WELL-POSEDNESS AND NUMERICAL STABILITY OF THE GLOBAL HARMONIC INITIAL VALUE PROBLEM

Jeff Winicour
University of Pittsburgh
and
Albert Einstein Institute

I discuss theorems which establish the well-posedness and computational stability of harmonic evolution and boundary algorithms for a black hole spacetime. Of particular importance, results regarding constraint preserving Sommerfeld boundary conditions can be used to enhance the computation of gravitational waveforms by matching techniques.

THE INITIAL-BOUNDARY VALUE PROBLEM FOR BLACK HOLE EXCISION

Finite characteristic speeds allow global problem to be reduced to half-space and Cauchy problems.

REFERENCE MATERIAL

- M. C. Babiuc, H-O. Kreiss and J. Winicour (in preparation) "Constraint-preserving Sommerfeld conditions for the harmonic Einstein equations"
- H-O. Kreiss and J. Winicour (2006)

 "Problems which are well-posed in a generalized sense with applications to the Einstein equations"
- M. Motamed, M.C. Babiuc, B.Szilàgyi, H-O. Kreiss and J. Winicour (2006)
 "Finite difference schemes for second order systems describing black holes"
- M. C. Babiuc, B. Szilàgyi and J. Winicour (2006) "Testing numerical evolution with the shifted gauge wave"
- M. C. Babiuc, B. Szilàgyi and J. Winicour (2006) "Harmonic Initial-Boundary evolution in general relativity"
- B. Szilàgyi, B. and J. Winicour (2003) "Well-posed initial-boundary evolution in general relativity"

HARMONIC EVOLUTION

Evolution variables: $\gamma^{\mu\nu} = \sqrt{-g}g^{\mu\nu}$

Evolution equations:

$$g^{\alpha\beta}\partial_{\alpha}\partial_{\beta}\gamma^{\mu\nu} = S^{\mu\nu}$$

Constraints:

$$\mathcal{C}^{\mu} := -rac{1}{\sqrt{-g}} \partial_{\mu} \gamma^{\mu
u} - \hat{\Gamma}^{
u}(g,x) = 0$$

Gauge source functions $\hat{\Gamma}^{\nu}$ do not enter principle part.

Advantages for numerical and analytic studies:

- Small number of variables
- Small number of constraints (4 harmonic conditions)
- Quasilinear wave equations
- Well-posed Cauchy problem (Choquet-Bruhat)
- IN ADDITION: Well-posed IBVP and stable evolution and boundary algorithms for black hole simulation

Constraint preservation:

$$g^{\alpha\beta}\partial_{\alpha}\partial_{\beta}C^{\mu} + A^{\mu\alpha}_{\beta}\partial_{\alpha}C^{\beta} + B^{\mu}_{\beta}C^{\beta} = 0$$

Uniqueness implies $C^{\mu} = 0$ provided

$$C^{\mu}|_{t=0} = \partial_t C^{\mu}|_{t=0} = 0$$
 and $C^{\mu}|_{\text{Boundary}} = 0$

The Evolution Algorithms (2D Scalar)

$$g^{\alpha\beta}\partial_{\alpha}\partial_{\beta}\Phi = S$$

The subluminal algorithm:

$$W := \left(g^{tt}\partial_t^2 + 2g^{ti}\partial_t D_{0i} + g^{xx}D_{+x}D_{-x} + g^{yy}D_{+y}D_{-y} + 2g^{xy}D_{0x}D_{0y}\right)\Phi$$

Method of lines (Runge-Kutta)

Subluminal if

$$g^{ij}=h^{ij}-rac{1}{lpha^2}eta^ieta^j_j$$

SUPER

has Euclidean signature.

Artificial horizon: $det(g^{ij}) = 0$ W-algorithm is stable if $g^{ii} > 0$.

