
A view of spacetime near
spatial infinity

Juan A. Valiente Kroon,
School of Mathematical Sciences,
Queen Mary, University of London,
United Kingdom.

November 24th, 2006.

1



The i0 problem
� There is a lack of general results about the evolution of data near spatial

infinity.

i ρ
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0
S

� One of the difficulties of the analysis lies in the fact that on an initial
hypersurface S, the rescaled conformal Weyl tensor behaves like:

d � � � � � ΩC � � � � � O(r� 3) as r � 0 �

� In order to overcome this difficulty, one has to resolve the structure
contained in the point i0.
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Blow-up of i0 into the cylinder at spatial infinitya
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The conformal factor is given by:

Ω � f ( 	
�� 
 
 ) � 1� � 2 � 


where f ( 	
 � 
 
 ) � 	�� O( 	 2)

is given in terms of initial data on S.

aH. Friedrich. Gravitational fields near spacelike and null infinity. J. Geom. Phys. 24,
83-163 (1998).
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For suitable classes of initial data (S � h � � � � � � ) —e.g.
� time symmetric data ( � � ��� 0) with smooth conformal metric,

� time asymmetric ( � � ���� 0), conformally flat data,

� stationary data, and ...

the standard Cauchy problem can be reformulated as a

regular finite initial value problem for the conformal field equations.

Features:

� the data and equations are regular on a manifold with boundary;

� spacelike and null infinity have a finite representation with their
structure and location known a priori.
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About the initial data:
� Construct maximal initial data (h̃ � � � ˜� � � ) by means of the

conformal Ansatz:

h̃ � ��� � 4h � � � ˜� � ��� � � 2 ! � � �

so that the constraint equations reduce to:

D � ! � ��� 0 �
D � D �#" 1

8
r � � 1

8 ! � � !
� � �� 7 $

5



� Consider conformally flat initial data:

h � ��� � 4 % � � $

� To solve the momentum constraint write:

! � ��� ! A� �'& ! J� �(& ! Q� � & !*) � � �

where

! A� ��
A

+ x + 3, 3n � n �" % � � - �

! J� ��

3

+ x + 3, n �'. / � 0 J 0 n /& n �1. 0 � / J / n 0 - �

! Q� ��

3
2 + x + 2, Q � n �& Q � n �" ( % � �" n � n � )Q / n / -

!2) � �� O(1 3 + x + ) (higher multipoles) $
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� The term ! ) � � is calculated out of a smooth complex function 4 .

� If

4 � 465 37 & 498

with 4:5 , 4 8 smooth, then the conformal factor � admits the
parametrisation

� � 1

7 & W

with W(i)� m 3 2 and expandible in powers of7 solely a.

aS Dain & H Friedrich, Asymptotically flat initial data with prescribed regularity at infin-
ity Comm. Math. Phys. 222, 569 (2001)
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For later use, we define the tensor

CR� �;� D / � R< ( � . / < � ) �

where � R� �� =� 4 ! R� � is the part of the second fundamental form
arising from the real part of 4 .

CR can be thought of as the magnetic part of the Weyl tensor
arising from Re( ).

8



For later use, we define the tensor

CR� �;� D / � R< ( � . / < � ) �

where � R� �� =� 4 ! R� � is the part of the second fundamental form
arising from the real part of 4 .

� CR� � can be thought of as the magnetic part of the Weyl tensor
arising from Re( 4 ).

8-a



The conformal propagation equations near spatial
infinity:

� The unknowns are given by the components of the frame,
connection, and Ricci tensor

v� (c> AB � ΓABCD � ΦABCD) �

and the components of the Weyl spinor

? � ( ? 0 � ? 1 � ? 2 � ? 3 � ? 4) $

� The evolution equations are given by:

@ A v� Kv& Q(v � v)& L ? �

A0 @ A ? & A � @ � ? � B(ΓABCD) ? �
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� The matrix associated to the @ A term in the Bianchi propagation
equations is given by:

A0� B 2diag(1" C � 1 � 1 � 1 � 1& C ) $

– Thus, the equations degenerate at the sets where null infinity
touches spatial infinity:

ID � E7 � 0 � C � F 1 G

– Standard methods of symmetric hyperbolic systems cannot
be used to analyse the equations near ID .

