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The formation of neutron stars



The core-collapse mechanism : infall
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Figure 1: Core-collapse mechanism, figure extracted from Janka et al. (2007)
Iron core beyond the Chandrasekhar mass Mc, ~ 1.2 Mg = collapse

Electron captures during the infall :
The limit of the zone at high densities and temperatures in which

neutrinos are trapped because of their low mean free path is called the
neutrinosphere



The core-collapse mechanism : bounce and shock
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Figure 2: Core-collapse mechanism, figure extracted from Janka et al. (2007)

density of roughly nuclear saturation : ng = 0.16 fm—3

= nuclei dissociation, core bounce and shock generation

shock propagation v-burst when the shock reaches the neutrinosphere
exhaustion of the shock by dissociation of infalling material



The core-collapse mechanism : shock stalling and revival
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Figure 3: Core-collapse mechanism, figure extracted from Janka et al. (2007)
shock stalling and accretion

v-heating (coupled with SASI and strong asymmetries) = possible revival
of the shock and final explosion



Proto Neutron Star and r-emission
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Figure 4: Core-collapse mechanism, figure extracted from Janka et al. (2007)



Relevant weak processes occuring during core-collapse

Neutrinos absorption/emission via charge exchange
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Thermal pair production of neutrinos
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Proto-neutron star structure

High entropy shocked mantle
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Figure 5: Schematic representation of a proto neutron star structure (PNS),
compared to the corresponding cold catalysed neutron star (NS)

PNS cooling : Tpys ~ 10 MeV (10 K) = Tys ~ 10keV (108 K)

main mechanism : energy loss and deleptonization via emission of ve,v,,, V7
= mantle contraction with Kelvin-Helmoltz mechanism :
cooling via radiation — heating via contraction — cooling...



Relevant timescales

Acoustic timescale :
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Deleptonization timescale :
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Where Np is the total baryon number, M is the total mass and L, , the

total neutrino number-luminosity.

Kelvin-Helmholtz (star contraction) timescale :
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Where L, . is the total luminosity.




Timescales

the = 1071 ms
tdelep = 30s

telvin-Helmoltz = 30's

We want to simulate ~ 60s but the acoustic timescale limits timesteps to
o0t ~ 10 ps

=- we use a quasi-stationary approximation to average acoustic effects and
evolve the PNS over KH-time



Open questions on PNS evolution

= how do uncertainties on microphysics (EoS and weak cross sections)
influence the cooling 7

= how and when the NS does the crust form ? and what influence
does it have on cooling 7

= what is the influence of the neutrino transport scheme
= to which extent convection effects contributes to the cooling ?

= what are the effects of rotation (meridional circulation, horizontal
turbulence, magneto-dynamo...)

= what is the GW emission of a PNS ?



PNS modelling within the
quasi-stationnary approximation




Hydrostatic approximation

We assume the star contracts slowly :
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(but we still have % # 0 and Bate #01)

= p is computed via the TOV equations

Closure is obtained with a hot equation of state for dense matter! :
(p, s, Ye) — density, temperature, composition, chemical potentials, ...

1Qertel et al. 2017
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Hydrostatic equilibrium - TOV equation

Metric in spherical symmetry :
ds? = —a?c?dt? + ?dr? + r?(d6? + sin® d?)

Einstein equations :
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Hydrostatic equilibrium equation :
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Evolution equations

Despite the quasi-stationary approximation, we still have aa\;e # 0 and

% = 0 and we use evolution equations for Y. and s to compute the next

quasi-stationary state
The time evolution of Y, and s comes from the source of electrons s, and
the source of energy s :
Vu(ngYeu") =s,
u, Vi (TH) =s.

which can be recasted as
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s, and s, have to be computed with a neutrino radiation-transfert scheme
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Neutrino radiation-transfert scheme

we need the source terms for evolution :
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we use the Fast Multigroup Transport scheme? a stationnary
approximation of the transport equation :
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at high optical depth we use the two-stream approximation
at low optical depth we use a two-moment closure

2Miiller and Janka 2015.
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The algorithm

Time evolution : deleptonization and entropy loss

s, Y,

Hydrostatic solver
np,T,Ye, Guv
v-transport scheme

sources s, and s,
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Some exemples of results
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Figure 6: Evolution of the mass of the PNS
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Some exemples of results
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Figure 7: Evolution of the v-luminosity of the PNS
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Conclusion

= a code to model PNS cooling has been developed

= it is currently used to study influence of v interaction rates and/or
convection on the cooling

= currently writing a paper and the manuscript... you are invited to my
PhD defense in June for more details on all this ;)
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