(ili) SORBONNE

 universitéCRÉATEURS DE FUTURS

$\underset{\mathcal{E} R \in \mathbb{C}}{\text { DAIDICK DETI }}$

Institut d'Astrophysique de Paris Institut Lagrange de Paris

(+DAMTP Cambridge - UK)
Quantum avoidance of the Friedmann singularity

Motivations: (quantum) cosmology

$\underline{\text { Homogeneous \& isotropic metric (FLRW) }} \mathrm{d} s^{2}=-\mathrm{d} t^{2}+a^{2}(t)\left[\frac{\mathrm{d} r^{2}}{1-\mathscr{K} r^{2}}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right]$ Hubble rate $H \equiv \frac{\dot{a}}{a}$
$\underline{\text { Matter component: perfect fluid }} T_{\mu \nu}=p g_{\mu \nu}+(\rho+p) u_{\mu} u_{\nu}$

$$
\text { Equation of state } p=w \rho \longrightarrow \begin{cases}w=0 & \text { dust } \\ w=\frac{1}{3} & \text { radiation }\end{cases}
$$

+ cosmological constant $=$ Einstein/Friedmann equations

$$
\left\{\begin{array}{l}
H^{2}+\frac{\mathscr{K}}{a^{2}}=\frac{1}{3}\left(8 \pi G_{\mathrm{N}} \rho+\Lambda\right) \\
\frac{\ddot{a}}{a}=\frac{1}{3}\left[\Lambda-4 \pi G_{\mathrm{N}}(\rho+3 p)\right]
\end{array}\right.
$$

Particular solution: dust and radiation

integrate conservation equation

$$
\rho[a(t)]=\rho_{\mathrm{ini}} \exp \left\{-3 \int[1+w(a)] \mathrm{d} \ln a\right\} \underset{w \rightarrow \mathrm{cst}}{=} \rho_{\mathrm{ini}}\left(\frac{a}{a_{\mathrm{ini}}}\right)^{-3(1+w)}
$$

Phenomenologically valid description for 14 Gyrs!!!!

Planck 2018

$$
r<0.08
$$

$$
\begin{aligned}
& n_{\mathrm{s}}=0.9639 \pm 0.0047 \text { almost scale invariant } \\
& f_{\mathrm{NL}}^{\mathrm{loc}}=0.8 \pm 5 \\
& \text { excluded } \\
& \left.f_{\mathrm{NL}}^{\mathrm{eq}}=-4 \pm 43\right\} \text { Gaussian signal } \\
& f_{\mathrm{NL}}^{\text {ort }}=-26 \pm 21 \quad \text { Isocurvature } \lesssim 1 \%
\end{aligned}
$$

$$
\begin{aligned}
& n_{\mathrm{s}}=0.9639 \pm 0.0047 \text { almost scale invariant } \\
& \left.f_{\mathrm{NL}}^{\mathrm{loc}}=0.8 \pm 5\right\} \quad \text { excluded } \\
& \left.f_{\mathrm{NL}}^{\mathrm{eq}}=-4 \pm 43\right\} \text { Gaussian signal } \\
& f_{\mathrm{NL}}^{\mathrm{ort}}=-26 \pm 21 \quad \text { Isocurvature } \lesssim 1 \% \\
& r<0.08
\end{aligned}
$$

$$
\left.\begin{array}{rl}
n_{\mathrm{s}} & =0.9639 \pm 0.0047 \quad \underbrace{\text { almost scale invariant }}_{\text {excluded }} \\
f_{\mathrm{NL}}^{\text {loc }}=0.8 \pm 5 \\
f_{\mathrm{NL}}^{\text {eq }} & =-4 \pm 43 \\
f_{\mathrm{NL}}^{\text {ort }} & =-26 \pm 21 \\
r & \mathrm{ql}
\end{array}\right\} \begin{aligned}
& \text { Gaussian signal } \\
& \text { Isocurvature } \lesssim 1 \%
\end{aligned}
$$

quantum vacuum fluctuations of a single scalar d.o.f

compatible with INFLATION

Numerical simulation for
large scale structure formation...

A central problem (though not often formulated thus...): the singularity

Singularity problem...

Singularity problem...

a quantum effect?

Planck 2018

$$
r<0.08
$$

$$
\begin{aligned}
& n_{\mathrm{s}}=0.9639 \pm 0.0047 \text { almost scale invariant } \\
& f_{\mathrm{NL}}^{\mathrm{loc}}=0.8 \pm 5 \\
& \text { excluded } \\
& \left.f_{\mathrm{NL}}^{\mathrm{eq}}=-4 \pm 43\right\} \text { Gaussian signal } \\
& f_{\mathrm{NL}}^{\text {ort }}=-26 \pm 21 \quad \text { Isocurvature } \lesssim 1 \%
\end{aligned}
$$

$$
\left.\begin{array}{l}
n_{\mathrm{s}}=0.9639 \pm 0.0047 \quad \text { almost scale invariant } \\
f_{\mathrm{NL}}^{\mathrm{loc}}=0.8 \pm 5 \\
f_{\mathrm{NL}}^{\mathrm{eq}}=-4 \pm 43 \\
f_{\mathrm{NL}}^{\mathrm{ort}}=-26 \pm 21
\end{array}\right\} \begin{gathered}
\text { excluded } \\
\text { Gaussian signal } \\
\text { Isocurvature } \lesssim 1 \%
\end{gathered}
$$

$$
r<0.08
$$

Quantum mechanics

Physical system $=$ Hilbert space of configurations State vectors Observables $=$ self-adjoint operators Measurement $=$ eigenvalue

$$
\hat{\mathcal{O}}|n\rangle=\omega_{n}|n\rangle
$$

Evolution $=$ Schrödinger equation (time translation invariance) $i \hbar \frac{\mathrm{~d}}{\mathrm{~d} t}|\psi(t)\rangle=\hat{H}|\psi(t)\rangle$ Hamiltonian
Born rule Prob $\left[\omega_{n} ; t\right]=|\langle n \mid \psi(t)\rangle|^{2}$
Collapse of the wavefunction: $|\psi(t)\rangle$ before measurement, $|n\rangle$ after

Schrödinger equation $=$ linear (superposition principle) / unitary evolution
Wavepacket reduction $=$ non linear $/$ stochastic

Quantum mechanics

Physical system $=$ Hilbert space of configurations State vectors Observables $=$ self-adjoint operators Measurement $=$ eigenvalue

$$
\hat{\mathcal{O}}|n\rangle=\omega_{n}|n\rangle
$$

Evolution $=$ Schrödinger equation (time translation invariance) $i \hbar \frac{\mathrm{~d}}{\mathrm{~d} t}|\psi(t)\rangle=\hat{H}|\psi(t)\rangle$ Hamiltonian
Born rule Prob $\left[\omega_{n} ; t\right]=|\langle n \mid \psi(t)\rangle|^{2}$
Collapse of the wavefunction: $|\psi(t)\rangle$ before measurement, $|n\rangle$ after
Schrödinger equation $=$ linear (superposition principle) / unitary evolution
Wavepacket reduction $=$ non linear $/$ stochastic

Quantum mechanics

Physical system $=$ Hilbert space of configurations State vectors Observables $=$ self-adjoint operators Measurement $=$ eigenvalue

$$
\hat{\mathcal{O}}|n\rangle=\omega_{n}|n\rangle
$$

Evolution $=$ Schrödinger equation (time translation invariance) $i \hbar \frac{\mathrm{~d}}{\mathrm{~d} t}|\psi(t)\rangle=\hat{H}|\psi(t)\rangle$ Hamiltonian
Born rule Prob $\left[\omega_{n} ; t\right]=|\langle n \mid \psi(t)\rangle|^{2}$
Collapse of the wavefunction: $|\psi(t)\rangle$ before measurement, $|n\rangle$ after