10



Transport equations on I
� The procedure by which i0 is replaced by I leads to an unfolding

of the evolution process near spatial infinity which permits an
analysis to arbitrary order and in all detail.

� Consistent with our choice of initial data assume that the field
quantities admit the following Taylor like expansions:

v jH ∑
p I 0

1
p!

v(p)
j ( C � = � J )7 p � ? jH ∑

p I 0

1
p! ?

(p)
j ( C � = � J )7 p $

In order to determine the coefficients v(p)
j and (p)

j exploit the fact
that the cylinder I is a total characteristic of the propagation
equations:

– The equations reduce to an interior system on I.
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� Exploiting the total characteristic one can obtain a hierarchy of
interior equations for the coefficients in the expansions:

K L v(p) � Kv(p)� Q(v(0)
 v(p))� Q(v(p)
 v(0))�

p� 1

∑
jM 1

N Q(v( j)
 v(p� j))� L( j) O (p� j) P� L(p) O (0)


A0 Q (0) K L O (p)� AC Q (p) K C O (p) � B(Γ(0)
ABCD) O (p)�

p

∑
jM 1

R
S

p

j

T
U � B(Γ( j)

ABCD) O (p� j)� A � Q ( j) K � O (p� j) � 


which can be solved recursively —the equations are linear and
decoupled.

� v(p)
j and ? (p)

j are completely determined by the expansions of the
initial data on S near spatial infinity.

� Thus, one can relate properties of the initial data with the
asymptotic behaviour of the spacetime near null and spatial
infinities.
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Obstructions to the smoothness of null infinity:
Due to the degeneracy of the Bianchi propagation equations at the
critical sets ID , any hint of non-smoothness is bound to arise first in
the coefficients ? (p).

Decompose (p) in spherical harmonics:

(p)
j

p

∑
l j 2

l

∑
m l

a j;p l m( ) j 2Ylm

A first analysis of the equations at the level of the linearised
Bianchi equations —spin 2 zero-rest-mass field— reveals that the
coefficients

a j;p p m( ) j 2Ypm m p p

develop a certain type of logarithmic singularities at 1.
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� More precisely,

a j;p X p Xm( C )� Ap(1" C )p� 2 [ j(1& C )p [ 2� j ln(1" C )

& Bp(1" C )p� 2 [ j(1& C )p [ 2� j ln(1& C )& (polynom in C )

for p� 2 � 3 � $ $ $ .
– Ap and Bp depend on Re( 4 ) only.

These singularities can be precluded by imposing a certain
regularity condition at the initial hypersurface:

(D p D 1 CR )(i) 0

for p 0 5, where denotes the symmetric tracefree part.
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Further obstructions to the smoothness of null
infinity:

? (p)
j

� p

∑
lV W j� 2 W

l

∑
mV � l

a j;p X l Xm( C ) j� 2Ylm

� Even if the regularity condition

\ (D / p

] ] ] D / 1 CR� � )(i)� 0 �

is satisfied, there are logarithmic singularities in the coefficients
a j;p X l Xm for p ^ 5 at the critical sets ID .

Associated with these singularities is a hierarchy of obstructions
ϒp;l m where a clear pattern is recognizable:

– If ϒp l m 0 for given p, l, m then a certain subset of the
logarithmic singularities is not present.

– The obstructions are expressible in terms of the initial data.
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� For 0 _ p _ 4 the coefficients a j X p;m X l are polynomials in C .
� For p ^ 5 the coefficients contain —generically— terms of the

form:
(1" C )m1 ln(1" C ) � (1& C )m2 ln(1& C ) $

– In particular, for p� 5, one has quadrupolar obstructions
(harmonics j� 2Y2m) of the form:

ϒ [5;2 Xm� ϒ� 5;2 Xm� m` (quadrupole)& (dipole)2& J2 �

the obstructions are of a time symmetric nature.
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Assume that ϒD 5;2 Xm� 0.
� For p� 6 the structure of the obstructions is much more

involved:

– Harmonics Y2m:

ϒ6;2 m (dipole)2 (A 1)J2 ϒ6;2 m (dipole)2 (A 1)J2

so the obstructions are time asymmetric!!!

