (determinant condition and Kreiss condition)

@ GH system satisfies both conditions [R 2006]
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Towards sufficient conditions

@ Kreiss condition implies that solution can be estimated in terms of
boundary data (boundary-stable)
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Towards sufficient conditions

@ Kreiss condition implies that solution can be estimated in terms of
boundary data (boundary-stable)
@ One would also like to control

@ source terms (well-posedness in the generalized sense)
e initial data (well-posedness)
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Towards sufficient conditions

@ Kreiss condition implies that solution can be estimated in terms of
boundary data (boundary-stable)

@ One would also like to control
@ source terms (well-posedness in the generalized sense)
e initial data (well-posedness)

@ Proof via symmetrizer construction [Kreiss 1970]
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Towards sufficient conditions

@ Kreiss condition implies that solution can be estimated in terms of
boundary data (boundary-stable)
@ One would also like to control

@ source terms (well-posedness in the generalized sense)
e initial data (well-posedness)

@ Proof via symmetrizer construction [Kreiss 1970]
@ Technique not applicable to boundary conditions of differential
type
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Towards sufficient conditions

@ Kreiss condition implies that solution can be estimated in terms of
boundary data (boundary-stable)
@ One would also like to control
@ source terms (well-posedness in the generalized sense)
e initial data (well-posedness)
@ Proof via symmetrizer construction [Kreiss 1970]
@ Technique not applicable to boundary conditions of differential
type
@ Can show that system is free of weak instabilities with polynomial
time dependence
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Numerical robust stability test

@ Consider fixed background solution (Minkowski or Schwarzschild)
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Numerical robust stability test

@ Consider fixed background solution (Minkowski or Schwarzschild)

@ Add small random perturbations to initial data, boundary data and
right-hand-sides of evolution equations
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Numerical robust stability test

@ Consider fixed background solution (Minkowski or Schwarzschild)

@ Add small random perturbations to initial data, boundary data and
right-hand-sides of evolution equations

@ Evolve on domain T2 x R, impose BCs in transverse direction
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Numerical robust stability test

@ Consider fixed background solution (Minkowski or Schwarzschild)

@ Add small random perturbations to initial data, boundary data and
right-hand-sides of evolution equations

@ Evolve on domain T2 x R, impose BCs in transverse direction

@ Pseudospectral collocation method [Caltech-Cornell Spectral
Einstein Code]
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Numerical robust stability test

@ Consider fixed background solution (Minkowski or Schwarzschild)

@ Add small random perturbations to initial data, boundary data and
right-hand-sides of evolution equations

@ Evolve on domain T2 x R, impose BCs in transverse direction

@ Pseudospectral collocation method [Caltech-Cornell Spectral
Einstein Code]

@ Monitor error (deviation from background solution) and constraint
violations
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Schwarzschild
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@ Accuracy comparisons
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Some alternative boundary treatments

@ Freezing all the incoming fields

ulf =0  (and ui,, =0 if N"30)
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Some alternative boundary treatments

@ Freezing all the incoming fields
ulf =0  (and ui,, =0 if N"30)
@ Sommerfeld boundary conditions (popular for BSSN formulation),

for spherical boundary of radius r = R,

(8t +6r + %)wab =0

Oliver Rinne (Caltech) GH Boundary Conditions: Stability&Accuracy GeoNum 11/21/2006 21/33



Some alternative boundary treatments

@ Freezing all the incoming fields

ulf =0  (and ui,, =0 if N"30)

@ Sommerfeld boundary conditions (popular for BSSN formulation),
for spherical boundary of radius r = R,

(at + 0 + %)wab =0

@ Spatial compactification [Pretorius 2005]
e Choose mapping r — x(r) that maps spatial infinity to a finite
coordinate location, e.g. x = arctan r
@ Discretize uniformly in x

e Apply low-pass frequency filter to damp waves as they travel out
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Our test problem

[Ongoing work with Lee Lindblom and Mark Scheel]
@ Background solution: Schwarzschild black hole (mass M = 1)
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Our test problem

[Ongoing work with Lee Lindblom and Mark Scheel]
@ Background solution: Schwarzschild black hole (mass M = 1)

@ Add outgoing quadrupole wave perturbation [Teukolsky 1982],
amplitude 4 x 10~2 (odd-parity)
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Our test problem

