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The i’ problem

e There is a lack of general results about the evolution of data near spatial
infinity.

e One of the difficulties of the analysis lies in the fact that on an initial
hypersurface S, the rescaled conformal Weyl tensor behaves like:

ar,,,=Qc", =0@r")asr—0.

¢ In order to overcome this difficulty, one has to resolve the structure
contained in the point .



Blow-up of ¥ into the cylinder at spatial infinity?

The conformal factor is given by:

where f(p,0,9)=p+ O0(p*),

is given in terms of initial data on .

AH. Friedrich. Gravitational fields near spacelike and null infinity. J. Geom. Phys. 24,
83-163 (1998).



For suitable classes of initial data (S, h43, Xop) —€.8.
e time symmetric data (x,3 = 0) with smooth conformal metric,
e time asymmetric (x5 # 0), conformally flat data,
e stationary data, and ...
the standard Cauchy problem can be reformulated as a
regular finite initial value problem for the conformal field equations.
Features:
¢ the data and equations are regular on a manifold with boundary;

o spacelike and null infinity have a finite representation with their
structure and location known a priori.



About the initial data:

e Construct maximal initial data (7, 3, Xap) by means of the
conformal Ansatz:

I:laﬂ — '194haﬂ7 5(045 — ﬁ_zlpaﬂa
so that the constraint equations reduce to:
Dawaﬁ — 07

Q 1 1 afl .q—
(D Da — g?’) Y= gwaﬂw '819 7.



e Consider conformally flat initial data:

o = 946 ,05.

e To solve the momentum constraint write:

Yas = Vls + Vs + 0+ bds,

where P A
28 = Txp (31am5 — dap)
jo_ 3 P17 Y11
¢aﬁ — W (”Bewp] n’ +na€ppy]'n ) ;
3
Vs = 2[x[2 (Qang + Qpna — (dap — nanp) Q1)

as = 0(1/|x|) (higher multipoles).



e The term ¢} 5 1s calculated out of a smooth complex function A.

o If
A=XN/p+ X
with \>, \! smooth, then the conformal factor ¥ admits the
parametrisation
1
Y=—-—+W
0

with W(i) = m /2 and expandible in powers of p solely ®.

S Dain & H Friedrich, Asymptotically flat initial data with prescribed reqularity at infin-
ity Comm. Math. Phys. 222, 569 (2001)



For later use, we define the tensor

R R )
Caﬂ = nyx(s(ae’y 8)

where x5 = 07%); is the part of the second fundamental form
arising from the real part of A.



For later use, we define the tensor

R R )
Caﬂ = nyx(s(ae’y 8)

where x5 = 07%); is the part of the second fundamental form

arising from the real part of A.

. ijﬁ can be thought of as the magnetic part of the Weyl tensor
arising from Re(\).



The conformal propagation equations near spatial
infinity:
e The unknowns are given by the components of the frame,
connection, and Ricci tensor

o
v=1{(c45,l aBcD> PaBCD),

and the components of the Weyl spinor

Qﬁ — (¢07 ¢17 ¢27 ¢37 ¢4)

e The evolution equations are given by:

87'7) = Ko+ Q(U, U) + L¢7
A0.¢p + A%0yd = B(T apcD)P,



e The matrix associated to the 9; term in the Bianchi propagation
equations is given by:

AY = V2diag(1 — 7,1,1,1,1+ 7).

— Thus, the equations degenerate at the sets where null infinity
touches spatial infinity:

IF={p=0,7==1}

— Standard methods of symmetric hyperbolic systems cannot
be used to analyse the equations near I~.
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ITransport equations on I

e The procedure by which ¥ is replaced by I leads to an unfolding
of the evolution process near spatial infinity which permits an
analysis to arbitrary order and in all detail.

e Consistent with our choice of initial data assume that the field
quantities admit the following Taylor like expansions:

1 1

Uj ™~ Z —"Z)gp)(’rjejgp)pp, qS] ~ Z ]

(»)
p>0 p p>0 P'¢] (7—70780),0]9
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ITransport equations on I

e The procedure by which ¥ is replaced by I leads to an unfolding
of the evolution process near spatial infinity which permits an
analysis to arbitrary order and in all detail.

e Consistent with our choice of initial data assume that the field
quantities admit the following Taylor like expansions:

1 1

Uj ™~ Z —"05}7)(7',9,@0))079, qS] ~ Z ]

(»)
p>0 p p>0 P'¢] (7_70780),079

e In order to determine the coefficients vi.p ) and qbi.p ! exploit the fact

that the cylinder I is a total characteristic of the propagation
equations:

— The equations reduce to an interior system on I.
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o Exploiting the total characteristic one can obtain a hierarchy of
interior equations for the coefficients in the expansions:

p—1
=1

J

p . , . .
AP0 P 4 ACP G gpP) = B(F%CDW(’” 4+ Z P (B(FX)BCD)qb(p_]) _ A%(])@luqb(l?—])) 7
=1\ ]

which can be solved recursively —the equations are linear and
decoupled.

gp ) and gbg.p ) are completely determined by the expansions of the

initial data on § near spatial infinity.

