Measuring the radius of neutron stars with and other results from the NICER mission

Sebastien Guillot

Institut de Recherche en Astrophysique et Planétologie, Toulouse

Collaboration with the NICER Science Team

Neutron stars are the remnants of the corecollapse of massive stars.

Cassiopeia A X-ray image Credits: NASA CXO Crab Nebula Composite X-ray+IR+Opt Credits: NASA CXC / ESA / JPL

All pulsars are neutron stars, but not all neutron stars are pulsars!

$$\begin{split} R_{\rm NS} &\sim 11 - 14 \ \rm km \\ M_{\rm NS} &\sim 1.0 - 2.0 \ \rm M_{\odot} \\ B &\sim 10^8 - 10^{15} \ \rm G \\ P_{\rm spin} &\sim 0.001 - 10 \ \rm sec \end{split}$$

All pulsars are neutron stars, but not all neutron stars are pulsars!

$$\begin{split} R_{\rm NS} &\sim 11 - 14 \ \rm km \\ M_{\rm NS} &\sim 1.0 - 2.0 \ \rm M_{\odot} \\ B &\sim 10^8 - 10^{15} \ \rm G \\ P_{\rm spin} &\sim 0.001 - 10 \ \rm sec \end{split}$$

Some pulsars show pulsations at different wavelengths.

Where would neutron stars be on the HR diagram?

Where would neutron stars be on the HR diagram?

Neutron stars are amazing laboratories for extreme physics. Extreme

Extreme gravity

Extreme B-fields

High temperatures

Extreme densities

Neutron stars provide tests of nuclear physics that are out of reach from experiments and calculations.

Temperature

The internal structure of neutron stars is still unknown and many theories are proposed.

Dense nuclear matter is described by an equation of state $P(\rho)$. But which is it?

Lattimer and Prakash 2001

Measurements of the mass M_{NS} exist, but only high-M_{NS} are useful.

Measuring R_{NS} is difficult and measuring both R_{NS} and M_{NS} is even more difficult.

Here is the NICER way.

The pulsed emission caused by hot spots on a rotating neutron star can help measure the compactness.

The pulsed emission caused by hot spots on a rotating neutron star can help measure the compactness.

Credits: NASA/NICER

Strong gravity permits seeing beyond the hemisphere of the neutron star.

Credits: S. Morsink / NASA

Strong gravity permits seeing beyond the hemisphere of the neutron star.

Credits: S. Morsink / NASA

The pulsed emission caused by hot spots on a rotating neutron star can help measure the compactness.

The pulsed emission also depends on the system geometry.

To model the light curve, it is preferable to know the neutron star mass...and to collect a large number of photons from the pulsar.

M/R extracted from lightcurve

Bogdanov (2013)

Since June 2017, the <u>Neutron Star Interior</u> <u>Composition Explorer</u> observes millisecond pulsars to measure their M_{NS} and R_{NS}.

esa

Credits: NASA/GSFC

The ingredients to infer M_{NS} and R_{NS} with NICER: An example with PSR J0030+0451

Observational data

Light curve model I: *Relativistic ray tracing*

NS properties inference (Likelihood statistical sampling)

Instrument properties

Mass, Radius, EOS

Light curve model II: Surface emission model emission pattern

NICER now routinely observes a few key target millisecond pulsars to give us unprecedented signal-to-noise data.

XMM-Newton 130 ksec of data

NICER 1.3 Msec of data

Bogdanov, Guillot et al. (2019a)

In addition to their pulse profiles, the spectra of MSPs carry information.

Example X-ray spectrum of a millisecond pulsar

Guillot et al. (2016)

NICER observations of MSPs provide the pulsed information in phase-energy space.

Bogdanov, Guillot et al. (2019a)

We also needed to understand all the components in the data...

Contamination at soft-energies

Light curve model I: *Relativistic ray tracing*

NS properties inference (Likelihood statistical sampling)

Instrument properties

Mass, Radius, EOS

Light curve model II: Surface emission model + emission pattern

The light curve modelling requires a relativistic ray-tracing model.

x

Bogdanov, ..., Guillot et al. (2019b)

NS properties inference (Likelihood statistical sampling)

Instrument properties

Mass, Radius, EOS

Light curve model II: Surface emission model + emission pattern

The thermal emission from a NS surface is modelled with a NS atmosphere, not a black body.

Models by Zavlin et al. (1996), Heinke et al. (2006), Haakonsen et al. (2012)

Bogdanov et al. (2007)

The surface patterns (shape, size, etc.) of the hot spots must also be modelled.

We considered progressively more complicated surface patterns for a hot spot...

Riley, ..., SG et al. (2019)

We considered progressively more complicated surface patterns for a hot spot...

Riley, ..., SG et al. (2019)

Single Temperature

Dual Temperature

We considered progressively more complicated surface patterns for a hot spot...

Riley, ..., SG et al. (2019)

We considered progressively more complicated surface patterns for a hot spot...

...and we tested combinations of hot spot patterns.

Single Temperature + Eccentric Single Temperature Single Temperature + Protruding Single Temperature *Riley, ..., SG et al. (2019)*

NS properties inference (Likelihood statistical sampling)

Instrument properties

The instrument properties also play a crucial role in the lightcurve modeling.

Figures from NICER Science Team

We parametrize the instrument response, and include its uncertainties in the model.

NS properties inference (Likelihood statistical sampling)

Mass, Radius, EOS

The parameter spaces of the models have between 44 and 52 dimensions that we explore with a Bayesian sampler.

