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I discuss theorems which establish the We‘ll-posedness ‘and
 computational stability of harmonic evolution and boundary
algorithms for a black hole spacetime. Of particular impor-
tance, results regarding constraint preserving Sommerfeld
boundary conditions can be used to enhance the computa-
tion of gravitational waveforms by matching techniques.




THE INITIAL-BOUNDARY VALUE PROBLE
FOR BLACK HOLE EXCISION |
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Finite characteristic speeds allow global problém
to be reduced to half-space and Cauchy problems.
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HARMONIC EVOLUTION
Evolution Variablgs_: Y = \/-—_gg?“” |
Evolution eq’uat—i';;ns:
| 90,057 = 5" |
" Constraints: . | |
= _“j:g_ W - f‘.”_(ga-’m).? 0

Gauge source functions [ do not eni;ér pri'nci‘pl"é part. \\

Advantag'esl for numerical and analytic Jstudi'es.:

e Small number of Varlables | | |

e Small number of constraints (4 harmomc cond1t10ns)
® Quasﬂmear wave equatlons

- Well-posed Cauchy problem (Choquet Bruhat)

"o IN ADDITION: Well-posed IBVP and stable evolution
and boundary algorithms for black hole 51mulat10n

- Constramt preservation:
9% 8a05C" + Al 0a C? + BLCY =0

Uniqueness 1mphes Cr=20 prOVIded |
C“It 0 — atcjult 6 — =0 and _W




__:,f_I“-.he_EvolutionAlgorithms (2D Scalar)

¢*P8,05® = S
‘The sublummal algorlthm
W= (g%07 + ngatDm + gD eD_o + g% D+yD_y + 29 Dnggy)CI)

 Method of hnes (Runge-Kutta)
Subluminal if |

1] — 17 et ———— ? J ﬁ;" Y\“\
g — h az 6‘ ‘6 ';‘d./,/( 8 . .

- has Euclidean signature.

Artificial horizon: det(g¥) =0
- W-algorithm is stable if g* > 0.

- The superluminal algorithm:

: h2 : .
V=W — Z(ozf(.me_m) + oy (Dyy D)) 0

Here o; are “switches” which modlfy the algorlthm inside the
artificial horizon, e.g.

(Igml 9°)

V., algorithm is everywhere stable, but less accurate outside
the artificial horizon. | -
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THE SPACELIKE EXCISION BOUNDARY |
All characteriStigg,,-'leave the domain — pure OUtﬂOW

" CONSEQUENCES:

e No b()undai'y condition or boundary data allov"\'r.el_d,.-x.,‘.--:;--
- @ Numerical noise leaves the grid. .

e BLACK HOLES ARE BENEVOLENT . N

o Stable extrapolation algorithm to ﬁll “ghost pomts
in superluminal V, ~algorithm. -
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TIMELIKE OUTER BOUNDARY - ENERGY METHOD

908,00 = S. - |
Maximally diSSipaiive boundary conditions - energyﬂux o
o - F=—(0,2)n%0, >

Where n® is normal to boundary.

‘The IBVP for the general scalar wave equatlon is Well-posed ‘.'
for any of the followmg boundary COl’ldltIOl’lS

e Dirichlet: 6,0 = g, q=20 1mphes F=0 N
e Neumann: n%0,® = ¢, g=20 T1\_Ir1p_hes ' ]1'—_— 0 “

‘e Sommerfeld: 8, +n°0, —q, q¢=0 imphes;‘ PR
(outgomg null direction) L

Discrete energy method (SBP): The W-algorlthm is
numerically stable for above boundary condltlons
Only Sommerfeld lets the noise escape.

HA_RMONIC CONSTRAINTS
aﬂa aﬁ,y,uu S,uu CI/ _ M,}/,uy . O

| REFLECTION SYMMETRY — well-posed CONSTRAINT |
PRESERVING Dirichlet/ Neumann boundary conditions.

FI"ledI"lCh Nagy system first well-posed constramt -preserving
boundary conditions of Sommerfeld type.




