
1No.
From Geometry to Numerics,

20 November 2006 @IHP, Paris, France

CONTENTS
1. Introduction
2. Bifurcation theory in Newtonian gravity
3. Bifurcation theory in general relativity
4. Viscosity driven instability in rotating relativistic stars
5. Summary

Viscosity driven instability 
in rotating relativistic stars

Motoyuki Saijo (University of Southampton)

Eric Gourgoulhon (Observatoire de Paris)



2No.
 From Geometry to Numerics,

20 November 2006 @IHP, Paris, France

1. Introduction

Secular and dynamical bar mode instability
T: Rotational kinetic energy
W: Gravitational binding energy 

Secular instability

Dynamical instability

or gw

Magnitude of Rotation

Toroidal mode analysis in Maclaurin spheroid

ω = 0

ω
2

= 0

Neutral point
Star becomes unstable when 
we take dissipation into account

(Chandrasekhar 69)

Dynamically unstable
Star becomes unstable 
due to hydrodynamics (rotation) 

ξ(t, x) = eiωtξ(x)
Lagrangian 

displacement
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Secular instability in the low temperature limit
Viscosity driven instability

Astrophysical scenario

Maintains 
uniform rotation 

High viscosity
Strong magnetic field

Accreting neutron star

Configuration transits to lower energy state due to viscosity
Sets in when a mode has a zero-frequency in the frame rotating 
with the star 

Newly born neutron star

Differential rotationLow viscosity 
Magnetic breaking

ω + mΩ = 0 m=-2 mode

tev > tvis, tmag

@NGSL, Michigan

(Roberts,Stewartson 1963)
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Gravitational wave driven instability

Astrophysical scenario

Newly born neutron star

Leads to 
differential rotation

Low viscosity 
Magnetic braking

(Chandrasekhar 70, Friedman Schutz 78)

Configuration  transits to lower energy state due to gravitational radiation
Sets in when the backward going mode is dragged forward in the inertial 
frame

The opponent effects competes with each other !

e.g. Viscosity driven instability is stablized by the gravitational radiation 
(Detweiler, Lindblom 1977)

ω − mΩ = 0 m=2 mode

@Chandra web site

tev < tvis, tmag
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Gravitational waves from bar mode
Mechanism

Quadrupole formula

Global rotational instabilities in fluids arise from nonaxisymmetric 
bar mode

Energy Flux
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=
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Gravitational Waveform
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Frequency is since the bar spins its center of massΩ/π
Feature
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NS/NS Inspiral 300Mpc; NS/BH Inspiral 650Mpc

BH/BH Inspiral, z=0.4
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(Cutler & Thorne 2002) 

Frequency band 
for bar instability
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2. Bifurcation theory in Newtonian gravity

• Maclaurin spheroid

•
• Jacobi ellipsoid

•
• Dedekind ellipsoid

a b

c

Uniformly rotating axisymmetric 
incompressible body

Uniformly rotating nonaxisymmetric 
incompressible body

Differentially rotating nonaxisymmetric incompressible body

Nonaxisymmetric body with one principal rotational axis 
(including a uniform vorticity)

Riemann S-type ellipsoid

a = b, Ω = Ωc

Ω = Ωc

f ≡

ζ

Ω
= Const. x =

ab

a2 + b2
f

f = 0

f = 0

f = ±∞
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Meaning of the secular instability
Solely L conservation

∂E

∂x
=

L2(a − b)2x

(a2 + b2 + 2abx)3

Energy minimum at
(2nd order derivative in x is possitive)

Free-energy function E:
E =

L2

2

(a + bx)2 + (b + ax)2

a2 + b2 + 2abx
− 2I(a, b, c)

x = 0

Jacobi ellipsoid

L: Angular momentum
I: Moment of inertia 

(Christodoulou et al. 1995)

E

L

Bifurcation

point Energy

dissipation

Features
1. Maclaurin spheroid is the energy minimum 
    state up to the bifurcation point
2. Jacobi ellipsoid is the energy minimum state 
    beyond the bifurcation point through the 
    variation of circulation
3. Bifurcation point corresponds to the neutral 
    point

Violation of the circulation is induced by viscous dissipation

Energy contour 

c / a

b / a

Energy
minimumNonaxisymmetry
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Solely C conservation
Free-energy function E:

∂E

∂x′
=

C2(a2
− b2)2x′

(a2 + b2 + 2abx′)3
whereE =

C2

2

(a + bx)2 + (b + ax)2

[2ab + (a2 + b2)x]2
− 2I(a, b, c) x′

= 1/x

Energy minimum at
(2nd order derivative in x’ is possitive) Dedekind ellipsoid

Features
1. Maclaurin spheroid is the energy minimum 
    state up to the bifurcation point
2. Dedekind ellipsoid is the energy minimum 
    state beyond the bifurcation point through 
    the variation of angular momentum
3. Bifurcation point corresponds to the 
    neutral point

Violation of the angular momentum is induced by 
gravitational radiation

E

C

Bifurcation

point Energy

dissipation
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3. Bifurcation theory in general relativity

ds
2 = −N

2
dt

2 + A
2(dr − N

r
dt)2 + r

2
A

2(dθ − N
θ)

+r2 sin2 θB2(dϕ − Nϕdt)2

Only true when the azimuthal variable is separable

function of the 
spatial metric

N
i
:

N : lapse
correspond to shift

A, B :

Equilibrium state

Axisymmetric spacetime in quasi-isotropic coordinate
Nonaxisymmetric perturbation

lnN = lnNeq(1 + ε sin2 θ cos 2ϕ)