– Harmonics Y3m:

ϒ6;3 m ϒ6;3 m (Octupolar object)

which is time symmetric.

And so on...
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From formal expansions to solutions
� One of the remaining outstanding hurdles in the analysis is to show

existence of the soultions up to the critical sets Ia , and that the
expansions

v jb ∑
p c 0

1
p!

v(p)
j ( � 
 � 
 
 ) 	 p
 O jb ∑

p c 0

1
p! O

(p)
j ( � 
�� 
 
 ) 	 p �

approximate suitably a solution of the conformal field equations.

In particular one would like to estimate the remainders

N(v) v
N

∑
p 0

1
p!

v(p)
j ( ) p

N( )
N

∑
p 0

1
p!

(p)
j ( ) p

In what follows, we shall assume this can be done.
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How does this translate into the NP gauge?

lna a

u

r

e

Ψ0f g 5
0h r5 i k0∑

m
Am ln rh r5 ikj j j l

e

Ψ1f g 4
1h r4 ij j j le

Ψ2f g 3
2h r3 ij j j le

Ψ3f g 2
3h r2 ij j j le

Ψ4f g 1
4h r ij j j m

for initial data for which
\ (D n CRo p )(i) q� 0 �

� The spacetime cannot be stationary if ϒr 5;2 Qm q� 0 —stationary spacetimes
do not contain logarithms in their asymptotic expansions.
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An example: Brill-Lindquist data

s

h o p � 1� m1

2 tvu x� u x1 t�

m2

2 tvu x� u x2 t

4

w o p


sx o p � 0 �

� In this case one finds,

s
Ψ0 � y 5

0r� 5� z z z� k0ϒ ln r { r8� z z zs
Ψ1 � y 4

1r� 4� z z z� k1ϒ ln r { r8� z z zs

Ψ2 � O(r� 3)
...

where ϒ � m1m2 tvu x1� u x2 t 2.

� Similar behaviour occurs for Bowen-York data!
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The behaviour of the asymptotic shear near i0

� Newman & Penrose a have shown that if the leading term of the
coefficient | goes to zero as one approaches i0 along the null
generators of } [ , then there is a canonical way of selecting the
Poincaré group out of the BMS group —the asymptotic
symmetric group.

� This construction is tied with the possibility of defining in an
ambiguous fashion angular momentum at null infinity.

aET Newman & R Penrose A note on the BMS group. J. Math. Phys. 7, 863 (1966).
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Proposition 1. The asymptotic shear of peeling spacetimes arising from
conformally flat initial data satisfies

| 0� O(1 3 u2) � as uZ " ~

that is, as one approaches i0 along the generators at null infinity.

A similar result is expected to hold for nonconformally flat
initial data.

In order to obtain spacetimes for which 0 0 as u , one
may have to consider initial data sets with linear momentum
—boosted data.
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The Newman-Penrose constants

C

C

1

2

� These are a set of 5 complex absolutely conserved quantities
defined on a cut of } [ and } � :

G [m� 2Ȳ2 Xm ! 6
0dS � G� m� 2Y2 Xm ! 6

4dS $

If
(D 2 D 1 CR )(i) 0

then the spacetime is regular enough so that the constants are
well defined.
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� The solutions of the transport equations on I can be used to
write the NP constants in terms of initial data quantities.

0

I

I

S

initial data

C

W

(cut)
scri

+

+

I

Proposition 2. For the class of data under consideration one has that

Gm Gm

Roughly, one has that

Gm m (Quadrupole) (Dipole) J2 (Ang. Mom. Quad.)
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Back to the obstructions:
� If the initial data is conformally flat (but not necessarily time

symmetric), then the vanishing of the obstructions up to p� 7
imply:

� � 1
7 &

m
2& O(7 4) � ! � �� ! A� ��& O(1) $

– The data is Schwarzschildean up to octupolar terms.

– The only stationary data in the class of conformally flat initial
data are the Schwarzschildean ones.
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� In general one would expect the following to hold:

Conjecture. If the time development of conformally flat initial data
admits a smooth conformal extension at both future and past null
infinity, then the initial data is Schwarzschildean in a neighbourhood of
infinity.

Schwarzschild data

arbitrary
      data
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