Schrödinger equation $=$ linear (superposition principle) / unitary evolution
Wavepacket reduction $=$ non linear $/$ stochastic incompatible

Predictions for a quantum theory

Quantum average of observable $\langle\Psi| \hat{O}|\Psi\rangle$
laboratory: repeat experiment

cosmology: a single experiment

Ouantum Cosmology

Hamiltonian GR (3+1)

lapse function intrinsic metric $=$ first fundamental form

intrinsic curvature tensor

$$
{ }^{3} R_{j k l}^{i}(h)
$$

extrinsic curvature $=$ second fundamental form

$$
K_{i j}=-\nabla_{j}^{(h)} n_{i}=\frac{1}{2 N}\left(\nabla_{j}^{(h)} N_{i}+\nabla_{i}^{(h)} N_{j}-\frac{\partial h_{i j}}{\partial t}\right)
$$

Action (Einstein-Hilbert, compact space):

$$
\begin{aligned}
& \mathcal{S}=\frac{1}{16 \pi G_{\mathrm{N}}}\left[\int_{\mathscr{M}} \sqrt{-g}(R-2 \Lambda) \mathrm{d}^{4} x+2 \int_{\partial \mathscr{M}} \sqrt{h} K_{i}^{i} \mathrm{~d}^{3} x\right]+\mathcal{S}_{\text {matter }}[\Phi(x)] \\
\longrightarrow & \mathcal{S}=\int L \mathrm{~d} t=\frac{1}{16 \pi G_{\mathrm{N}}} \int \mathrm{~d} t\left[\int \mathrm{~d}^{3} x N \sqrt{h}\left(K_{i j} K^{i j}-K^{2}+{ }^{3} R-2 \Lambda\right)+L_{\text {matter }}\right]
\end{aligned}
$$

Canonical momenta

$$
\begin{aligned}
& \text { menta } \\
& \left.\begin{array}{rl}
\pi^{i j} & \equiv \frac{\delta L}{\delta \dot{h}_{i j}}=-\frac{\sqrt{h}}{16 \pi G_{\mathrm{N}}}\left(K^{i j}-h^{i j} K\right) \\
\pi^{\Phi} \equiv \frac{\delta L}{\delta \dot{\Phi}}=-\frac{\sqrt{h}}{N}\left(\dot{\Phi}-N \frac{\partial \Phi}{\partial x^{i}}\right) \\
\pi^{0} \equiv \frac{\delta L}{\delta \dot{N}}=0 \\
\pi^{i} \equiv \frac{\delta L}{\delta \dot{N}^{i}}=0
\end{array}\right\} \quad \begin{array}{r}
\text { primary constraints }
\end{array}
\end{aligned}
$$

Hamiltonian $\quad H \equiv \int \mathrm{~d}^{3} x\left(\pi^{0} \dot{N}+\pi^{i} \dot{N}_{i}+\pi^{i j} \dot{h}_{i j}+\pi^{\Phi} \dot{\Phi}\right)-L$

$$
=\int \mathrm{d}^{3} x\left(\pi^{0} \dot{N}+\pi^{i} \dot{N}_{i}+N \mathscr{H}+N_{i} \mathscr{H}^{i}\right)
$$

$\left.\begin{array}{l}\text { variation wrt lapse: } \mathscr{H}=0 \longrightarrow \text { Hamiltonian constraint } \\ \text { variation wrt shift: } \mathscr{H}^{i}=0 \longrightarrow \text { momentum constraint }\end{array}\right\}$
\Longrightarrow complete classical description

Superspace \& canonical quantisation

relevant configuration space $\operatorname{Riem}(\Sigma) \equiv\left\{h_{i j}\left(x^{\mu}\right), \Phi\left(x^{\mu}\right) \mid x \in \Sigma\right\}$

GR \Longrightarrow invariance/diffeomorphisms $\Longrightarrow \operatorname{Conf}=\frac{\operatorname{Riem}(\Sigma)}{\operatorname{Diff}(\Sigma)}:$ Superspace
wave functional $\Psi\left[h_{i j}(x), \Phi(x)\right]$

+ Dirac canonical quantisation procedure

$$
\pi^{i j} \rightarrow-i \frac{\delta}{\delta h_{i j}} \quad \pi^{\Phi} \rightarrow-i \frac{\delta}{\delta \Phi} \quad \pi^{0} \rightarrow-i \frac{\delta}{\delta N} \quad \pi^{i} \rightarrow-i \frac{\delta}{\delta N_{i}}
$$

primary constraints $\left\{\begin{array}{l}\hat{\pi}^{0}=-i \frac{\delta \Psi}{\delta N}=0 \\ \hat{\pi}^{i}=-i \frac{\delta \Psi}{\delta N_{i}}=0\end{array}\right.$
momentum $\hat{\mathrm{H}}^{i} \Psi=0 \quad \Longrightarrow \quad i \nabla_{j}^{(h)}\left(\frac{\delta \Psi}{\delta h_{i j}}\right)=8 \pi G_{\mathrm{N}} \hat{T}^{0 i} \Psi$
same Ψ for configurations related by a coordinate transformation
Hamiltonian $\hat{\mathscr{H}} \Psi=\left[-16 \pi G_{\mathrm{N}} \mathscr{G}_{i j k l} \frac{\delta^{2}}{\delta h_{i j} \delta h_{k l}}+\frac{\sqrt{h}}{16 \pi G_{\mathrm{N}}}\left(-{ }^{3} R+2 \Lambda+16 \pi G_{\mathrm{N}} \hat{T}^{00}\right)\right] \Psi=0$
$\mathscr{G}_{i j k l}=\frac{1}{2 \sqrt{h}}\left(h_{i k} h_{j l}+h_{i l} h_{j k}-h_{i j} h_{k l}\right) \quad$ Wheeler-De Witt equation
De Witt metric

$$
\text { primary constraints }\left\{\begin{array}{l}
\hat{\pi}^{0}=-i \frac{\delta \Psi}{\delta N}=0 \\
\hat{\pi}^{i}=-i \frac{\delta \Psi}{\delta N_{i}}=0
\end{array}\right.
$$

momentum $\hat{\mathrm{H}}^{i} \Psi=0 \quad \Longrightarrow \quad i \nabla_{j}^{(h)}\left(\frac{\delta \Psi}{\delta h_{i j}}\right)=8 \pi G_{\mathrm{N}} \hat{T}^{0 i} \Psi$
same Ψ for configurations related by a coordinate transformation

Hamiltonian

$$
\hat{H} \Psi=0
$$

Wheeler-De Witt equation

- Minisuperspace

Restrict attention from an infinite dimensional configuration space to 2 dimensional space = mini-superspace

$$
h_{i j} \mathrm{~d} x^{i} \mathrm{~d} x^{j}=a^{2}(t)\left[\frac{\mathrm{d} r^{2}}{1-k r^{2}}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \varphi^{2}\right)\right] \quad \Phi(x)=\phi(t)
$$

WDW equation becomes Schrödinger-like for $\Psi[a(t), \phi(t)]$

Conceptual and technical problems:
Infinite number of dof \longrightarrow a few: mathematical consistency?
Freeze momenta? Heisenberg uncertainties?
$\mathrm{QM}=$ minisuperspace of QFT

- Minisuperspace

Restrict attention from an infinite dimensional configuration space to 2 dimensional space = mini-superspace

$$
h_{i j} \mathrm{~d} x^{i} \mathrm{~d} x^{j}=a^{2}(t)\left[\frac{\mathrm{d} r^{2}}{1-k r^{2}}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \varphi^{2}\right)\right] \quad \Phi(x)=\phi(t)
$$

WDW equation becomes Schrödinger-like for $\Psi[a(t), \phi(t)]$

Actually make calculations!

