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1. Introduction

Secular and dynamical bar mode instability

Magnitude ot Rotation T: Rotational kinetic energy
B=T/W W: Gravitational binding energy
Toroidal mode analysis in Maclaurin spheroid (Chandrasekhar 69)
Lagrangian __iwt
displacement St @) = e ()
w =20
Secular instability Neutral point
Bsec =~ 0.14 Star becomes unstable when
Tsec ™~ Tvis or Tgw we take dissipation into account
w? =0
Dynamical instability Dynamically unstable
Bayn =~ 0.27 Star becomes unstable
Tayn ~ (GP)™Y/? K Tuec due to hydrodynamics (rotation)

R
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Secular instability in the low temperature limit

e \/iscosity driven instability (Roberts,Stewartson 1963)

Configuration transits to lower energy state due to viscosity
Sets in when a mode has a zero-frequency in the frame rotating
with the star

w4+ mf) =0 m=-2 mode

Astrophysical scenario
tev > tvisa tmag

High viscosity =) Maintains
Strong magnetic field uniform rotation

Accreting neutron star

@NGSL, Michigan
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e Gravitational wave driven instability (Chandrasekhar 70, Friedman Schutz 78)

Configuration transits to lower energy state due to gravitational radiation
Sets in when the backward going mode is dragged forward in the inertial
frame

w—mf =0 m=2 mode
Astrophysical scenario

tev < tvisa tmag

Low viscosity ) Leads to :
Magnetic braking differential rotation = l

neutron star

Newly born neutron star @Chandra web site

The opponent effects competes with each other !
(Detweiler, Lindblom 1977)

e.g. Viscosity driven instability is stablized by the gravitational radiation
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Gravitational wavés from bar mode

Mechanism

Global rotational instabilities in fluids arise from nonaxisymmetric
bar mode

Quadrupole formula
Energy Flux

5 3
- e (3) (7

dt 45 R %4
M (2

Gravitational Waveform

1 d?
€ 2 > Th_|_ — iﬁ(lxx — Iyy)
I{ 2
— —§]\4R2Q2 cos 20
hy = d2[ ——gMRQQ2 in 2€2t
T = gty T 3 >

Feature
Frequency is 2/m since the bar spins its center of mass
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2. Bifurcation theory in Newtonian gravity

Riemann S-type ellipsoid

Nonaxisymmetric body with one principal rotational axis

(including a uniform vorticity)

¢ ~ab
:E—Const. x_a2+b2f
® Maclaurin spheroid .

Uniformly rotating axisymmetric
® incompressible body
a =0b,{) = (). f=0
® Jacobi ellipsoid

Uniformly rotating nonaxisymmetric
® incompressible body
() = Q) f=0
® Dedekind ellipsoid

Differentially rotating nonaxisymmetric incompressible body
f =+
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' - " istodoulou et al. 1
Meaning of the secular instability |kttt

E
e Solely L conservation f

Free-energy function E:
L? (a+bx)? + (b+ ax)?

Bifurcation

E= 2 a2 + b2 + 2abx Al(@,0,9) Energy
OE  L2*(a—b)% L: Angular momentum dissipation
Ox  (a®+0°+2abz)®  |: Moment of inertia
Energy minimum at z = 0 -LL
(2nd order derivative in x is possitive) | Energy contour
* Jacobi ellipsoid E L Teisz )]
Features A Enerdy -
_ o o Nonaxisymmetry fil . .
1. Maclaurin spheroid is the energy minimum e P minimium
state up to the bifurcation point b/al
2. Jacobi ellipsoid is the energy minimum state -
beyond the bifurcation point through the
variation of circulation °r
3. Bifurcation point corresponds to the neutral e e

point ‘c/a
Violation of the circulation is induced by viscous dissipation
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e Solely C conservation
Free-energy function E:

2 2 2 202 _ 2242,
_ " (atbz)" +(b+az) — 21(a, b, c) OB _ @ =b)°2  \here ' =1/x
2 [2ab+ (a? + b?)x|?

