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The initial-boundary value problem

Consider Einstein’s equations on compact spatial domain Ω with
smooth outer boundary ∂Ω

Σ(0)

∂Ω× [0, t ]

Ω
Σ(t)

∂t

ni

Boundary conditions should
1 yield a well-posed initial-boundary value problem
2 be compatible with the constraints (constraint-preserving)
3 minimize reflections, control incoming gravitational radiation
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Previous work

[Friedrich & Nagy 1999] formulation that satisfies all three
requirements for the fully nonlinear vacuum Einstein equations
(tetrad-based, evolves Weyl tensor)

Necessary conditions for well-posedness can be verified using
pseudo-differential techniques (Fourier-Laplace analysis)
[Stewart 1998, Calabrese & Sarbach 2003, Sarbach & Tiglio
2005, Kreiss & Winicour 2006, R 2006]

Alternate approach to proving well-posedness via semigroup
theory [Reula & Sarbach 2005, Nagy & Sarbach 2006]

Improved absorbing boundary conditions [Lau 2004-5, Novak &
Bonazzola 2004, Buchman & Sarbach 2006]

Some alternatives: spatial compactification, Cauchy-characteristic
and Cauchy-perturbative matching, hyperboloidal slices, . . .
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(Generalized) harmonic gauge

Harmonic coordinates
�xa = 0

Principal part of Einstein equations becomes wave operator on
metric ψab,

0 = Rab ' −1
2�ψab

Symmetric hyperbolic system, Cauchy problem is well-posed
[Choquet-Bruhat 1952]

Subject to constraints

Ca ≡ Ha −�xa = Ha + Γab
b = 0
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First-order reduction

[Lindblom et al. 2006] Introduce new variables for first time and
spatial derivatives of metric

Πab ≡ −tc∂cψab, Φiab ≡ ∂iψab

(ta normal to t = const. hypersurfaces, indices i , j , . . . = 1,2,3)

New constraints

Ciab ≡ ∂iψab − Φiab = 0, Cijab ≡ 2∂[iΦj]ab = 0

To principal parts, obtain

∂tψab ' 0,

∂tΠab ' Nk∂kΠab − Ngki∂kΦiab + γ2Nk∂kψab,

∂tΦiab ' Nk∂kΦiab − N∂iΠab + Nγ2∂iψab,

(gab = ψab + tatb spatial metric, (∂t)
a = Nta + Na lapse & shift)
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Characteristic structure

System is symmetric hyperbolic, characteristic variables in
direction ni are

u0
ab = ψab, speed 0,

u1±
ab = Πab ± Φnab − γ2ψab, speed− Nn ± N,

u2
Aab = ΦAab, speed− Nn

(vn ≡ niv i , vA ≡ PAiv i , boundary metric Pij ≡ gij − ninj )

Note dependence of speeds on normal component Nn of shift

Oliver Rinne (Caltech) GH Boundary Conditions: Stability&Accuracy GeoNum 11/21/2006 8 / 33



university-logo

Characteristic structure

System is symmetric hyperbolic, characteristic variables in
direction ni are

u0
ab = ψab, speed 0,

u1±
ab = Πab ± Φnab − γ2ψab, speed− Nn ± N,

u2
Aab = ΦAab, speed− Nn

(vn ≡ niv i , vA ≡ PAiv i , boundary metric Pij ≡ gij − ninj )

Note dependence of speeds on normal component Nn of shift

Oliver Rinne (Caltech) GH Boundary Conditions: Stability&Accuracy GeoNum 11/21/2006 8 / 33



university-logo

Outline

1 Introduction

2 Construction of boundary conditions

3 Stability analysis

4 Accuracy comparisons

5 Summary

Oliver Rinne (Caltech) GH Boundary Conditions: Stability&Accuracy GeoNum 11/21/2006 9 / 33



university-logo

Constraint-preserving boundary conditions

Constraints obey subsidiary system

�Ca ' 0

Set incoming modes of this system to zero at the boundary
(in contrast, [Kreiss & Winicour 2006] use Ca

.
= 0)

Obtain conditions on normal derivatives of 4 components of main
incoming fields u1−,

PC cd
ab ∂nu1−

cd
.
= (tangential derivatives),

where PC is projection operator with rank 4
If Nn>̇0 then u2

Aab also need boundary conditions, obtained by
requiring

CnAab
.
= 0⇒ ∂nΦAbc

.
= ∂AΦnbc
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Physical boundary conditions

Incoming gravitational radiation⇔ Newman-Penrose scalar

Ψ0 = Cabcd lamblcmd ,

{la = (ta + na)/
√

2, ka = (ta− na)/
√

2,ma, m̄a} complex null tetrad

We impose the BC
Ψ0

.
= 0

Rewrite as

PP cd
ab ∂nu1−

cd
.
= (tangential derivatives) + hP

ab,

where PP has rank 2 and is orthogonal to PC

Lowest level in a hierarchy of perfectly absorbing BCs for
linearized gravitational waves [Luisa Buchman’s talk]
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Gauge boundary conditions

Remaining gauge freedom xa → xa + ξa provided that

�ξa = 0

Induced metric change

ψab → ψab − 2∂(aξb)

Ideally, impose absorbing BC on ξa

To leading order in inverse radius, a suitable BC is

PG cd
ab (u1−

cd + γ2ψab)
.
= 0

where PG has rank 4 and PC + PP + PG = I
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Fourier-Laplace analysis