Results from the analysis of NICER data for PSR J0030+0451

First surprise: Both hot spots are on the far hemisphere visible from the Earth.

First surprise: Both hot spots are on the far hemisphere visible from the Earth.

Single Temperature + Single Temperature

Single Temperature + Eccentric Single Temp.

Single Temperature + Concentric Single Temperature

First surprise: Both hot spots are on the far hemisphere visible from the Earth.

Single Temperature + Single Temperature Single Temperature + Eccentric Single Temp.

Single Temperature + Concentric Single Temperature

<u>Second surprise</u>: The hot spots are separated close to each other (not antipodal).

The preferred model consist is a small circular spot and an elongated crescent.

Single Temperature + Protruding Single Temp.

The simplest model shows clear residuals between the model and the data.

ST+PST

Single Temperature + Protruding Single Temp.

The statistically preferred model shows no residuals, and a higher likelihood.

Single Temperature + Protruding Single Temp.

Riley, ..., SG et al. (2019)

But overall, the spot shapes and locations raise many questions about the magnetosphere.

A multipolar magnetic field must be present around (at least some) pulsars.

Semi-qualitative model of multiwavelength emission with dipole+quadrupole

With the discovery of new MSPs, we had

other surprises.

Guillot et al. (2019)

1750

1700

1650

0.00 0.25 0.50 0.75

1.00

Phase

1.25 1.50 1.75

2.00

From the light curve modelling, we also constrain M and R. With the ST+PST model, we obtain:

An independent analysis in the NICER Science Team finds similar constraints on the neutron stars parameters (with a different approach).

An independent analysis in the NICER Science Team finds similar constraints on the neutron stars parameters (with a different approach).

However, equation of state models are "modestly" constrained by the M-R measurements.

PSR J0030+0451 has a small preference for EoSs consistent with ~12 km PSR J0030+0451 brings little additional information on EoSs parametrization (polytropes)

Full NICER results for PSR J0030+0451 were presented in an ApJL Special Focus Issue.

Summary for PSR J0030+0451:

- The first mass measurement of an isolated pulsar.
- Statistical evidence favours more complex polar cap models
- ◆ A radius in the range 11–14 km, preferring stiff equation of state

Seven papers:

- ♦ M_{NS}-R_{NS} results from Riley et al. 2019 (Amsterdam group)
- ♦ M_{NS}-R_{NS} results from Miller et al. 2019 (Illinois-Maryland group)
- Implication for the equation of state
- Implication for structure of the magnetic field
- Presentation of the NICER data of four millisecond pulsars
- Presentation of the ray-tracing model
- NICER discovery of five new millisecond pulsars suitable for radius measurements

More than one M_{NS}-R_{NS} measurement will be necessary to constrain the equation of state.

There are still many data sets to analyse to extract M_{NS} and R_{NS}, including newly discovered millisecond pulsars.

Future missions will fully enable the light curve modelling technique to measure M_{NS} and R_{NS}.

eXTP (~2025)

- Modest imaging capabilities (60" PSF)
- ~ 4× more sensitive than NICER
- + Hard X-ray instrument

ATHENA (~2032)

- Good imaging capabilities (5" PSF)
- ~ 10x more sensitive than NICER
- ◆ 10 µs time resolution

For the moment, the NICER results are quite promising and consistent with other recents measurements.

Gonzalez-Canuilef, SG et al. 2019 Baillot-d'Etivaux, SG et al. 2019 Riley et al. 2019 Abbott et al. 2018

Summary

NS properties inference (Likelihood statistical sampling)

NICER produced one measurement of M_{NS} and R_{NS} and is on track to deliver 5% uncertainties for two other pulsars.

The cold surface of millisecond pulsars can also be used to measure their radius.

The cold surface of millisecond pulsars can also be used to measure their radius.

Gonzalez-Canuilef, Guillot & Reisenegger 2019

To get $M_{NS}(R_{NS})$ from $P(\rho)$, one must solve the equations of stellar structure.

relativistic corrections

Hydrostatic equilibrium

$$\frac{dP}{dr} = -G\frac{\rho(r)M(r)}{r^2} \left(1 + \frac{P(r)}{\rho(r)}\right) \left(1 + \frac{4\pi r^3 P(r)}{M(r)}\right) \left(1 - \frac{2GM(r)}{r}\right)^{-1}$$

Mass continuity

 $\frac{dM}{dr} = 4\pi r^2 \rho(r)$

Tolman-Oppenheimer-Volkoff equations

J. Lattimer, 2012

An independent measurement of the geometry (two angles) helps the light curve modelling.

The curved spacetime around the neutron stars bends photon trajectories, but not only!

f_{spin} « f₀ : Schwarzschild approx.
Pechenick et al. 1983

 f_{spin} « f₀ : Schwarzschild+Doppler approx. (includes time delays, Doppler boost/aberration, Frame dragging) *Miller & Lamb* 1998

*f*_{spin} ≤ f₀ : Oblate star.
Morsink et al. 2007

For fast and reliable modelling of the light curve of MSPs, we have to use approximations.

Also, very fast rotating neutron stars can help resolve degeneracies.

f_{spin} < 300 Hz the pulse profile is sinusoidal. M_{NS}/R_{NS} is highly correlated with the geometry. f_{spin} > 300 Hz relativistic effects make the pulse profile asymmetric, which break degeneracies.

1

Raaijmakers, ..., SG et al. 2020