[Ongoing work with Lee Lindblom and Mark Scheel]
@ Background solution: Schwarzschild black hole (mass M = 1)

@ Add outgoing quadrupole wave perturbation [Teukolsky 1982],
amplitude 4 x 10~2 (odd-parity)

@ Evolve on a spherical shell extending from r = 1.9 (just inside the
horizon) out to

e R = 1000 (reference solution)
e R=419,819,...
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Our test problem

[Ongoing work with Lee Lindblom and Mark Scheel]
@ Background solution: Schwarzschild black hole (mass M = 1)
@ Add outgoing quadrupole wave perturbation [Teukolsky 1982],
amplitude 4 x 10~2 (odd-parity)
@ Evolve on a spherical shell extending from r = 1.9 (just inside the
horizon) out to
e R = 1000 (reference solution)
e R=419,819,...
@ On the smaller domain, either impose the boundary conditions
described in this talk or apply one of the alternative methods
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Our test problem

[Ongoing work with Lee Lindblom and Mark Scheel]
@ Background solution: Schwarzschild black hole (mass M = 1)

@ Add outgoing quadrupole wave perturbation [Teukolsky 1982],
amplitude 4 x 10~2 (odd-parity)
@ Evolve on a spherical shell extending from r = 1.9 (just inside the
horizon) out to
@ R = 1000 (reference solution)
e R=419,819,...
@ On the smaller domain, either impose the boundary conditions
described in this talk or apply one of the alternative methods

@ Compute difference of the two numerical solutions, compare in-
and outgoing radiation (Vg and W,), ...
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Old * (solid) vs. new (dotted) CPBCs
(* without the ~,v term in the gauge BCs)
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Freezing (solid) vs. new CP (dotted) BCs

e

. . | . .3 E . | . | . | . . ]
200 400 600 800 1000 0 200 400 / 600 800 1000
t/M

R =419, (N;,L) = (21,8),(31,10), (41,12), (51, 41)

Oliver Rinne (Caltech) GH Boundary Conditions: Stability&Accuracy GeoNum 11/21/2006 2433



o)

A

Sommerfeld (solid) vs. new CP (dotted) BCs
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Tan compactification with various filters vs. new CPBCs

°h w( WM"MYM/ —

. . . | . | . il E . | . | . 3
0 200 400 600 800 1000 0 200 400 600 800 1000
t

New constraint-preserving BCs
Kreiss-Oliger filter (e = 1) applied to RHS
Hesthaven filter (c = 0.76,p = 13) applied to RHS
Kreiss-Oliger filter (¢ = 0.25) applied to solution
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o0

A

Tan compactification with best filter (solid) vs. new CPBCs (dotted)
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The reflection coefficient: theory vs. “experiment”

[Buchman & Sarbach 2006] predict for our CPBCs
Wo/Ws = §(kR) ™ + O[(kR) "]

R=121.9
E — T T T

lO—G; — kllo
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(Nr,L) = (51,14)
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Outline

e Summary
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@ Constructed a set of constraint-preserving and
radiation-controlling boundary conditions for the generalized
harmonic Einstein equations
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@ Constructed a set of constraint-preserving and
radiation-controlling boundary conditions for the generalized
harmonic Einstein equations

@ Verified necessary conditions for well-posedness using the

Fourier-Laplace technigue, supported by numerical robust stability
tests
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@ Constructed a set of constraint-preserving and
radiation-controlling boundary conditions for the generalized
harmonic Einstein equations

@ Verified necessary conditions for well-posedness using the
Fourier-Laplace technigue, supported by numerical robust stability
tests

@ Numerical results indicate that our BCs cause significantly less
reflections than alternate methods such as spatial
compactification or Sommerfeld BCs
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Spatial compactification: details

Compactification map e.g. 5 /,
— Inverse
@ r(x) = R tan(nx /4R) JLEE
(Tan mapping) 3t
X, 0<x<R 2]
@ r(x) =
{Rz/(2R—x), R<x <2R 1t
(Inverse mapping) 0 | |

Filter function e.g. 1
@ f(k) =1 — e sin*(7k /2Kmax ),
where0 <e<1

(Kreiss-Oliger filter) 05+

@ f(k) = exp[—(k/oKmax)P], ~ K0 (6= 25) ‘
typically o0 = 0.76, p = 13 - Eé;ct)ﬁ.((so_:l.)76,p:13)
(Hesthaven filter) o5 05 1
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