e U

e Thus, one can relate properties of the initial data with the
asymptotic behaviour of the spacetime near null and spatial
infinities.
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Obstructions to the smoothness of null infinity:

Due to the degeneracy of the Bianchi propagation equations at the
critical sets I+, any hint of non-smoothness is bound to arise first in
the coefficients ¢'P).
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Obstructions to the smoothness of null infinity:

Due to the degeneracy of the Bianchi propagation equations at the
critical sets I+, any hint of non-smoothness is bound to arise first in
the coefficients ¢'P).

e Decompose ¢") in spherical harmonics:
P

¢§p): Z Z aj;p,l,m(T) j—ZYlm

|=|j—2| m=-I

o A first analysis of the equations at the level of the linearised
Bianchi equations —spin 2 zero-rest-mass field— reveals that the
coefficients

a],p,p,m(T) ( ) ]_2Ypm7 m = _p7 ceey p

develop a certain type of logarithmic singularities at 7 = =£1.
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e More precisely,

aj;p,p,m(T) — Ap(l — T)p_2+j(1 + T)p+2_j 1n(1 — 7’)

+ B,(1 — 7)P7*Y(1 + 7)P** 7/ In(1 + 7) + (polynom in 7)

forp=23,...
- Aj and B, depend on Re(A) only.
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e More precisely,

aj;p,p,m(T) — Ap(l — T)p_2+j(1 + T)p+2_j 111(1 — 7’)

+ B,(1 — 7)P7*Y(1 + 7)P** 7/ In(1 + 7) + (polynom in 7)

forp=23,...
- Aj and B, depend on Re(A) only.

e These singularities can be precluded by imposing a certain
regularity condition at the initial hypersurface:

C(D,, - Dy, Chp)(i) =0,

for p =0,...,5, where & denotes the symmetric tracefree part.
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Further obstructions to the smoothness of null
infinity:
p l

¢§P) — Z Z aj;p,l,m(T) j—ZYlm
I=|j—2| m=—1

e Even if the regularity condition
€(Ds, -+ Dy, CRo)(i) = 0,

is satisfied, there are logarithmic singularities in the coefficients
aj.,1.m for p > 5 at the critical sets I*.
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Further obstructions to the smoothness of null
infinity:
p l

¢§P) — Z Z aj;p,l,m(T) j—ZYlm
I=|j—2| m=—1

e Even if the regularity condition
€(D, - D, CR)(1) =0,
is satisfied, there are logarithmic singularities in the coefficients
aj.,1.m for p > 5 at the critical sets I*.

e Associated with these singularities is a hierarchy of obstructions

\(tt

»1,m Where a clear pattern is recognizable:
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Further obstructions to the smoothness of null
infinity:
p l

¢§P) — Z Z aj;p,l,m(T) j—ZYlm
I=|j—2| m=—1

e Even if the regularity condition
©(Ds, -+ D,,Cap)i) =0,

is satisfied, there are logarithmic singularities in the coefficients
aj.,1.m for p > 5 at the critical sets I*.

e Associated with these singularities is a hierarchy of obstructions

Y;t;l, . Where a clear pattern is recognizable:
- If Y;t ;.. = 0 for given p, [, m then a certain subset of the

logarithmic singularities is not present.

— The obstructions are expressible in terms of the initial data.
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e For 0 < p <4 the coefficients a; ,.,, ; are polynomials in 7.

e For p > 5 the coefficients contain —generically— terms of the
form:

1—7)""In1-7), A+7)"In(1+4+ 7).

— In particular, for p = 5, one has quadrupolar obstructions
(harmonics ;_,Y>;,) of the form:

Y5+’.2’m = Yg2m = m X (quadrupole) + (dipole)2 + ]2,

the obstructions are of a time symmetric nature.
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Assume that Y5i2 . = 0.

e For p = 6 the structure of the obstructions is much more
involved:
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Assume that Y?z . = 0.

e For p = 6 the structure of the obstructions is much more
involved:

— Harmonics Y5,,:
Yo, = (dipole)” + (A + 1), Yoo = (dipole)” + (A — 1),

so the obstructions are time asymmetric!!!
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Assume that Y?z . = 0.

e For p = 6 the structure of the obstructions is much more
involved:

— Harmonics Y5,,:
Yo, = (dipole)” + (A + 1), Yoo = (dipole)” + (A — 1),

so the obstructions are time asymmetric!!!

— Harmonics Y3,,:
Yism = Yos.m = (Octupolar object),
which is time symmetric.

e And so on...
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From formal expansions to solutions

e One of the remaining outstanding hurdles in the analysis is to show
existence of the soultions up to the critical sets [+, and that the
expansions

1 1
o~y W;p>(7,9,¢)pp, b~y =

(») p
by 3 o000

approximate suitably a solution of the conformal field equations.
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From formal expansions to solutions

e One of the remaining outstanding hurdles in the analysis is to show
existence of the soultions up to the critical sets [+, and that the
expansions

1 1

oj~ Y =0T, 0,007, g~y =T, 0,0)0"
p=o0 P p=o P
approximate suitably a solution of the conformal field equations.