Exemple : Quantum cosmology of a perfect fluid

$$
\mathrm{d} s^{2}=N^{2}(\tau) \mathrm{d} \tau-a^{2}(\tau) \gamma_{i j} \mathrm{~d} x^{i} \mathrm{~d} x^{j}
$$

Exemple : Quantum cosmology of a perfect fluid

$$
\mathrm{d} s^{2}=N^{2}(\tau) \mathrm{d} \tau-a^{2}(\tau) \gamma_{i j} \mathrm{~d} x^{i} \mathrm{~d} x^{j}
$$

Perfect fluid: Schutz formalism ('70)

$$
\begin{aligned}
& p=p_{0}\left[\frac{\dot{\varphi}+\theta \dot{s}}{N(1+\omega)}\right]^{\frac{1+\omega}{\omega}} \\
&(\varphi, \theta, s)=\text { Velocity potentials }
\end{aligned}
$$

Exemple : Quantum cosmology of a perfect fluid

$$
\mathrm{d} s^{2}=N^{2}(\tau) \mathrm{d} \tau-a^{2}(\tau) \gamma_{i j} \mathrm{~d} x^{i} \mathrm{~d} x^{j}
$$

Perfect fluid: Schutz formalism ('70)

$$
p=p_{0}\left[\frac{\dot{\varphi}+\theta \dot{s}}{N(1+\omega)}\right]^{\frac{1+\omega}{\omega}}
$$

$(\varphi, \theta, s)=$ Velocity potentials
canonical transformation: $\quad T=-p_{s} \mathrm{e}^{-s / s_{0}} p_{\varphi}^{-(1+\omega)} s_{0} \rho_{0}^{-\omega} \quad \ldots$

+ rescaling (volume...) + units... : simple Hamiltonian:

$$
H=\left(-\frac{p_{a}^{2}}{4 a}-\mathcal{K} a+\frac{p_{T}}{a^{3 \omega}}\right) N
$$

Wheeler-De Witt $\quad H \Psi=0$

Wheeler-De Witt

$$
H \Psi=0
$$

$$
\mathcal{K}=0 \Longrightarrow \chi \equiv \frac{2 a^{3(1-\omega) / 2}}{3(1-\omega)} \Longrightarrow i \frac{\partial \Psi}{\partial T}=\frac{1}{4} \frac{\partial^{2} \Psi}{\partial \chi^{2}}
$$

space defined by $\chi>0 \longrightarrow$ constraint $\bar{\Psi} \frac{\partial \Psi}{\partial \chi}=\Psi \frac{\partial \bar{\Psi}}{\partial \chi}$

$$
H \Psi=0
$$

$$
\mathcal{K}=0 \Longrightarrow \chi \equiv \frac{2 a^{3(1-\omega) / 2}}{3(1-\omega)} \Longrightarrow i \frac{\partial \Psi}{\partial T}=\frac{1}{4} \frac{\partial^{2} \Psi}{\partial \chi^{2}}
$$

space defined by $\chi>0 \longrightarrow$ constraint $\bar{\Psi} \frac{\partial \Psi}{\partial \chi}=\Psi \frac{\partial \bar{\Psi}}{\partial \chi}$
Gaussian wave packet

$$
\begin{gathered}
\square \Psi=\left[\frac{8 T_{0}}{\pi\left(T_{0}^{2}+T^{2}\right)^{2}}\right]^{\frac{1}{4}} \exp \left(-\frac{T_{0} \chi^{2}}{T_{0}^{2}+T^{2}}\right) \mathrm{e}^{-i S(\chi, T)} \\
\text { phase } \quad S=\frac{T \chi^{2}}{T_{0}^{2}+T^{2}}+\frac{1}{2} \arctan \frac{T_{0}}{T}-\frac{\pi}{4}
\end{gathered}
$$

What do we do with the wave function of the Universe???

The measurement problem in quantum mechanics

Preferred basis: no unique definition of measured observables

Definite outcome: we don't measure superpositions
collapse of the wave function

The measurement problem in quantum mechanics

Stern-Gerlach

The measurement problem in quantum mechanics

$$
\left\{|\uparrow\rangle \otimes\left|\mathrm{SG}_{\uparrow}\right\rangle\right\} \cup\left\{|\downarrow\rangle \otimes\left|\mathrm{SG}_{\downarrow}\right\rangle\right\}
$$

Stern-Gerlach

The measurement problem in quantum mechanics
Statistical mixture

Stern-Gerlach

The measurement problem in quantum mechanics
Statistical mixture

Stern-Gerlach

The measurement problem in quantum mechanics
Statistical mixture

The measurement problem in quantum mechanics
Statistical mixture

The measurement problem in quantum mechanics

Stern-Gerlach

What about situations in which one has only one realization?

What about the Universe itself?

- Possible extensions and a criterion: the Born rule

A. Bassi \& G.C. Ghirardi, Phys. Rep. 379, 257 (2003)

- Hidden variables
- Modified Schrödinger dynamics

- Possible extensions and a criterion: the Born rule

A. Bassi \& G.C. Ghirardi, Phys. Rep. 379, 257 (2003)

- Hidden variables
- Modified Schrödinger dynamics

Born rule not put by hand!

- Possible extensions and a criterion: the Born rule

A. Bassi \& G.C. Ghirardi, Phys. Rep. 379, 257 (2003)

- Hidden variables
- Modified Schrödinger dynamics

Born rule not put by hand!

$$
+ \text { TESTABLE! }
$$

- Possible extensions and a criterion: the Born rule
- Superselection rules
- Modal interpretation
- Consistent histories
- Many worlds / many minds

A. Bassi \& G.C. Ghirardi, Phys. Rep. 379, 257 (2003)
- Hidden variables
- Modified Schrödinger dynamics

Born rule not put by hand!

$$
+ \text { TESTABLE! }
$$

Ontological interpretation (dBB)

Louis de Broglie (1892-1987)

David Bohm (1917-1992)

1927 Solvay meeting and von Neuman "5th assumption"... John Stewart Bell (1928-1990) 'In 1952, I saw the impossible done'

Ontological interpretation (dBB)

Louis de Broglie (1892-1987) (duke)

David Bohm (1917-1992)

1927 Solvay meeting and von Neuman "5th assumption"... John Stewart Bell (1928-1990) 'In 1952, I saw the impossible done'

Ontological interpretation (dBB)

Louis de Broglie (1892-1987) (duke)

David Bohm (1917-1992) (communist)

1927 Solvay meeting and von Neuman "5th assumption"... John Stewart Bell (1928-1990) 'In 1952, I saw the impossible done'

Trajectory formulation (dBB)

Louis de Broglie (1892-1987) (duke)
1927 Solvay meeting and von Neuman " 5 th assumption"... John Stewart Bell (1928-1990) 'In 1952, I saw the impossible done'

Trajectory approach to QM

(1) ordinary QM

Schrödinger equation $i \hbar \frac{\partial \Psi}{\partial t}=\left[-\frac{\hbar^{2} \nabla^{2}}{2 m}+V(r)\right] \Psi$

Polar form of the wave function $\quad \Psi=A(\boldsymbol{r}, t) \mathrm{e}^{i S(\boldsymbol{r}, t) / \hbar}$
\longrightarrow from now on, $\hbar=1$
Modified Hamilton-Jacobi equation

$$
\begin{array}{|l}
\frac{\partial S}{\partial t}+\frac{(\nabla S)^{2}}{2 m}+V(\boldsymbol{r})+Q(\boldsymbol{r}, t)=0 \\
\left.\begin{array}{c}
\text { quantum } \\
\text { potential } \\
\equiv-\frac{1}{2 m} \\
\hline
\end{array}\right)
\end{array}
$$

Trajectory approach to QM

Ontological formulation (dBB)

$$
\Psi=A(\boldsymbol{r}, t) \mathrm{e}^{i S(\boldsymbol{r}, t)}
$$

$\exists \boldsymbol{r}(t)$ trajectory satisfying (de Broglie pilot wave eq.)