Consider high-frequency perturbations about any given spacetime

Obtain linear symmetric hyperbolic system with constant
coefficients

Solve by Laplace transform in time and Fourier transform in space

Boundary conditions imply linear system of equations for
integration constants

Study zeros of its (complex) determinant⇒ necessary conditions
for well-posedness (determinant condition and Kreiss condition)

GH system satisfies both conditions [R 2006]
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Towards sufficient conditions

Kreiss condition implies that solution can be estimated in terms of
boundary data (boundary-stable)
One would also like to control

source terms (well-posedness in the generalized sense)
initial data (well-posedness)

Proof via symmetrizer construction [Kreiss 1970]

Technique not applicable to boundary conditions of differential
type

Can show that system is free of weak instabilities with polynomial
time dependence
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Numerical robust stability test

Consider fixed background solution (Minkowski or Schwarzschild)

Add small random perturbations to initial data, boundary data and
right-hand-sides of evolution equations

Evolve on domain T 2 × R, impose BCs in transverse direction

Pseudospectral collocation method [Caltech-Cornell Spectral
Einstein Code]

Monitor error (deviation from background solution) and constraint
violations
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Monitor error (deviation from background solution) and constraint
violations
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Flat space without shift
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Flat space with constant shift

0 200 400 600 800 1000
 t

0.0

5.0×10
-10

1.0×10
-9

1.5×10
-9

2.0×10
-9

||E
|| 2

  9 points
15 points
21 points
27 points

N
 i

= (0.5, 0.5, 0)

0 200 400 600 800 1000
t

1×10
-9

1×10
-8

||C
|| 2

  9 points
15 points
21 points
27 points

N
 i

= (0.5, 0.5, 0)

Random data amplitude 10−10

Oliver Rinne (Caltech) GH Boundary Conditions: Stability&Accuracy GeoNum 11/21/2006 18 / 33



university-logo

Schwarzschild

0 200 400 600 800 1000
 t / M

0

1×10
-5

2×10
-5

3×10
-5

4×10
-5

5×10
-5

||E
|| 2

N
r
 = 15, L = 11

N
r
 = 21, L = 15

N
r
 = 27, L = 19

0 200 400 600 800 1000
t / M

0

1×10
-5

2×10
-5

3×10
-5

4×10
-5

|| C
|| 2

N
r
 = 15, L = 11

N
r
 = 21, L = 15

N
r
 = 27, L = 19

Random data amplitude 10−6

Oliver Rinne (Caltech) GH Boundary Conditions: Stability&Accuracy GeoNum 11/21/2006 19 / 33



university-logo

Outline

1 Introduction

2 Construction of boundary conditions

3 Stability analysis

4 Accuracy comparisons

5 Summary
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Some alternative boundary treatments

Freezing all the incoming fields

u1−
ab

.
= 0 (and u2

Aab
.
= 0 if Nn>̇0)

Sommerfeld boundary conditions (popular for BSSN formulation),
for spherical boundary of radius r = R,

(∂t + ∂r + 1
R )ψab

.
= 0

Spatial compactification [Pretorius 2005]
Choose mapping r → x(r) that maps spatial infinity to a finite
coordinate location, e.g. x = arctan r
Discretize uniformly in x
Apply low-pass frequency filter to damp waves as they travel out
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Our test problem

[Ongoing work with Lee Lindblom and Mark Scheel]

Background solution: Schwarzschild black hole (mass M = 1)

Add outgoing quadrupole wave perturbation [Teukolsky 1982],
amplitude 4× 10−3 (odd-parity)
Evolve on a spherical shell extending from r = 1.9 (just inside the
horizon) out to

R = 1000 (reference solution)
R = 41.9,81.9, . . .

On the smaller domain, either impose the boundary conditions
described in this talk or apply one of the alternative methods

Compute difference of the two numerical solutions, compare in-
and outgoing radiation (Ψ0 and Ψ4), . . .
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Old ∗ (solid) vs. new (dotted) CPBCs
( ∗ without the γ2ψ term in the gauge BCs)
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R = 41.9, (Nr ,L) = (21,8), (31,10), (41,12), (51,41)
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Freezing (solid) vs. new CP (dotted) BCs
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Sommerfeld (solid) vs. new CP (dotted) BCs
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Tan compactification with various filters vs. new CPBCs
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Kreiss-Oliger filter (ε = 1) applied to RHS
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R = 41.9, (Nr ,L) = (51,14)
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Tan compactification with best filter (solid) vs. new CPBCs (dotted)
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Accuracy of extracted Ψ4
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The reflection coefficient: theory vs. “experiment”

[Buchman & Sarbach 2006] predict for our CPBCs

Ψ0/Ψ4 = 4
9(kR)−4 + O[(kR)−5]
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Outline

1 Introduction

2 Construction of boundary conditions

3 Stability analysis

4 Accuracy comparisons

5 Summary
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Summary

Constructed a set of constraint-preserving and
radiation-controlling boundary conditions for the generalized
harmonic Einstein equations

Verified necessary conditions for well-posedness using the
Fourier-Laplace technique, supported by numerical robust stability
tests

Numerical results indicate that our BCs cause significantly less
reflections than alternate methods such as spatial
compactification or Sommerfeld BCs
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Spatial compactification: details

Compactification map e.g.

r(x) = R tan(πx/4R)
(Tan mapping)

r(x) =

{
x , 0 6 x < R

R2/(2R − x), R 6 x < 2R
(Inverse mapping)
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Filter function e.g.

f (k) = 1− ε sin4(πk/2kmax),
where 0 6 ε 6 1
(Kreiss-Oliger filter)

f (k) = exp[−(k/σkmax)p],
typically σ = 0.76, p = 13
(Hesthaven filter) 0 0.5 1
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