

SYstèmes de Référence Temps-Espace

Time-delay Interferometry with unsynchronized clocks as part of an independent L0-L1 pipeline for LISA

Journée LISA à l'Observatoire, 10.12.2021

Olaf Hartwig for the theory and metrology LISA group, SYRTE, Paris Observatory With contributions from J.-B. Bayle (JPL) & M. Staab (AEI)

Context: LISA LO - L1 pipeline

Context: LISA L0 - L1 pipeline

L0 Data

Telemetred data Auxiliary data S/C orbitographie

Raw data not usable for Astrophysical data analysis

Context: LISA L0 - L1 pipeline

L0 Data

Telemetred data Auxiliary data S/C orbitographie

INREP

Calibrations Clock synchronisation Reference frame transformations Laser noise suppression (TDI)

Raw data not usable for Astrophysical data analysis

Context: LISA L0 - L1 pipeline

L0 Data

Telemetred data Auxiliary data S/C orbitographie

INREP

Calibrations Clock synchronisation Reference frame transformations Laser noise suppression (TDI)

Raw data not usable for Astrophysical data analysis

L1 Data

TDI time series expressed in BCRS S/C ephemerides in BCRS

Input to astrophysical data analysis

pipeline (dubbed Initial Noise Reduction Pipeline [INREP])

The LDPG WG 6 is tasked with developing an official prototype of the L0-L1

- The LDPG WG 6 is tasked with developing an official prototype of the LO-L1 pipeline (dubbed Initial Noise Reduction Pipeline [INREP])
- All LISA results will rely on the L0-L1 pipeline, and some of the algorithms (e.g., TDI, clock sync., ...) have various possible solutions

- The LDPG WG 6 is tasked with developing an official prototype of the LO-L1 pipeline (dubbed Initial Noise Reduction Pipeline [INREP])
- All LISA results will rely on the L0-L1 pipeline, and some of the algorithms (e.g., TDI, clock sync., ...) have various possible solutions
- SYRTE is planning to develop an independent pipeline, which might bring the following benefits:

- The LDPG WG 6 is tasked with developing an official prototype of the LO-L1 pipeline (dubbed Initial Noise Reduction Pipeline [INREP])
- All LISA results will rely on the L0-L1 pipeline, and some of the algorithms (e.g., TDI, clock sync., ...) have various possible solutions
- SYRTE is planning to develop an independent pipeline, which might bring the following benefits:
 - Alternative methods for data analysis. •

- The LDPG WG 6 is tasked with developing an official prototype of the LO-L1 pipeline (dubbed Initial Noise Reduction Pipeline [INREP])
- All LISA results will rely on the L0-L1 pipeline, and some of the algorithms (e.g., TDI, clock sync., ...) have various possible solutions
- SYRTE is planning to develop an independent pipeline, which might bring the following benefits:
 - Alternative methods for data analysis. •
 - Validation of some parts (or of all) the official pipeline. •

- The LDPG WG 6 is tasked with developing an official prototype of the LO-L1 pipeline (dubbed Initial Noise Reduction Pipeline [INREP])
- All LISA results will rely on the L0-L1 pipeline, and some of the algorithms (e.g., • TDI, clock sync., ...) have various possible solutions
- SYRTE is planning to develop an independent pipeline, which might bring the following benefits:
 - Alternative methods for data analysis.
 - Validation of some parts (or of all) the official pipeline. •
 - Increased robustness of LISA data analysis infrastructure •

- The LDPG WG 6 is tasked with developing an official prototype of the LO-L1 pipeline (dubbed Initial Noise Reduction Pipeline [INREP])
- All LISA results will rely on the L0-L1 pipeline, and some of the algorithms (e.g., • TDI, clock sync., ...) have various possible solutions
- SYRTE is planning to develop an independent pipeline, which might bring the following benefits:
 - Alternative methods for data analysis.
 - Validation of some parts (or of all) the official pipeline. •
 - Increased robustness of LISA data analysis infrastructure •
 - An increase in the number of LISA scientists with L0 to L1 know-how. •

Time-delay Interferometry

The S/C separation is determined by orbital mechanics:

The S/C separation is determined by orbital mechanics:

• Armlength mismatches $\pm 1\%$ over a year \rightarrow laser frequency noise does not cancel

- Armlength mismatches $\pm 1\%$ over a year \rightarrow laser frequency noise does not cancel •
- Relative velocities \approx 10 m/s \rightarrow Doppler shifts \approx 10 MHz \rightarrow MHz beatnotes, clock noise couples

3

Time-Delay Interferometry

- First proposed in [Tinto99]
- Cancel laser noise by constructing equal arm interferometer in post-processing
- This is an example for constant arm lengths (1st generation TDI)

Time-Delay Interferometry

- First proposed in [Tinto99]
- Cancel laser noise by constructing equal arm interferometer in post-processing
- This is an example for constant arm lengths (1st generation TDI)

TDI working principles

Simplified LISA link

$\eta_{21} = D_{21} \Phi_1 - \Phi_2$

Simplified LISA link

X =

$X = \eta_{12}$

$X = \eta_{12} + D_{12}\eta_{21}$

$X = \eta_{12} + D_{12}\eta_{21} + D_{121}\eta_{13}$

$X = \eta_{12} + D_{12}\eta_{21} + D_{121}\eta_{13} + D_{1213}\eta_{31}$

$X = \eta_{12} + D_{12}\eta_{21} + D_{121}\eta_{13} + D_{1213}\eta_{31}$

$X = \eta_{12} + D_{12}\eta_{21} + D_{121}\eta_{13} + D_{1213}\eta_{31}$ $-\eta_{12}$