$$
m \frac{\mathrm{~d} \boldsymbol{r}}{\mathrm{~d} t}=\Im \mathrm{m} \frac{\Psi^{\star} \nabla \Psi}{|\Psi(\boldsymbol{r}, t)|^{2}}=\nabla S(\boldsymbol{r}, t)
$$

Ontological formulation (BdB)

$$
\Psi=A(\boldsymbol{r}, t) \mathrm{e}^{i S(\boldsymbol{r}, t)}
$$

$\exists r(t)$ trajectory satisfying (Bojm modified dynamics)

$$
m \frac{\mathrm{~d}^{2} \boldsymbol{r}}{\mathrm{~d} t^{2}}=-\nabla(V+\underset{\boldsymbol{q}}{Q}) \quad Q \equiv-\frac{1}{2 m} \frac{\nabla^{2}|\Psi|}{|\Psi|}
$$

Trajectory approach to QM
Ontological formulation (dBB) $\quad \exists r(t)$
$\exists \boldsymbol{r}(t)$ trajectory satisfying
(de Broglie pilot wave eq.)
$\exists \boldsymbol{r}(t)$ trajectory satisfying
(de Broglie pilot wave eq.)

$$
m \frac{\mathrm{~d} \boldsymbol{r}}{\mathrm{~d} t}=\Im \mathrm{m} \frac{\Psi^{\star} \nabla \Psi}{|\Psi(\boldsymbol{r}, t)|^{2}}=\nabla S(\boldsymbol{r}, t)
$$

(-) strictly equivalent to Copenhagen QM

Properties:

- probability distribution (attractor)
© classical limit well defined $\quad Q \longrightarrow 0$ $\left(Q \equiv-\frac{1}{2 m} \frac{\nabla^{2}|\Psi|}{|\Psi|}\right)$
© state dependent
$\Psi=A(\boldsymbol{r}, t) \mathrm{e}^{i S(\boldsymbol{r}, t)}$
© \exists intrinsic reality
- non local...
© no need for external classical domain/observer!

Trajectory approach to QM

Ontological formulation (dBB) $\quad \exists r(t)$

$\Psi=A(\boldsymbol{r}, t) \mathrm{e}^{i S(\boldsymbol{r}, t)}$
$\exists \boldsymbol{r}(t)$ trajectory satisfying (de Broglie pilot wave eq.)

$$
m \frac{\mathrm{~d} \boldsymbol{r}}{\mathrm{~d} t}=\Im m \frac{\Psi^{\star} \nabla \Psi}{|\Psi(\boldsymbol{r}, t)|^{2}}=\nabla S(\boldsymbol{r}, t)
$$

(-) strictly equivalent to Copenhagen QM

Properties: probability distribution (attractor)
$\begin{array}{lll}\odot & \text { classical limit well defined } \quad Q \longrightarrow 0 & \left(Q \equiv-\frac{1}{2 m} \frac{\nabla^{2}|\Psi|}{|\Psi|}\right) \\ (-) \text { state dependent }\end{array}$
© \exists intrinsic reality
non local ...
© no need for external classical domain/observer!
"Bohr brainwashed a whole generation of physicists into thinking that the job was done 50 years ago. "

Example: the 2-slit experiment

Non straight in vacuum...

$$
m \frac{\mathrm{~d}^{2} x(t)}{\mathrm{d} t^{2}}=-\nabla(V+Q)
$$

... a phenomenon which is impossible, absolutely impossible, to explain in any classical way, and which has in it the heart of quantum mechanics.

Example: the 2-slit experiment

Surrealistic trajectories?

Non straight in vacuum...

$$
m \frac{\mathrm{~d}^{2} x(t)}{\mathrm{d} t^{2}}=-\nabla(V+Q)
$$

... a phenomenon which is impossible, absolutely impossible, to explain in any classical way, and which has in it the heart of quantum mechanics.

Example: the 2-slit experiment

Surrealistic trajectories?

Non straight in vacuum...

$$
m \frac{\mathrm{~d}^{2} x(t)}{\mathrm{d} t^{2}}=-\nabla(\underset{\boldsymbol{X}}{ }+Q)
$$

... a phenomenon which is impossible, absolutely impossible, to explain in any classical way, and which has in it the heart of quantum mechanics.

Example: the 2-slit experiment

Surrealistic trajectories?

Non straight in vacuum...

$$
m \frac{\mathrm{~d}^{2} x(t)}{\mathrm{d} t^{2}}=-\nabla(\underset{\boldsymbol{X}}{ }+Q)
$$

... a phenomenon which is impossible, absolutely impossible, to explain in any classical way, and which has in it the heart of quantum mechanics.

Example: the 2-slit experiment

Surrealistic trajectories?

Non straight in vacuum...

... a phenomenon which is impossible, absolutely impossible, to explain in any classical way, and which has in it the heart of quantum mechanics.

Example: the 2-slit experiment

Surrealistic trajectories?

Non straight in vacuum...

... a phenomenon which is impossible, absolutely impossible, to explain in any classical way, and which has in it the heart of quantum mechanics.

Example: the 2-slit experiment

Surrealistic trajectories?

Non straight in vacuum...

... a phenomenon which is impossible, absolutely impossible, to explain in any classical way, and which has in it the heart of quantum mechanics.

Example: the 2-slit experiment

... a phenomenon which is impossible, absolutely impossible, to explain in any classical way, and which has in it the heart of quantum mechanics.

$$
i \frac{\partial \Psi}{\partial t}=\frac{1}{4} \frac{\partial^{2} \Psi}{\partial x^{2}}
$$

phase

$$
S(x, t)=\frac{t x^{2}}{t_{0}^{2}+t^{2}}+\frac{1}{2} \arctan \left(\frac{t_{0}}{t}\right)-\frac{\pi}{4}
$$

Gaussian wave packet
Use dBB trajectory in mini superspace! $x \Longleftrightarrow a \quad$ scale factor

$$
a=a_{0}\left[1+\left(\frac{t}{t_{0}}\right)^{2}\right]^{\frac{1}{3(1-w)}}
$$

 Phys. Lett. A241, 229 (1998)
 Phys. Lett. A241, 229 (1998)

A simple Bianchi I model $\quad \mathrm{d} s^{2}=-N^{2}(t) \mathrm{d} t^{2}+\sum_{i=1}^{3} a_{i}^{2}(t)\left(\mathrm{d} x^{i}\right)^{2}$

$$
+ \text { (radiation) fluid / constant equation of state } \quad w \equiv p / \rho=\frac{1}{3}
$$

conformal time choice $N \rightarrow a$

$$
t \rightarrow \eta
$$

GR Hamiltonian $\quad H=\frac{\Pi_{a}^{2}}{24}-\frac{p_{-}^{2}+p_{+}^{2}}{24 a^{2}}$

Canonical commutation relations

$$
\left[\hat{a}, \hat{\Pi}_{a}\right]=\left[\hat{\beta}_{ \pm}, \hat{p}_{ \pm}\right]=i
$$

$$
a \equiv\left(a_{1} a_{2} a_{3}\right)^{\frac{1}{3}}
$$

$$
\beta_{-} \equiv \frac{1}{2 \sqrt{3}} \ln \left(a_{1} / a_{2}\right)
$$

Rescaling:

$$
\beta_{+} \equiv \frac{1}{6} \ln \left(a_{1} a_{2} / a_{3}^{2}\right)
$$

$$
\hat{H}=\hat{\Pi}_{a}^{2}-\left(\hat{p}_{-}^{2}+\hat{p}_{+}^{2}\right) \hat{a}^{-2}
$$

mixed representation for the wave function

Hilbert space \mathbb{H}

$$
\mathbb{H} \sim\left\{f\left(a, p_{+}, p_{-}\right) \in \mathbb{C} ; \int_{0}^{\infty} \mathrm{d} a \int_{-\infty}^{\infty} \mathrm{d} p_{+} \int_{-\infty}^{\infty} \mathrm{d} p_{-}\left|f\left(a, p_{+}, p_{-}\right)\right|^{2}<\infty\right\}
$$

eigenvalue equation $\hat{H} \Psi=\ell^{2} \Psi \leadsto-\frac{\partial^{2} \mathcal{U}_{\ell}^{(k)}}{\partial a^{2}}-\frac{k^{2}}{4 a^{2}} \mathcal{U}_{\ell}^{(k)}=\ell^{2} \mathcal{U}_{\ell}^{(k)}$