Ox' (a2 + 0% + 2aba’)?
Energy minimum at _ ——
(2nd order derivative in X’ is possitive) # Dedekind ellipsoid

Features B

1. Maclaurin spheroid is the energy minimum |
state up to the bifurcation point

2. Dedekind ellipsoid is the energy minimum | Bifurcation
state beyond the bifurcation point through point
the variation of angular momentum

3. Bifurcation point corresponds to the .C

neutral point

Energy
dissipation

Violation of the angular momentum is induced by
gravitational radiation
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3. Bifurcation theory in general relativity

Nonaxisymmetric spacetime

N : lapse
N" . correspond to shift
~ function of the

" spatial metric
Only true when the azimuthal variable is separable

ds® = —N?dt* + A*(dr — N"dt)* + r?A%(d§ — N?)
+r?sin? 0B*(dp — N¥Pdt)? A, B

Equilibrium state
N",N% =0 and all the functions only depend on (7, 6)
» Axisymmetric spacetime in quasi-isotropic coordinate

Nonaxisymmetric perturbation
In N = In Neg (1 + esin® 0 cos 2¢)

Treatment of the spacetime

1. Lapse and shift depend on (7, 6, ¢)

2. A and B depend on (r,6) M »
Fully constraint equations to be solved € X (_) ~ 10

Consistent up to 1/2 PN order satisfactory approximation!
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lterative evolution approach (Bonazzolla, Frieben, Gourgoulhon 96, 98)

Investigate nonaxisymmetric instability in quasi-static evolution in
general relativity

Advantage

e No restriction to the iteration (time) @
step J’

e Fully constraint scheme w

® (Coincidence of a bifurcation point in Jv

Newtonian incompressible star
(Gondek-Rosinska, Gourgoulhon 03) Impose bar-mode perturbation

Disadvantage
e The direction of time evolution is Iteration ' -
not clear in a strict sense Step

it : : Evoluti Unstabl Stabl
e Restriction to the axisymmetric (Evolution)  Unstable able
fluid flow
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¢ = max|In Ny| where InN, —

lllustration
q

-N

Unstable: q grows exponentially
through iteration

Precise measurement

0.05 T T T ]
N,=25,¢ =10~
amp

S
I =
o@ .

-0.05 | | |
20

No. 12 N

-
(o
o
-

o0
E In N,,,e'™?*
m=0

1

-N

Stable: g decays exponentially
through iteration

Investigate the logarithmic
derivative of g

Unstable: Positive value
Stable: Negative value
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4. Viscosity driven instability in rotating

relativistic stars

[plelelpleli=Eislle)[sRsi =6l (Gondek Rosinska, Gourgoulhon 2002)

M/R --- 10.022710.0438(0.0984 (0.15560.2000(0.2430
T/W [0.1375]0.1412{0.1446|0.1539(0.1642|0.1729|0.1822

Relativistic gravitation stabilizes the system from viscosity

driven instability
The above statement also agrees with the pN results in incompressible

stars (Di-Girolamo, Vietri 02)
Rigidly rotating polytropic stars (Bonazzola, Frieben, Gourgoulhon 98)
2t . Investigate the stability at
N g mass-shedding limit
S | Relativistic gravitation stabilizes
N | the system from viscosity driven
1 instability
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Rigidly rotatlng stars |n Newtonlan gravity

3L "1 (Bonazzola, Frieben, Gourgoulhon 1996)
S RERGeEEEEEEEEEEEEE R - -] _

sl | T/W ~0.135%« * 1 Compressible stars have
e « ¥ | slightly lower criterion of T/W
Saf | K | | than in the incompressible star

| | _
mass- shecd'ing 25 | I

limit 7

FiG. 3—Rat10 of the kinetic energy T to the gravitational potential
energy W at the triaxial Jacobi-like bifurcation point along a sequence of
rotating Newtonian polytropes, as a function of the adiabatic index y. The
dashed horizontal line corresponds to the theoretical value of T/| W | for
incompressible Maclaurin spheroids.
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Rigidly rotating s#ars In general relativity EERcTET L0