The superluminal algorithm:

$$V_{\alpha} := W - \frac{h^2}{4} \left(\alpha_x (D_{+x} D_{-x})^2 + \alpha_y (D_{+y} D_{-y})^2 \right) \Phi$$

Here α_i are "switches" which modify the algorithm inside the artificial horizon, e.g.

$$\alpha_x = \frac{1}{2} \left(|g^{xx}| - g^{xx} \right)$$

 V_{α} algorithm is everywhere stable, but less accurate outside the artificial horizon.

THE SPACELIKE EXCISION BOUNDARY

All characteristics leave the domain - pure outflow.

CONSEQUENCES:

- No boundary condition or boundary data allowed.
- Numerical noise leaves the grid.
- BLACK HOLES ARE BENEVOLENT.

Stable extrapolation algorithm to fill "ghost points" in superluminal V_{α} -algorithm.

GHOST POINTS

TIMELIKE OUTER BOUNDARY - ENERGY METHOD

$$g^{\alpha\beta}\partial_{\alpha}\partial_{\beta}\Phi = S.$$

Maximally dissipative boundary conditions - energy flux:

$$\mathcal{F} = -(\partial_t \Phi) n^\alpha \partial_\alpha \Phi$$

where n^{α} is normal to boundary.

The IBVP for the general scalar wave equation is well-posed for any of the following boundary conditions:

- Dirichlet: $\partial_t \Phi = q$, q = 0 implies $\mathcal{F} = 0$
- Neumann: $n^{\alpha}\partial_{\alpha}\Phi=q, \qquad q=0$ implies $\mathcal{F}=0$
- Sommerfeld: $\partial_t + n^{\alpha} \partial_{\alpha} = q$, q = 0 implies $\mathcal{F} > 0$ (outgoing null direction)

Discrete energy method (SBP): The W-algorithm is numerically stable for above boundary conditions. Only Sommerfeld lets the noise escape.

HARMONIC CONSTRAINTS

$$g^{\alpha\beta}\partial_{\alpha}\partial_{\beta}\gamma^{\mu\nu} = S^{\mu\nu}, \quad \mathcal{C}^{\nu} := \partial_{\mu}\gamma^{\mu\nu} = 0$$

REFLECTION SYMMETRY \rightarrow well-posed CONSTRAINT PRESERVING Dirichlet/Neumann boundary conditions.

Friedrich-Nagy system first well-posed constraint-preserving boundary conditions of Sommerfeld type.

WELL-POSEDNESS IN A GENERALIZED SENSE

The energy method cannot be used to study the well-posedness of the system

$$(\partial_t^2 - \partial_x^2 - \partial_y^2)v = S, \quad -\infty \le x < 0$$

with initial data $v|_{t=0} = f_1(x,y)$, $\partial_t v|_{t=0} = f_2(x,y)$ and Sommerfeld-like boundary condition

$$\partial_t v + \partial_x v + M \partial_y v = q(t,y)$$
 at $x = 0$.

Instead pseudo-differential theory can be used to show when the problem is strongly well-posed in the generalized sense:

$$||v||^2 \le K\{\dots + ||\partial^2 f||^2\}.$$

Establish estimates by constructing symmetrizer for Laplace transform in t and Fourier transform in y.

USEFUL FEATURES:

- The principle of frozen coefficients holds.
- Well-posedness is insensitive to lower order terms.
- Applicable to second differential order systems.
- Derivatives can be estimated so that well-posedness extends locally in time to quasi-linear problems.

By adapting the harmonic coordinates to the boundary and introducing an orthonormal tetrad, the method applies to the quasilinear harmonic wave equations

$$g^{\alpha\beta}\partial_{\alpha}\partial_{\beta}\gamma^{\mu\nu} = S^{\mu\nu}$$

CONSTRAINT PRESERVING SOMMERFELD BOUNDARY CONDITIONS

With frozen coefficients, the IBVP reduces to

$$\eta^{lphaeta}\partial_lpha\partial_eta\gamma^{\mu
u}=S^{\mu
u}, \quad \mathcal{C}^
u:=\partial_\mu\gamma^{\mu
u}=0$$

in the evolution domain x < 0, $x^{\mu} = (t, x, y, z) = (t, x, x^{A})$.