¢ In particular one would like to estimate the remainders
1w
C%N(U) =0 Z EU]’P (T7 07 Qp)pp,

p=0

N
B @) =6— 3 ~dV(r,0,0)p"
p=o P
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From formal expansions to solutions

e One of the remaining outstanding hurdles in the analysis is to show
existence of the soultions up to the critical sets [+, and that the
expansions

1 1
o~y ﬁv?’(ne,gp)pp, b~y =

(») p
by 3 o000

approximate suitably a solution of the conformal field equations.

¢ In particular one would like to estimate the remainders

N
1
%N(U) =0 — Z EUEP)(T, 07 (’p)pp,

p=0

N
B @) =6— 3 ~dV(r,0,0)p"
p=o P

e In what follows, we shall assume this can be done.
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How does this translate into the NP gauge?

W, szg/r5—|—kOZAmlnr/r5-|—---,
m

W1~y /4
Wy~ 3 104
By~ )4
Byl frte

for initial data for which

G (D,CR5)(0) # 0.

e The spacetime cannot be stationary if Y3, , # 0 —stationary spacetimes
do not contain logarithms in their asymptotic expansions.
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An example: Brill-Lindquist data

4
~ miq mo
hCY — 1 — — — — 50[ b
b ( +2|x—x1|_|_2|x—x2|> &

e In this case one finds,

Yo =or >+ +koYInr/r® + - -
Y, =i+ I YInr /P + -
Y, = 0(r~%)

where Y = 77111712|f1 — 9?2|2.

e Similar behaviour occurs for Bowen-York data!
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The behaviour of the asymptotic shear near 7°

e Newman & Penrose @ have shown that if the leading term of the
coefficient o goes to zero as one approaches i’ along the null
generators of .# 7, then there is a canonical way of selecting the
Poincaré group out of the BMS group —the asymptotic
symimetric group.

e This construction is tied with the possibility of defining in an
ambiguous fashion angular momentum at null infinity.

ET Newman & R Penrose A note on the BMS group. ]J. Math. Phys. 7, 863 (1966).
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Proposition 1. The asymptotic shear of peeling spacetimes arising from
conformally flat initial data satisfies

o’ = 0(1/u?), as u — —oo

that is, as one approaches i° along the generators at null infinity.
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Proposition 1. The asymptotic shear of peeling spacetimes arising from
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that is, as one approaches i° along the generators at null infinity.

e A similar result is expected to hold for nonconformally flat
initial data.
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Proposition 1. The asymptotic shear of peeling spacetimes arising from
conformally flat initial data satisfies

o’ = 0(1/u?), as u — —oo

that is, as one approaches i° along the generators at null infinity.

e A similar result is expected to hold for nonconformally flat
initial data.

e In order to obtain spacetimes for which ¢ 4 0 as u — —o0, one
may have to consider initial data sets with linear momentum
—boosted data.
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e These are a set of 5 complex absolutely conserved quantities
defined on a cut of £ and .# ~:

G,_nF = %2?2’m¢8ds, G, = %QYQ,mngdS
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e These are a set of 5 complex absolutely conserved quantities
defined on a cut of £ and .# ~:

G$ = %2?2’m¢8ds, G, = %ZYZ’mwgdS

o If
% (D,,D,,Ci5)(0) #0,

then the spacetime is regular enough so that the constants are
well defined.
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e The solutions of the transport equations on I can be used to
write the NP constants in terms of initial data quantities.
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e The solutions of the transport equations on I can be used to
write the NP constants in terms of initial data quantities.

Proposition 2. For the class of data under consideration one has that

Gt =G,.
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e The solutions of the transport equations on I can be used to
write the NP constants in terms of initial data quantities.

Proposition 2. For the class of data under consideration one has that

GH=G..

e Roughly, one has that
G = m X (Quadrupole) + (Dipole) + J* + (Ang. Mom. Quad.)
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Back to the obstructions:

e [f the initial data is conformally flat (but not necessarily time
symmetric), then the vanishing of the obstructions up to p =7

imply:

1 m
U= P + 5 + O0(p"), Vap = &4@’ + O(1).
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e [f the initial data is conformally flat (but not necessarily time
symmetric), then the vanishing of the obstructions up to p =7

imply:

1 m
U= P + 5 + O0(p"), Vap = &45 + O(1).

— The data is Schwarzschildean up to octupolar terms.
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Back to the obstructions:

e [f the initial data is conformally flat (but not necessarily time
symmetric), then the vanishing of the obstructions up to p =7

imply:

1 m
0 = P + 5 + 0(p*), Vap = 1%45 + O(1).

— The data is Schwarzschildean up to octupolar terms.

— The only stationary data in the class of conformally flat initial
data are the Schwarzschildean ones.
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¢ In general one would expect the following to hold:

Conjecture. If the time development of conformally flat initial data
admits a smooth conformal extension at both future and past null
infinity, then the initial data is Schwarzschildean in a neighbourhood of

infinity.

Schwarzschild data
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