0.180 | | | -
0170 =

/-:5 0.1602— Mass shedding lim’it’ P . M_;R 015

= 0.150 _-"eo ¢ : MR = 0.10

S~ — -

- .” e M/R = 0.05
Sl .70 o 9 ® o MR=001
- . - 0, O _|
0.130— @ =
0.12 7 | 2?4 | | 2|.6 | | 2|.8 | —

Polytropic equation of state

e Relativistic gravitation stabilizes viscosity driven instability
® The bifurcation point is not so sensitive to the stiffness of
the equation of state
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Differentially rotating stars in general relativity

e Due to viscous friction, the angular momentum distribution should be

changed

e We assume that it is small and still remains the present angular

momentum distribution

1. Fixed rotation profile I'=2

Rotation raw (equilibrium state)

A%,
QNw2+A2 A:ReHQO/QeqNQ

Relaxes the restriction of the mass-shedding
limit in rigid rotation

Differentially rotation also stabilizes the sytem

But do you believe this current result?

No. 16

M/R = (.20 02

— @ _

024 — —

— @

0.23— —

- .
!5 - —
= 021 —
- | _
02— @—
0.19— —

- @ _

0.18
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2. Varied rotation profile

Helical Killing vector &M - timelike Killing vector

B ep p
kB =&+ (hx x" : rotational Killing vector

() = Constant » stationary

otherwise static configuration But lazy physicist ...

Variation of rotation profile

Ar_o% _ Ar—oi(eq)[l - (N _ Nptb)] Adj_ust | Eomg/&“mt ’[O.
maintain J conservation

Qe = Qgeq) 1 — Comg (N — Npep)] throughout the iteration
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Fixed rotation profile Varied rotation profile

0001 I T TTTTTT 77771 0005 E == 0.2354
~M/R=0.15 | 0.002 ;M/R:O b T/W' = 0.2353
~ - T/W = O_23§4 - 0.0015 é
~ 0 F — ~ 0= —
AN T/W=0.2853 'S F T/\WWE=0.2348
. - 0002 =
I . Sl L L B
_0.0010||||5|0| ||1(|)(;|||1;;|||200 0,003 L L
N N

All T/W around the threshold in fixed
rotation profile become unstable due to the

A T/W
change of angular momentum distribution

Tang Thar

. 0.2348 | 2.0E2 -4 8E2
Timescales from the

computational results 0.2352 | 2.0E2 | -1.7E3
Thar = (4/q) " 0.2353 | 1.9E2 | -3.4E4

Tang = (G/q)7/? 0.2354 | 1.92 | 5.9E3
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Timescales based on Newtonian Navie-Stokes equation
e E-folding time of the variation of rotation profile
R?  Q,

® Tang = v . — (g

e (Growth timescale of the bar mode
knR?  DBsec
5V 6 o 5880

Adjusted timescales for computation

Toar 6_1 QC o QS 6sec
+ ore Qc: 6 o ﬁsec

—1
org

Tbar —

Tang = €

Taking into account of the table, the deviational ratio of T/W from the

one of fixed rotational profile is roughly the same order of ~ e,
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5. Summary

We study viscosity driven instability in both uniform and differential rotating
polytropic stars by means of iterative evolution approach in general relativity

e Relativistic gravitation stabilizes from the viscosity driven
instability, with respect to the Newtonian gravity

e Differential rotation also stabilizes the star significantly from the
viscosity driven instability, even we take the effect of angular
momentum distribution into account

e Gravitational waves can be detected in Advanced LIGO, but
require some spin-up process of neutron stars in low temperature
regime
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