Treatment of the spacetime
1.  Lapse and shift depend on
2.  A and B depend on

Fully constraint equations to be solved
Consistent up to 1/2 PN order

ε ×

(
M

R

)
∼ 10

−6

Nonaxisymmetric spacetime

Nr, Nθ
= 0 (r, θ)and all the functions only depend on

(r, θ)
(r, θ, ϕ)

satisfactory approximation!
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Iterative evolution approach

Iteration

Step

(Evolution)

Impose bar-mode perturbation

Unstable Stable

Equilibrium

Spherical

No restriction to the iteration (time) 
step
Fully constraint scheme
Coincidence of a bifurcation point in 
Newtonian incompressible star
   (Gondek-Rosinska, Gourgoulhon 03) 

The direction of time evolution is 
not clear in a strict sense
Restriction to the axisymmetric 
fluid flow

Advantage

Disadvantage

(Bonazzolla, Frieben, Gourgoulhon 96, 98)

Investigate nonaxisymmetric instability in quasi-static evolution in 
general relativity
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Diagnostics
q = max| ln N̂2| lnN2 =

∞∑

m=0

ln N̂me
imϕ

q

N

q

N

Precise measurement

q
 /

 q

200 300

N

-0.05

0

0.05

!
"
=25, #

amp
=10

-5

where
Illustration

Unstable: q grows exponentially 
                through iteration

Stable: q decays exponentially 
            through iteration

Investigate the logarithmic 
derivative of q

Unstable: Positive value
Stable: Negative value
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4. Viscosity driven instability in rotating 
relativistic stars

M/R --- 0.0227 0.0438 0.0984 0.1556 0.2000 0.2430
T/W 0.1375 0.1412 0.1446 0.1539 0.1642 0.1729 0.1822

(Gondek Rosinska, Gourgoulhon 2002)Incompressible stars

Relativistic gravitation stabilizes the system from viscosity 
driven instability
The above statement also agrees with the pN results in incompressible 
stars (Di-Girolamo, Vietri 02) 

Rigidly rotating polytropic stars (Bonazzola, Frieben, Gourgoulhon 98)

Investigate the stability at 
mass-shedding limit

Relativistic gravitation stabilizes 
the system from viscosity driven 
instability
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Rigidly rotating stars in Newtonian gravity

mass-shedding
limit

T/W ≈ 0.135 Compressible stars have 
slightly lower criterion of T/W
than in the incompressible star

(Bonazzola, Frieben, Gourgoulhon 1996)
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Polytropic equation of state

Relativistic gravitation stabilizes viscosity driven instability
The bifurcation point is not so sensitive to the stiffness of 
the equation of state

Rigidly rotating stars in general relativity (MS, Gourgoulhon 06)
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Differentially rotating stars in general relativity
Due to viscous friction, the angular momentum distribution should be 
changed
We assume that it is small and still remains the present angular 
momentum distribution

Rotation raw (equilibrium state)
Ω ≈

A2Ω0

!2 + A2 A = Re −→ Ω0/Ωeq ∼ 2

Relaxes the restriction of the mass-shedding 
limit in rigid rotation

Differentially rotation also stabilizes the sytem

Γ = 21. Fixed rotation profile 

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25

(T
/W

) c
r
t

M/R = 0.20

But do you believe this current result?
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2. Varied rotation profile
Helical Killing vector

kµ = ξµ + Ωχµ
ξµ

χ
µ

: timelike Killing vector
: rotational Killing vector

Ω = Constant stationary
otherwise static configuration

A
−1
rot = A

−1(eq)
rot [1 − εrot(N −Nptb)]

But lazy physicist  ...

Variation of rotation profile

Ωc = Ω(eq)
c [1 − εomg(N −Nptb)]

Adjust                    to 
maintain J conservation 
throughout the iteration

εomg/εrot
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Fixed rotation profile Varied rotation profile

T/W = 0.2354

T/W = 0.2353

T/W = 0.2354
T/W = 0.2353
T/W=0.2352

T/W=0.2348

τang = (q̈/q)−1/2

τbar = (q̇/q)−1

All T/W around the threshold in fixed 
rotation profile become unstable due to the 
change of angular momentum distribution

Timescales from the 
computational results

T/W τang τbar

0.2348 2.0E2 -4.8E2

0.2352 2.0E2 -1.7E3

0.2353 1.9E2 -3.4E4

0.2354 1.9E2 5.9E3
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Timescales based on Newtonian Navie-Stokes equation
• E-folding time of the variation of rotation profile

•
• Growth timescale of the bar mode

τang =
R2

8ν

Ωc

Ωc − Ωs

τbar =
κnR2

5ν

βsec

β − βsec

τbar ≈ ε−1
org

(
Ωc − Ωs

Ωc

) (
βsec

β − βsec

)

τang ≈ ε
−1
org

Adjusted timescales for computation

Taking into account of the table, the deviational ratio of T/W from the 
one of fixed rotational profile is roughly the same order of ≈ ε

−1
org
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Relativistic gravitation stabilizes from the viscosity driven 
instability, with respect to the Newtonian gravity

Differential rotation also stabilizes the star significantly from the 
viscosity driven instability, even we take the effect of angular 
momentum distribution into account

Gravitational waves can be detected in Advanced LIGO, but 
require some spin-up process of neutron stars in low temperature 
regime

5. Summary
We study viscosity driven instability in both uniform and differential rotating 
polytropic stars by means of iterative evolution approach in general relativity