M17

$X = \eta_{12} + D_{12}\eta_{21} + D_{121}\eta_{13} + D_{1213}\eta_{31}$ $-\eta_{12} - D_{13}\eta_{31}$

$X = \eta_{12} + D_{12}\eta_{21} + D_{121}\eta_{13} + D_{1213}\eta_{31}$ $-\eta_{12} - D_{13}\eta_{31} - D_{131}\eta_{13}$

$X = \eta_{12} + D_{12}\eta_{21} + D_{121}\eta_{13} + D_{1213}\eta_{31}$ $-\eta_{12} - D_{13}\eta_{31} - D_{131}\eta_{13} - D_{1312}\eta_{21}$

$X = \eta_{12} + D_{12}\eta_{21} + D_{121}\eta_{13} + D_{1213}\eta_{31}$ $-\eta_{12} - D_{13}\eta_{31} - D_{131}\eta_{13} - D_{1312}\eta_{21}$

 $X = \eta_{12} + D_{12}\eta_{21} + D_{121}\eta_{13} + D_{1213}\eta_{31}$ $-\eta_{12} - D_{13}\eta_{31} - D_{131}\eta_{13} - D_{1312}\eta_{21}$ $= (D_{12131} - D_{13121})\Phi_1$

Timescales in LISA

- TCB time *t*
 - Defined as the time shown of a perfect clock sitting at the solar • system baricenter
 - Global timescale, used for data analysis + 'standard' TDI

Timescales in LISA

- TCB time t
 - Defined as the time shown of a perfect clock sitting at the solar • system baricenter
 - Global timescale, used for data analysis + 'standard' TDI •
- One proper time τ_i for each spacecraft i (i = 1, 2, 3) •
 - Defined as the time shown of a perfect clock sitting in spacecraft i
 - Related to t (and each other) by General Relativity
 - Used for describing physics inside one spacecraft •

Timescales in LISA

- TCB time t
 - Defined as the time shown of a perfect clock sitting at the solar system baricenter
 - Global timescale, used for data analysis + 'standard' TDI •
- One proper time τ_i for each spacecraft i (i = 1, 2, 3) •
 - Defined as the time shown of a perfect clock sitting in spacecraft i
 - Related to t (and each other) by General Relativity •
 - Used for describing physics inside one spacecraft •
- One onboard clock time $\hat{\tau}_i$ for each spacecraft i (i = 1, 2, 3)
 - Defined as the time shown of the actual clock sitting in spacecraft *i* •
 - Differs from τ_i by instrumental imperfections
 - Only timescale directly accessible by the satellites

 LISA measures total phase/ frequency of MHz interferometric beat notes

- LISA measures total phase/ frequency of MHz interferometric beat notes
- 1 μ cycle/ \sqrt{Hz} @ 20 MHz requires 50 fs/ \sqrt{Hz} timing precision

- LISA measures total phase/ frequency of MHz interferometric beat notes
- 1 μ cycle/ \sqrt{Hz} @ 20 MHz requires 50 fs/ \sqrt{Hz} timing precision
- This is out of reach for spacequalified clocks.

- LISA measures total phase/ frequency of MHz interferometric beat notes
- 1 μ cycle/ \sqrt{Hz} @ 20 MHz requires 50 fs/ \sqrt{Hz} timing precision
- This is out of reach for spacequalified clocks.
- Instead: measure relative clock errors, correct in post-processing

- LISA measures total phase/ frequency of MHz interferometric beat notes
- 1 μ cycle/ \sqrt{Hz} @ 20 MHz requires 50 fs/ \sqrt{Hz} timing precision
- This is out of reach for spacequalified clocks.
- Instead: measure relative clock errors, correct in post-processing
- Note: any time shift applied to total phase/frequency requires same 50 fs/ \sqrt{Hz} precision

• 'Baseline' pipeline (simplified):

REMOVE MHz PHASE RAMPS CLOCK SYNC., RANGING PROC. FRAME CONV.,

GROUND

TRACKING

L0 DATA

'Baseline' pipeline (simplified):

Alternative pipeline:

DATA 0

RANGING PROC.

OB MOTION

GROUND TRACKING

FRAME CONV.

5

DATA

$\eta_{13} - \eta_{12} + D_{13}\eta_{31} - D_{12}\eta_{21}$

Measurements in clock time:

TDI with desynchronized clocks + total frequency: performance

- Perform simulation with:
 - **Realistic orbits**
 - Realistic laser, clock, • sideband and PRN noise
 - Neglect ultimately limiting • secondary noises
- Performance is unaffected by large clock drifts + offsets
- Sideband noise enters identical to previous studies with frequency fluctuations + dedicated clock correction step
- Numerics are a problem: double precision not quite enough for 1 pm across whole band

Paper in preparation with J.B. Bayle, M. Staab and the SYRTE Theory and Metrology group

Conclusion
TDI variables can be constructed directly from the unsynchronised data

- TDI variables can be constructed directly from the unsynchronised data
- The necessary delays can be directly extracted from the onboard ranging measurements at 50 fs/ \sqrt{Hz} precision

- TDI variables can be constructed directly from the unsynchronised data
- The necessary delays can be directly extracted from the onboard ranging measurements at 50 fs/ $\!\sqrt{Hz}$ precision
- This allows to simplify the L0-L1 pipeline

- TDI variables can be constructed directly from the unsynchronised data
- The necessary delays can be directly extracted from the onboard ranging • measurements at 50 fs/ \sqrt{Hz} precision
- This allows to simplify the L0-L1 pipeline
- Remark: Resulting TDI data still needs to be synchronised to TCB, but at much • lower precision.