Wave function

$$
\Psi\left(a, p_{+}, p_{-}\right)=\int_{0}^{\infty} \mathrm{d} \ell \int_{-\infty}^{\infty} \mathrm{d} \beta_{+} \int_{-\infty}^{\infty} \mathrm{d} \beta_{-} \tilde{\Psi}\left(\ell, \beta_{+}, \beta_{-}\right) \mathrm{e}^{i\left(\beta_{+} p_{+}+\beta_{-} p_{-}\right)} \mathcal{U}_{\ell}^{(k)}(a)
$$

mixed representation for the wave function

$$
\begin{aligned}
\hat{a} \Psi & =a \Psi \\
\hat{p}_{ \pm} \Psi & =p_{ \pm} \Psi
\end{aligned}
$$

$$
\hat{\Pi}_{a}=-i \partial / \partial a
$$

$$
\hat{\beta}_{ \pm}=i \partial / \partial p_{ \pm}
$$

Hilbert space \mathbb{H}

$$
\mathbb{H} \sim\left\{f\left(a, p_{+}, p_{-}\right) \in \mathbb{C} ; \int_{0}^{\infty} \mathrm{d} a \int_{-\infty}^{\infty} \mathrm{d} p_{+} \int_{-\infty}^{\infty} \mathrm{d} p_{-}\left|f\left(a, p_{+}, p_{-}\right)\right|^{2}<\infty\right\}
$$

eigenvalue equation $\hat{H} \Psi=\ell^{2} \Psi \leadsto-\frac{\partial^{2} \mathcal{U}_{\ell}^{(k)}}{\partial a^{2}}-/ \frac{k^{2}}{4 a^{2}} \mathcal{U}_{\ell}^{(k)}=\ell^{2} \mathcal{U}_{\ell}^{(k)}$

$$
k^{2} \equiv 4\left(p_{+}^{2}+p_{-}^{2}\right)
$$

Wave function

$$
\Psi\left(a, p_{+}, p_{-}\right)=\int_{0}^{\infty} \mathrm{d} \ell \int_{-\infty}^{\infty} \mathrm{d} \beta_{+} \int_{-\infty}^{\infty} \mathrm{d} \beta_{-} \tilde{\Psi}\left(\ell, \beta_{+}, \beta_{-}\right) \mathrm{e}^{i\left(\beta_{+} p_{+}+\beta_{-} p_{-}\right)} \mathcal{U}_{\ell}^{(k)}(a)
$$

$$
\text { Self-adjoint Hamiltonian } \quad \int \mathrm{d} a \mathrm{~d}^{2} p(H \Psi)^{*} \Psi=\int \mathrm{d} a \mathrm{~d}^{2} p \Psi^{*}(H \Psi)
$$

automatically satisfied if

$$
\begin{aligned}
& \int_{0}^{\infty} \mathrm{d} a \mathcal{U}_{\ell}^{(k) *}(a) \mathcal{U}_{\ell^{\prime}}^{(k)}(a)=\delta\left(\ell-\ell^{\prime}\right) \\
& \int_{0}^{\infty} \mathrm{d} \ell \int_{-\infty}^{\infty} \mathrm{d} \beta_{+} \int_{-\infty}^{\infty} \mathrm{d} \beta_{-}\left|\tilde{\Psi}\left(\ell, \beta_{ \pm}\right)\right|^{2} \ell^{2}<\infty
\end{aligned}
$$

$$
\begin{array}{ll}
\nu=\frac{1}{2} \sqrt{1-k^{2}} \quad \text { general solution for the energy eigenmodes } \\
& \mathcal{U}_{\ell}^{(k)}(a)=c_{+} \sqrt{a \ell} J_{\nu}(a \ell)+c_{-} \sqrt{a \ell} J_{-\nu}(a \ell)
\end{array}\left\{\begin{array}{l}
c_{+}=1 \text { and } c_{-}=0 \\
c_{+}=0 \text { and } c_{-}=1
\end{array}\right.
$$

Linear fluid momentum
$\hat{P}_{\text {fluid }}=-i \partial_{\eta}$
Schrödinger
\leadsto Evolution operator

$$
i \frac{\partial U}{\partial \eta}=\hat{H} U
$$

$$
\Psi_{0}(a)=\left\langle a, p_{ \pm} \mid \Psi_{0}\right\rangle=\frac{2^{(1-2 \alpha) / 4} a^{\alpha}}{\sigma^{\alpha+1 / 2} \sqrt{\Gamma\left(\alpha+\frac{1}{2}\right)}} \exp \left[-\frac{1}{2} a^{2}\left(\frac{1}{2 \sigma^{2}}-i \mathcal{H}_{\mathrm{ini}}\right)\right]
$$

Propagator $\quad G\left(a, p_{ \pm}, a_{0}, p_{ \pm}^{0}\right) \equiv\left\langle a, p_{ \pm}\right| U\left|a_{0}, p_{ \pm}^{0}\right\rangle$

$$
=\delta^{(2)}\left(p_{ \pm}-p_{ \pm}^{\prime}\right) \int_{0}^{\infty} \mathrm{d} \ell \mathrm{e}^{-i \ell^{2} \Delta \eta} \mathcal{U}_{\ell}^{(k)}(a) \mathcal{U}_{\ell}^{(k) *}\left(a^{\prime}\right)
$$

+ regularisation $\widetilde{\Delta \eta}=\Delta \eta(1+i \epsilon)$

$$
G\left(a, a_{0} ; \eta\right)=-\frac{i \sqrt{a a_{0}}}{2 \widetilde{\Delta \eta}} \mathrm{e}^{\frac{i}{4}\left(a^{2}+a_{0}^{2}\right) / \widetilde{\Delta \eta}-i \alpha \pi / 2} J_{\nu}\left(\frac{a a_{0}}{2 \widetilde{\Delta \eta}}\right)
$$

dBB trajectory $\quad \frac{\mathrm{d} a}{\mathrm{~d} \eta}=\frac{\partial S}{\partial a}=\frac{i}{2|\Psi|^{2}}\left(\Psi \frac{\partial \Psi^{*}}{\partial a}-\frac{\partial \Psi}{\partial a} \Psi^{*}\right)$
$\nu=\frac{1}{2}$
(FLRW)

LUTh - 22/11/2018

Quantum equilibrium

(Valentini \& Westman, 2005)

$$
i \frac{\mathrm{~d}}{\mathrm{~d} t}|\Psi\rangle=\hat{H}|\Psi\rangle
$$

Particle in a box-2D

$$
i \frac{\partial \psi}{\partial t}=-\frac{1}{2} \frac{\partial^{2} \psi}{\partial x^{2}}-\frac{1}{2} \frac{\partial^{2} \psi}{\partial y^{2}}+\underbrace{V \psi}_{\text {infinite square well }- \text { size } \pi}
$$

Density of actual configurations

$$
\rho(x, y, t) \Longrightarrow \frac{\partial \rho}{\partial t}+\frac{\partial}{\partial x}(\rho \dot{x})+\frac{\partial}{\partial y}(\rho \dot{y})=0 \quad \text { continuity equation }
$$

Energy eigenfunctions $\phi_{m n}(x, y)=\frac{2}{\pi} \sin (m x) \sin (n y)$
Energy levels $E_{m n}=\frac{1}{2}\left(m^{2}+n^{2}\right)$

Initial configuration

$$
\rho(x, y, 0)=\left|\phi_{11}(x, y)\right|^{2}
$$

$$
\psi(x, y, 0)=\sum_{m, n=1}^{4} \frac{1}{4} \phi_{m n}(x, y) \exp \left(i \theta_{m n}\right)
$$

$$
\psi(x, y, t)=\sum_{m, n=1}^{4} \frac{1}{4} \phi_{m n}(x, y) \exp i\left(\theta_{m n}-E_{m n} t\right)
$$

Typical quantum

 trajectory...Close-up of a trajectory near a node

chaotic mixing...