Constraint preserving Sommerfeld boundary conditions at x = 0. Simplest choice:

First impose the 6 Sommerfeld boundary conditions

$$(\partial_t + \partial_x) \underbrace{\gamma^{AB}}_{AB} = q^{AB}$$

$$(\partial_t + \partial_x) \underbrace{(\gamma^{tA} - \gamma^{xA})}_{AB} = q^{AB}$$

$$(\partial_t + \partial_x) \underbrace{(\gamma^{tA} - \gamma^{xA})}_{AB} = q^{AB}$$

$$(\partial_t + \partial_x) \underbrace{(\gamma^{tA} - \gamma^{xA})}_{AB} = q^{AB}$$

where q^{AB} , q^{A} and q are free Sommerfeld data.

Then use the constraints to supply 4 additional Sommerfeld boundary conditions in the hierarchical order

$$\mathcal{C}^{A} = \frac{1}{2}(\partial_{t} + \partial_{x})(\gamma^{tA} + \gamma^{xA}) + \partial_{t}(\underline{\gamma^{tA} - \gamma^{xA}}) + \partial_{B}\gamma^{AB} - \frac{1}{2}q^{A} = 0$$

$$\mathcal{C}^{t} - \mathcal{C}^{x} = \frac{1}{2}(\partial_{t} + \partial_{x})(\gamma^{tt} - \gamma^{xx}) + \partial_{t}(\underline{\gamma^{tt} - 2\gamma^{tx} + \gamma^{xx}}) + \partial_{B}(\underline{\gamma^{tB} - \gamma^{xB}}) - \frac{1}{2}q = 0$$

$$\mathcal{C}^{t} = \frac{1}{2}(\partial_{t} + \partial_{x})(\gamma^{tt} + \gamma^{xx}) + \partial_{t}(\underline{\gamma^{tt} - \gamma^{tx}}) + \partial_{B}\gamma^{tB} - \frac{1}{2}q = 0$$

In expressing the constraints in this form, we have used the prior boundary conditions in the hierarchy.

USING A NULL PROJECTION OPERATOR, THESE BOUNDARY CONDITIONS CAN BE APPLIED TO THE HARMONIC EINSTEIN EQUATIONS.

THE SHIFTED GAUGE WAVE TEST

$$ds^2 = -dt^2 + dx^2 + dy^2 + dz^2 + Hk_{\alpha}k_{\beta}dx^{\alpha}dx^{\beta},$$

$$H = .5 \sin(2\pi(x-t)), \quad k_{\alpha} = \partial_{\alpha}(x-t)$$

The analytic problem has long wavelength constraint violating instability.

CONSTRAINED SOMMERFELD - ERROR GROWTH

WHAT CAN GO WRONG WITH A MATHEMATICALLY WELL-POSED AND NUMERICALLY STABLE CONSTRAINT PRESERVING IBVP?

NUMERICALLY INACCURATE:

- Higher order accuracy
- Mesh refinement
- Spherical boundaries: Embedded boundary techniques (interpolation) or Multi-block methods (Summation by parts)
- Excision boundary moving through grid, common excision boundary for BBH merger

PHYSICALLY - GEOMETRICALLY:

- Singularities or instabilities in the analytic problem
- Boundary data wrong
- Can't extract waveform

GETTING THE RIGHT WAVEFORM

Extend the solution to infinity using Cauchy-characteristic matching

- HARMONIC EVOLUTION ->

- Extract characteristic data for gravitational field and harmonic coordinates at inner worldtube.
- Propagate field and harmonic coordinates to infinity using characteristic code.
- Calculate <u>Jacobian between harmonic and characteristic</u> coordinates at outer Cauchy boundary.
- Inject constraint preserving <u>Sommerfeld data</u> at Cauchy boundary.
- Cauchy evolve to next time level.