WELL-POSEDNESS IN A GENERALIZED SENSE

| The energy method cannot be used to study the Well-

o posedness of the System

" and Sommerfeld-like boundary condltlon

with initial d'ata ’Ultwo?— filz,y), Owl=p = fz(a: y) v A

O+ By + MOy = qlt,y) at © = 0. ?.*;3* '

Instead pseudo-differential theory can be used to shovsgwhen
the problem is strongly well-posed i m the generallzed sense

ol < K{.... + 19°7]2).

Establ‘_i"s_.h"?estimates by constructing symmetriier for Laplace
transform in ¢ and Fourier transform in y. |

- USEFUL FEATURES:

® The pr1nc1ple of frezen coefficients holds
® Well—posedness is insensitive to lower order terms.
e Applicable to second differential order systems.

e Derivatives can be estimated so that well-—posedness ex-
tends locally in time to quasi-linear problems.

By adapting the harmenie coordinates to the boundary and
introducing an orthonermal tetrad, the method applies to
the quasilinear harmonic wave equations

g0, 057" = 5"




CONSTRAINT PRESERVING |
SOMMERFELD BOUNDARY CONDITIONS /
| :

Wlth frozen coefi‘iments the IBVP reduces to o
aﬁa o ,pr Sp,u CY = ,u'}’ 0 74.6 g

in the evelutmn domaln x <0, ot = (t 7,9y, 2 z) = (t :E z

Constramt preserving Sommerfeld boundary condlt onsuat _.

=0, Slmplest choice:
First impose the 6 Sommerfeld beundary condltlons

( 8t + 83:)@ q | - f \\\\

7

(8, + 8,) (7 — v*4) = ¢*

(O + ) -2 ) =g
where ¢45, ¢# and q are free Sommerfeld data.
Then use the constraints to supply 4 additional Sommerfeld
boundaty conditions in the hierarchical order

1 ' 1
— 5(815 + ax)(’}/tA + ’YxA) + at( _ ) - 33’)/AB — ‘Z—QA ZO
C'—C" = 5(5t+3x)(’Y“—’Ym)+5’t(’rtt—2’7’t$ﬂm)+33(t)-"2-61 =0
1 o
€ = S0+ 0" +77) + B = 7/) + 857 = 5q =0

In expressing the constraints in this form, we have used the
prior boundary conditions in the hierarchy. |

USING A NULL PROJECTION OPERATOR,
THESE BOUNDARY CONDITIONS CAN BE APPLIED
- TO THE HARMONIC EINSTEIN EQUATIONS.




THE SHIFTED GAUGE WAVE TEST

ds? = —di® + da? + dy? + d2® + Hhohgda®de®

H = 5sin@n(e — 1), ko=0uz—1)

The analytic problem has long Wavelength
constraint viclating mstab:.hty s \

| CONSTRAINED SOMMERFELD ERROR GROWTH
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WHAT CAN GO WRONG WITH A

MATHEMATICALLY WELL-POSED
AND NUMERICALLY STABLE

CONSTRAINT PRESERVING IBVP‘?

NUMERICALLY INACCURA’I‘E:
e Higher order accur_acy

@ Mesh refinement

® Spherical boundaries: Embedded . "b(').'undary techniqiiés
(interpolation) or Multi-block methods (Summatlolq by

. parts)

e Excision boundary moving through grid, common exmsmnﬁ h
boundary for BBH merger L

PHYSICALLY GEOMETRICALLY

® Smgularltles or instabilities in the analytlc problem |

e Boundary data wrong

e Clan’t extract waveform




GETTING THE RIGHT WAVEFORM

Extend the solutlon to infinity using
Cauchywcharacterlstac matching
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e Extract characteristic data for grav1tat10nal field and har-
monic coordinates at inner worldtube.

e Propagate field and harmonic coordmates to mﬁmty using
characteristic code. -

e Calculate Jac nic_and che
coordinates at outer Cauchy boundary

® Inject constraint preserving Sommerfelddata at Cauchy
boundary. |

® Cauchy{jevolve to next time level.