Dynamical evolutions

time

$\tilde{\rho}_{\mathrm{QT}}(t=0)$

$\tilde{\rho}_{\mathrm{QT}}(t=5 \pi)$

chaotic mixing...
relaxation towards equilibrium
just like ordinary thermal equilibrium
$\tilde{\rho}(t=0)$

$$
\tilde{\rho}(t=100 \pi)
$$

$\tilde{\rho}_{\mathrm{QT}}(t=0)$

$\tilde{\rho}_{\mathrm{QT}}(t=100 \pi)$

chaotic mixing...
relaxation towards equilibrium
just like ordinary thermal equilibrium

$$
\mathrm{d} s^{2}=a^{2}(\eta)\left\{(1+2 \Phi) \mathrm{d} \eta^{2}-\left[(1-2 \Phi) \gamma_{i j}+h_{i j}\right] \mathrm{d} x^{i} \mathrm{~d} x^{j}\right\}
$$

Back to cosmology
quantum vacuum fluctuations

$$
\mathrm{d} s^{2}=a^{2}(\eta)\left\{(1+2 \Phi) \mathrm{d} \eta^{2}-\left[(1-2 \Phi) \gamma_{i j}+h_{i j}\right] \mathrm{d} x^{i} \mathrm{~d} x^{j}\right\}
$$

$$
i \hbar \frac{\mathrm{~d}}{\mathrm{~d} t}|\psi(t)\rangle=\hat{H}|\psi(t)\rangle
$$

Inflationary perturbations: quantum fluctuations / expanding background
Classical temperature fluctuations

$$
\frac{\Delta T}{T} \propto v \sim \Phi \sim \delta g_{00}
$$

Inflationary perturbations: quantum fluctuations / expanding background
Classical temperature fluctuations promoted to quantum operators

$$
\frac{\widehat{\Delta T}}{T} \propto \hat{v} \sim \Phi \sim \delta g_{00}
$$

Inflationary perturbations: quantum fluctuations / expanding background
Classical temperature fluctuations promoted to quantum operators

$$
\frac{\widehat{\Delta T}}{T} \propto \hat{v} \sim \Phi \sim \delta g_{00}
$$

second order perturbed Einstein action ${ }^{(2)} \delta S=\frac{1}{2} \int \mathrm{~d}^{4} x\left[\left(v^{\prime}\right)^{2}-\delta^{i j} \partial_{i v} \partial_{j} v+\frac{\left(a \sqrt{\epsilon_{1}}\right)}{a \sqrt{\epsilon_{1}}} v^{2}\right]$

Inflationary perturbations: quantum fluctuations / expanding background
Classical temperature fluctuations promoted to quantum operators

$$
\frac{\widehat{\Delta T}}{T} \propto \hat{v} \sim \Phi \sim \delta g_{00}
$$

second order perturbed Einstein action ${ }^{(2)} \delta S=\frac{1}{2} \int \mathrm{~d}^{4} x\left[\left(v^{\prime}\right)^{2}-\delta^{i j} \partial_{i} v \partial_{j} v+\frac{\left(a \sqrt{\epsilon_{1}}\right)^{\prime \prime}}{a \sqrt{\epsilon_{1}}} v^{2}\right]$
$\epsilon_{1}=1-\mathcal{H}^{\prime} / \mathcal{H}^{2}$
slow-roll parameter

Inflationary perturbations: quantum fluctuations / expanding background
Classical temperature fluctuations promoted to quantum operators

$$
\frac{\widehat{\Delta T}}{T} \propto \hat{v} \sim \Phi \sim \delta g_{00}
$$

second order perturbed Einstein action ${ }^{(2)} \delta S=\frac{1}{2} \int \mathrm{~d}^{4} x\left[\left(v^{\prime}\right)^{2}-\delta^{i j} \partial_{i} v \partial_{j} v+\frac{\left(a \sqrt{\left.\epsilon_{1}\right)}{ }^{\prime \prime}\right.}{a \sqrt{\epsilon_{1}}} v^{2}\right]$
variable-mass scalar field in Minkowski spacetime

Inflationary perturbations: quantum fluctuations / expanding background

Classical temperature fluctuations promoted to quantum operators

$$
\frac{\widehat{\Delta T}}{T} \propto \hat{v} \sim \Phi \sim \delta g_{00}
$$

second order perturbed Einstein action ${ }^{(2)} \delta S=\frac{1}{2} \int \mathrm{~d}^{4} x\left[\left(v^{\prime}\right)^{2}-\delta^{i j} \partial_{i} v \partial_{j} v+\frac{\left(a \sqrt{\epsilon_{1}}\right)^{\prime \prime}}{a \sqrt{\epsilon_{1}}} v^{2}\right]$ variable-mass scalar field in Minkowski spacetime

+ Fourier transform $\quad v(\eta, \boldsymbol{x})=\frac{1}{(2 \pi)^{3 / 2}} \int_{\mathbb{R}^{3}} \mathrm{~d}^{3} \boldsymbol{k} v_{\boldsymbol{k}}(\eta) \mathrm{e}^{i \boldsymbol{k} \cdot \boldsymbol{x}}$
slow-roll parameter

$$
{ }^{(2)} \delta S=\int \mathrm{d} \eta \int \mathrm{~d}^{3} \boldsymbol{k}\left\{v_{\boldsymbol{k}}^{\prime} v_{\boldsymbol{k}}^{* \prime}+v_{\boldsymbol{k}} v_{\boldsymbol{k}}^{*}\left[\frac{\left(a \sqrt{\epsilon_{1}}\right)^{\prime \prime}}{a \sqrt{\epsilon_{1}}}-k^{2}\right]\right\}
$$

Lagrangian formulation...

Hamiltonian

$$
H=\int \mathrm{d}^{3} \boldsymbol{k}\left\{p_{\boldsymbol{k}} p_{\boldsymbol{k}}^{*}+v_{\boldsymbol{k}} v_{\boldsymbol{k}}^{*}\left[k^{2}-\frac{\left(a \sqrt{\epsilon_{1}}\right)^{\prime \prime}}{a \sqrt{\epsilon_{1}}}\right]\right\}
$$

collection of parametric oscillators with time dependent frequency
factorization of the full wave function real and imaginary parts

$$
\Psi[v(\eta, \boldsymbol{x})]=\prod_{k} \Psi_{k}\left(v_{k}^{\mathrm{R}}, v_{k}^{\mathrm{I}}\right)=\prod_{k} \Psi_{k}^{\mathrm{R}}\left(v_{k}^{\mathrm{R}}\right) \Psi_{k}^{\mathrm{I}}\left(v_{k}^{\mathrm{I}}\right)
$$

$$
\left.\begin{array}{rl}
i \frac{\Psi_{\boldsymbol{k}}^{\mathrm{R}, \mathrm{I}}}{\partial \eta} & =\hat{\mathcal{H}}_{\boldsymbol{k}}^{\mathrm{R}, \mathrm{I}} \Psi_{\boldsymbol{k}}^{\mathrm{R}, \mathrm{I}} \\
\hat{\mathcal{H}}_{\boldsymbol{k}}^{\mathrm{R}, \mathrm{I}} & =-\frac{1}{2} \frac{\partial^{2}}{\partial\left(v_{\boldsymbol{k}}^{\mathrm{R}, \mathrm{I}}\right)^{2}}+\frac{1}{2} \omega^{2}(\eta, \boldsymbol{k})\left(\hat{v}_{\boldsymbol{k}}^{\mathrm{R}, \mathrm{I}}\right)^{2}
\end{array}\right\}
$$

