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Ringdown

Perturbation theory also serves to model the late (ringdown) stage of

a Gravitational Wavetorm for any mass ratio:

Inspiral Merger Ring-
f\ down
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Credit: LIGO & Virgo



Extreme Mass Ratio Inspirals

e Extreme Mass-Ratio Inspirals (EMRIs) M ~ 10* — 10°
m

are expected to be one of the main sources of GWs for LISA

LISA is expected to see 10-1000 EMRIs/yr (Gair et al’04)

e Numerical Relativity cannot model EMRIs but Perturbation th./
self-force can




Abraham-Lorenz Dirac Self-force

EMRIs can be modeled with the gravitational equivalent of the
Abraham-Lorenz-Dirac (1938) force on an accelerated electric charge
in flat space-time:

perpendicular projector to velocity
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emag SF in flat s-t

It’s all local: all quantities are evaluated at the current time



Self-force for EMRIs

EMRI: inspiral of small mass (~ 10/ )
around supermassive BH (~ 10° — 10 M)

Small mass deviates from geodesic of the
space-time of the supermassive BH due
to the action of its own (regularized)
field: gravitational self-force

Credit: NASA

(Note: the small mass is modelled as a point particle and the field
evaluated at that point diverges -> regularization is needed)
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and the SF in the EMRI case

(1) in the A-L-D case, the SF is due to emag field, in the EMRI case it’s
due to grav field

(2) in the A-L-D case, the SF is on particle moving on flat s-t, in the
EMRI case it’s on curved s-t
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Differences between the SF in the Abraham-ILorenz-Dirac case ;‘j\\&

and the SF in the EMRI case

(1) in the A-L-D case, the SF is due to emag field, in the EMRI case it’s
due to grav field

(2) in the A-L-D case, the SF is on particle moving on flat s-t, in the
EMRI case it’s on curved s-t

In this talk, we will focus on difference (2)

How to calculate the scalar/emag/grav SF on a point scalar
charge/electrical charge/mass moving on a curved s-t?



Linearized Einstein Egs.

Smaller BH (m) moving on the background metric JaB of massive
BH (M) causes perturbation metric h,, 3

Linearize Einstein egs.:

due to M

m \ 2
Total metric = g,,, + h,, + O (—)

t

perturbation due to m

Credit: NASA



Background BH spacetime

Background metric Ja3 should in principle be that of a rotating
(Kerr) BH

Some times, for simplicity, the metric of a non-rotating
(Schwarzschild) BH is used instead




Wave equation for the perturbation

The linear gravitational perturbation satisfies a wave eq.:

44 »

p— glLLV\/M\/V
stress-energy tensor of the small BH background metric due
to large BH

Other linear field perturbations of a BH satisfy a similar wave eq.

Eg, scalar case:




Retarded Green Function

A crucial object is the retarded Green function

X

Z

Gret(z,2") = 04(x, 2")

® X

Gret(x, CC/) =0
direct null
geodesic

with causal b.c.:

Gret(z,2") =0 if X" is notin the
causal past of x

The GF is the value of the field at x resulting from an ‘impulse” at x’



MiSaTaQuWa eq.: SF can be calculated by integrating the GF over the
past worldline z(7) of the particle

In the case a scalar charge g, the non-local part of the SF is:

Remember that the Abraham-Lorenz-Dirac force did not contain a
non-local part!



MiSaTaQuWa eq.: SF can be calculated by integrating the GF over the
past worldline z(7) of the particle

In the case a scalar charge g, the non-local part of the SF is:

Remember that the Abraham-Lorenz-Dirac force did not contain a
non-local part!

Where does the contribution to this non-local integral come from?
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Contribution 1: Backscattering of waves

Locally-valid (ie, for points x and x” near) Hadamard form for the
Green function:

Gret (z,2)) = 0 (At) {U 5(a)—V 0 (0)}

—_—— | N—— N———

support in past SUPPOTt 0N support inside
of point x light cone  light cone 2(T)

Null ? .

geodesic

U & V:regular

g :square of geodesic distance
between x & x’ U



Grot (z,2') = 0 (At) {U 5(a)—V 0 (—0)}

supportin support on support inside
past of point x light cone light cone

ZI?ZZ(T)
? o> 0

%

In flat s-t, V=0 Null

geodesic

In curved s-t, generally, V' # 0

and so scalar/emag/grav waves
propagate at all speeds < ¢ ! U

This is a contribution to the SF from timelike
paths (“backscattering” of waves; Huygens
principle not held) o=20



Grot (z,2') = 0 (At) {U 5(a)—V 0 (—0)}

supportin support on support inside
past of point x light cone light cone

ZE:Z(T)
? o> 0

%

In flat s-t, V=0 Null

geodesic

In curved s-t, generally, V' # 0

and so scalar/emag/grav waves
propagate at all speeds < ¢ ! U

This is a contribution to the SF from timelike
paths (“backscattering” of waves; Huygens
principle not held) o=20

But Hadamard form is only valid for x and x” near - what other
contributions are there for points far apart?



Contribution 2: orbiting null geodesics

Point mass m on a circular geodesic at r=6M in Schwarzschild

There’s an infinite num. of
null geods. from x that go
around the BH an arbitrary

num. of times (remember
BH shadow!)

null geod. going
around the BH twice

X unstable photon orbit

r=3M
null geod. going around the BH once
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GF diverges at light-crossings in 4-fold cycle:
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Gravitational (Teukolsky) GF
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The contribution to the non-local integral in the SF comes from:

* backscattering of waves (Hadamard V # 0 ) ?

(timelike paths)
o <0

e orbiting null geodesics
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SF results via GF

Scalar SF on a charge in a
circular orbit (r=6M) around a
Schwarzschild BH (Wardell,

Galley, Zenginoglu, Casals et
al’14)
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Eccentric orbits along the separatrix

P A\

Scalar SF on a charge r=10M (P) on :
eccentric geodesics in Schwarzschild —  «

x/M

= 0.6}

(Wardell, Galley,
Zenginoglu, Casals et al’14)

1.0 Z0.5 0.0 0.5 1.0
e sgn(r)



Gauge-Invariants

e [t's also useful to compute coordinate-invariant quantities since:

(1) they’re observables in GW astronomy

(2) they allow for comparison with Numerical Relativity and Post-
Newtonian

e An interesting one is the frequency of the innermost stable circular

orbit (ISCO): Vet
1.00

L (Schwarzschild)

0.95

0.90

0.85




Correction to orbital frequency at ISCO of Kerr due to small mass:
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e Calculation of the SF via GF yields physical insight from wave
propagation and may be practical for orbit evolution

e But GF method is not the standard one for calculating the SF.
Other methods have given impressive results:

- Gravitational SF in Kerr (Meent’18) and first results in 2nd order SF
(see Le Tiec’s talk)

- Correction to various gauge-invariants (rate of periastron advance,
spin precession, redshift, etc) (Le Tiec, Dolan, etc)

- Orbit evolution: self-consistent (solve for SF eq. and EOM
simultaneously) in scalar case (Diener et al’11) and “geodesic” SF (SF

calculated for instantaneously tangent geodesic) in gravitational case
(Warburton et al’12)

etc
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Conclusions

Geometrical insight into SF - it arises from wave propagation in a
curved s-t via:

- wave scattering (timelike paths)

- orbiting null geodesics

GF method is not the current mainstream method for calculating
SF but may be suitable for evolution including SF

Objective for LISA sources: evolution of orbits in Kerr including SF
(...to 2nd order!)

Weret bien!