Gaussian state solution $\Psi\left(\eta, v_{k}\right)=\left[\frac{2 \Re \mathrm{e} \Omega_{k}(\eta)}{\pi}\right]^{1 / 4} \mathrm{e}^{-\Omega_{k}(\eta) v_{k}^{2}}$

Wigner function $W\left(v_{\boldsymbol{k}}, p_{\boldsymbol{k}}\right)=\int \frac{\mathrm{d} x}{2 \pi^{2}} \Psi^{*}\left(v_{\boldsymbol{k}}-\frac{x}{2}\right) \mathrm{e}^{-i p_{k} x} \Psi\left(v_{\boldsymbol{k}}+\frac{x}{2}\right)$

Gaussian state solution $\Psi\left(\eta, v_{k}\right)=\left[\frac{2 \Re \mathrm{e} \Omega_{k}(\eta)}{\pi}\right]^{1 / 4} \mathrm{e}^{-\Omega_{k}(\eta) v_{k}^{2}}$

Wigner function $W\left(v_{\boldsymbol{k}}, p_{\boldsymbol{k}}\right)=\int \frac{\mathrm{d} x}{2 \pi^{2}} \Psi^{*}\left(v_{\boldsymbol{k}}-\frac{x}{2}\right) \mathrm{e}^{-i p_{k} x} \Psi\left(v_{\boldsymbol{k}}+\frac{x}{2}\right)$

Animation provided by V. Vennin

Primordial Power Spectrum

Standard case

$$
i \frac{\mathrm{~d}\left|\Psi_{\boldsymbol{k}}\right\rangle}{\mathrm{d} \eta}=\hat{\mathcal{H}}_{\boldsymbol{k}}\left|\Psi_{\boldsymbol{k}}\right\rangle
$$

Power-law inflation example

$$
\hat{v}_{k}=v_{k}
$$

with

$$
\hat{\mathcal{H}}_{\boldsymbol{k}}=\frac{\hat{p}_{\boldsymbol{k}}^{2}}{2}+\omega^{2}(\boldsymbol{k}, \eta) \hat{v}_{\boldsymbol{k}}^{2}
$$

$$
\hat{p}_{\boldsymbol{k}}=i \frac{\partial}{\partial v_{\boldsymbol{k}}}
$$

and

$$
\begin{aligned}
\omega^{2}(\boldsymbol{k}, \eta) & =k^{2}-\frac{\left(a \sqrt{\epsilon_{1}}\right)^{\prime \prime}}{a \sqrt{\epsilon_{1}}} \\
& =k^{2}-\frac{\beta(\beta+1)}{\eta^{2}}
\end{aligned}
$$

$$
\left.a(\eta)=\ell_{0}-\eta\right)^{1+\beta}
$$

$$
\beta \lesssim-2
$$

$$
\text { (de Sitter: } \beta=-2 \text {) }
$$

> Parametric Oscillator System

Primordial Power Spectrum

```
Quantization in the
Schrödinger picture
(functional representation)
```

$$
\Psi_{\boldsymbol{k}}\left(\eta, v_{\boldsymbol{k}}\right)=\left[\frac{2 \Re \mathrm{e} \Omega_{\boldsymbol{k}}(\eta)}{\pi}\right]^{1 / 4} \mathrm{e}^{-\Omega_{\boldsymbol{k}}(\eta) v_{\boldsymbol{k}}^{2}}
$$

$$
i \frac{\mathrm{~d}\left|\Psi_{\boldsymbol{k}}\right\rangle}{\mathrm{d} \eta}=\hat{\mathcal{H}}_{\boldsymbol{k}}\left|\Psi_{\boldsymbol{k}}\right\rangle \quad \text { with } \quad \hat{\mathcal{H}}_{\boldsymbol{k}}=\frac{\hat{p}_{\boldsymbol{k}}^{2}}{2}+\omega^{2}(\boldsymbol{k}, \eta) \hat{v}_{\boldsymbol{k}}^{2}
$$

$$
\Omega_{\boldsymbol{k}}^{\prime}=-2 i \Omega_{\boldsymbol{k}}^{2}+\frac{i}{2} \omega^{2}(\eta, \boldsymbol{k})
$$

$$
\Omega_{k}=-\frac{i}{2} \frac{f_{\boldsymbol{k}}^{\prime}}{f_{k}}
$$

$$
f_{k}^{\prime \prime}+\omega^{2}(\boldsymbol{k}, \eta) f_{k}=0
$$

Harmonic oscillator fundamental state
$\Psi_{k}=\left(\frac{k}{\pi}\right)^{\frac{1}{4}} \mathrm{e}^{-\frac{k}{2} v_{k}^{2}}$

Harmonic oscillator

Harmonic oscillator fundamental state
$\Psi_{k}=\left(\frac{k}{\pi}\right)^{\frac{1}{4}} \mathrm{e}^{-\frac{k}{2} v_{k}^{2}}$

$$
\log \left(H^{-1}\right), \log \left(\lambda_{k}\right)
$$

Primordial Power Spectrum
 Standard case

Two physical scales Hubble radius $H^{-1}=\frac{a^{2}}{a^{\prime}} \underset{\beta \sim-2}{\simeq} \ell_{0}$
wavelength $\quad \lambda=\frac{a}{k} \underset{\beta \sim-2}{\simeq} \frac{\ell_{0}}{-k \eta}$

sets initial conditions $f_{\boldsymbol{k}}(k \eta \rightarrow-\infty)=\mathrm{e}^{i k \eta} / \sqrt{2 k}$

$$
v_{k}^{\prime \prime}+\left[\boldsymbol{k}^{2}-U(\eta)\right] v_{k}=0
$$

Vacuum state

Initial conditions fixed!

compare
$\frac{\mathrm{d}^{2} \Psi}{\mathrm{~d} x^{2}}+\frac{2 m}{\hbar^{2}}[E-U(x)] \Psi=0$
(time independent Schrödinger equation)

Transmission \& Reflexion coefficients!

$$
v_{\boldsymbol{k}}^{\prime \prime}+\left[\boldsymbol{k}^{2}-U(\eta)\right] v_{\boldsymbol{k}}=0
$$

Vacuum state

Initial conditions fixed!

compare
$\frac{\mathrm{d}^{2} \Psi}{\mathrm{~d} x^{2}}+\frac{2 m}{\hbar^{2}}[E-U(x)] \Psi=0$

(time independent Schrödinger equation)

Transmission \& Reflexion coefficients!

Primordial Power Spectrum

$$
\begin{array}{r}
f_{\boldsymbol{k}}^{\prime \prime}+\omega^{2}(\boldsymbol{k}, \eta) f_{\boldsymbol{k}}=0 \text { with } \omega^{2}(\boldsymbol{k}, \eta)=k^{2}-\frac{\beta(\beta+1)}{\eta^{2}} \quad \text { and } f_{\boldsymbol{k}}(k \eta \rightarrow-\infty)=\mathrm{e}^{i k \eta} / \sqrt{2 k} \\
\square \text { Uniquely determines } f_{\boldsymbol{k}} \xrightarrow{\Omega_{\boldsymbol{k}}=-\frac{i}{2} \frac{f_{\boldsymbol{k}}^{\prime}}{f_{\boldsymbol{k}}}} \Re^{\square} \Omega_{\boldsymbol{k}}=\left\langle\hat{v}_{\boldsymbol{k}}^{2}\right\rangle-\left\langle\hat{v}_{\boldsymbol{k}}\right\rangle^{2}
\end{array}
$$

Evaluated at the end of inflation $\left(k \eta \rightarrow 0^{-}\right)$, this gives $P_{v}(k)=\frac{k^{3}}{2 \pi^{3}}\left(\left\langle\hat{v}_{\boldsymbol{k}}^{2}\right\rangle-\left\langle\hat{v}_{\boldsymbol{k}}\right\rangle^{2}\right)$
and eventually $P_{\zeta}(k)=\frac{1}{2 a^{2} M_{\mathrm{Pl}}^{2} \epsilon_{1}} P_{v}(k)=A_{S} k^{n_{\mathrm{S}}-1}$

$$
\begin{aligned}
& \text { with } n_{\mathrm{S}}=2 \beta+5 \underset{\beta \sim-2}{\simeq} 1 \\
& \quad \text { Planck: } 1-n_{\mathrm{S}}=0.0389 \pm 0.0054
\end{aligned}
$$

Planck + ACT + SPT data
Theoretical prediction (quantum vacuum fluctuations)

Both background and perturbations are quantum
Usual treatment of the perturbations?

Einstein-Hilbert action up to 2nd order

$$
\mathcal{S}_{\mathrm{E}-\mathrm{H}}=\int \mathrm{d}^{4} x\left[R^{(0)}+\delta^{(2)} R\right]
$$

Self-consistent treatment of the perturbations?
Hamiltonian up to 2nd order

$$
H=H_{(0)}+H_{(2)}+\cdots
$$

factorization of the wave function

$$
\Delta \Phi=-\frac{3 \ell_{\mathrm{P} 1}^{2}}{2} \sqrt{\frac{\rho+p}{\omega}} a \frac{\mathrm{~d}}{\mathrm{~d} \eta}\left(\frac{v}{a}\right)
$$

$$
\Psi=\Psi_{(0)}(a, T) \Psi_{(2)}[v, T ; a(T)]
$$

Both background and perturbations are quantum
Usual treatment of the perturbations?

Einstein-Hilbert action up to 2nd order

$$
\mathcal{S}_{\mathrm{E}-\mathrm{H}}=\int \mathrm{d}^{4} x\left[R^{(0)}+\delta^{(2)} R\right]
$$

Classical
Self-consistent treatment of the perturbations?
Hamiltonian up to 2nd order

$$
H=H_{(0)}+H_{(2)}+\cdots
$$

factorization of the wave function

$$
\Delta \Phi=-\frac{3 \ell_{\mathrm{Pl}}^{2}}{2} \sqrt{\frac{\rho+p}{\omega}} a \frac{\mathrm{~d}}{\mathrm{~d} \eta}\left(\frac{v}{a}\right)
$$

$$
\Psi=\Psi_{(0)}(a, T) \Psi_{(2)}[v, T ; a(T)]
$$

Both background and perturbations are quantum
Usual treatment of the perturbations?

Einstein-Hilbert action up to 2nd order

$$
\mathcal{S}_{\mathrm{E}-\mathrm{H}}=\int \mathrm{d}^{4} x\left[R^{(0)}+\delta^{(2)} R\right]
$$

Classical
Self-consistent treatment of the perturbations?
Hamiltonian up to 2 nd order

$$
H=H_{(0)}+H_{(2)}+\cdots
$$

factorization of the wave function

$$
\Delta \Phi=-\frac{3 \ell_{\mathrm{Pl}}^{2}}{2} \sqrt{\frac{\rho+p}{\omega}} a \frac{\mathrm{~d}}{\mathrm{~d} \eta}\left(\frac{v}{a}\right)
$$

$$
\Psi=\Psi_{(0)}(a, T) \Psi_{(2)}[v, T ; a(T)]
$$

Both background and perturbations are quantum
Usual treatment of the perturbations?

Einstein-Hilbert action up to 2nd order

$$
\mathcal{S}_{\mathrm{E}-\mathrm{H}}=\int \mathrm{d}^{4} x\left[R^{(0)}+\delta^{(2)} R\right]
$$

Classical
Self-consistent treatment of the perturbations?
Hamiltonian up to 2nd order

$$
H=H_{(0)}+H_{(2)}+\cdots
$$

factorization of the wave function

$$
\Delta \Phi=-\frac{3 \ell_{\mathrm{Pl}}^{2}}{2} \sqrt{\frac{\rho+p}{\omega}} a \frac{\mathrm{~d}}{\mathrm{~d} \eta}\left(\frac{v}{a}\right)
$$

$$
\begin{aligned}
\Psi=\Psi_{(0)}(a, T) \Psi_{(2)} & {[v, T ; a(T)] } \\
& \text { comes from } 0^{\text {th }} \text { order }
\end{aligned}
$$

Out-of-equilibrium time evolution

- Usual behaviour = evolves towards equilibrium (Minkowski or slowly expanding Universe)
- Inflation: there is a retarded time...

Freezing the pdf out of equilibrium

$\tilde{\rho}^{\prime}\left(0.5 t_{\text {enter }}\right)$

$\tilde{\rho}^{\prime}\left(t_{\text {cntcr }}\right)$

$\tilde{\rho}_{\mathrm{QT}}^{\prime}\left(t_{i}\right)$

$\tilde{\rho}_{\mathrm{QT}}^{\prime}\left(0.5 t_{\text {cnter }}\right)$

$\tilde{\rho}_{\mathrm{QT}}^{\prime}\left(t_{\text {enter }}\right)$

without expansion EQUILIBRIUM

Freezing the pdf out of equilibrium

Harmonic oscillator fundamental state
 $\Psi_{k}=\left(\frac{k}{\pi}\right)^{\frac{1}{4}} \mathrm{e}^{-\frac{k}{2} v_{k}^{2}}$

$\log \left(H^{-1}\right), \log \left(\lambda_{k}\right)$

$\log \left(H^{-1}\right), \log \left(\lambda_{k}\right)$

$\log \left(H^{-1}\right), \log \left(\lambda_{k}\right)$

Harmonic oscillator fundamental state
$\Psi_{k}=\left(\frac{k}{\pi}\right)^{\frac{1}{4}} \mathrm{e}^{-\frac{k}{2} v_{k}^{2}}$
$\log \left(H^{-1}\right), \log \left(\lambda_{k}\right)$

Out-of-Equilibrium initial density:
less quantum noise fundamental state
$\Psi_{k}=\left(\frac{k}{\pi}\right)^{\frac{1}{4}} \mathrm{e}^{-\frac{k}{2} v_{k}^{2}}$

Out-of-Equilibrium initial density:
less quantum noise fundamental state
$\Psi_{k}=\left(\frac{k}{\pi}\right)^{\frac{1}{4}} \mathrm{e}^{-\frac{k}{2} v_{k}^{2}}$

Out-of-Equilibrium initial density:
less quantum noise

Very long wavelengths
no time
to equilibrate

Harmonic oscillator fundamental state
$\Psi_{k}=\left(\frac{k}{\pi}\right)^{\frac{1}{4}} \mathrm{e}^{-\frac{k}{2} v_{k}^{2}}$
Out-of-Equilibrium initial density:
less quantum noise
\qquad Very long wavelengths
no time
to equilibrate

Harmonic oscillator fundamental state
$\Psi_{k}=\left(\frac{k}{\pi}\right)^{\frac{1}{4}} \mathrm{e}^{-\frac{k}{2} v_{\boldsymbol{k}}^{2}}$

 Small wavelengths
$\left(\frac{a}{a_{\text {in }}}\right) \equiv N$

Out-of-Equilibrium initial density:
less quantum noise

$$
H \equiv \int \mathrm{~d} q \rho \ln \left(\frac{\rho}{|\Psi|^{2}}\right)
$$

measures "out-of-equilibrium-ness"

Initial out-of-equilibrium conditions

$$
\begin{aligned}
& \mathcal{P}(k)=\mathcal{P}(k)_{\mathrm{QE}} \xi(k) \\
& \text { width deficit }
\end{aligned}
$$

LUTh - 22/11/2018

Planck TT

Bayes factor $B_{\text {FA }}$

CONCLUSIONS

