X VARIABILITY FROM EJECTA IN STRUCTU TIVISTIC JETS WITH LARGE-SCALE MAGN FIELDS

FICHET DE CLAIRFONTAINE GAËTAN

CHANDRA WIDE-FIELD VIEW OF M8

« RADIO LOUD » AGN :

- The luminosity can reach extremely high values $L_{\rm tot} \sim 10^{47} {\rm ~erg~s^{-1}};$
- Non thermal emission, extended from radio up to very high energy gamma rays;
- Presence of stationary emission zones in the jet (nodes).

Snios et al. 2019 (NASA/CXC)

« RADIO LOUD » AGN :

- The luminosity can reach extremely high values $L_{\rm tot} \sim 10^{47} \, {\rm erg} \cdot {\rm s}^{-1};$
- Non thermal emission, extended from radio up to very high energy gamma rays;
- Presence of stationary emission zones in the jet (nodes).

Panel of optical, radio observation maps (Perlman et al. 1999) and X-ray maps (Marshall et al. 2002) of the M87 jet.

- Variability observed at various wavelengths (sometimes simultaneously) with characteristic times τ between months (radio) and minutes (γ);
- Observation of emission zones moving at ultra-relativistic speeds.

Plateau due to continuous emission; 1. Flare event with a typical time-scale. 2.

LIGHT CURVES :

- Variability observed at various wavelengths (sometimes simultaneously) with characteristic times τ between months (radio) and minutes (γ);
- Observation of emission zones moving at ultra-relativistic speeds.

Acciari et al. 2009.

LIGHT CURVES :

- Variability observed at various wavelengths (sometimes simultaneously) with characteristic times τ between months (radio) and minutes (γ);
- Observation of emission zones moving at ultra-relativistic speeds.

MOJAVE PROGRAM - OVRO 15 GHz (Lister et al. 2018)

OBJECTIVES OF MY THESIS

- Link between acceleration / MWL emission processes in jet physics ?
- Origin and localization of variability ? Can it be explained by the interaction of the jet with a moving shock zone ?
- Is it possible to explain the observations for different types of objects ? Is it possible to imagine a unification of current models ?

SRMHD JET MODELING

MPI-AMRVAC (KEPPENS ET AL. 2012) :

- Solving the equations of the relativistic MHD in each cell within an adaptive mesh;
- Four zones simulated, each with a set of initial conditions;
- Ejecta : spherical zone insert at the base of the inner jet (over pressure / denser zone).

Inner jet

Ambient medium

POST-PROCESSING

- Injection following a power-law between two cut-off values;
- K depends on the density and thermal energy medium, as well as $\gamma_{e,min}$ (Gomez et al. 1995).

$$K = f(e_{\text{th,e}}, C_{\rm E}, p, n_{\rm e})$$

$$e_{\text{th,e}} = 0.01 \cdot e_{\text{th}}$$

$$n_{\text{e}} = 0.01 \cdot n$$

$$C_{\text{E}} = \frac{\gamma_{\text{e}}}{\gamma_{\text{e}}} \frac{\gamma_{\text{e}}}{\gamma_{\text{e}}} = 10^{3}$$

 $C_{\rm E} = \gamma_{\rm e,max} / \gamma_{\rm e,min}$

POST-PROCESSING

SYNCHROTRON EMISSION :

- Estimation of the synchrotron parameters (Rybicki & Lightman, 1979);
- Our model takes into account Doppler relativistic effects with the observation angle $\theta_{\rm obs}$;
- Output : 2D synchrotron flux map and light curves.

 $j_{\nu} = \delta^2 \cdot j_{\nu'}$ - 1 $\alpha_{\nu} = \delta^{-1} \cdot \alpha_{\nu'}$ T

 $\delta = \left(\gamma \left(1 - \beta \cdot \cos \left(\theta_{\rm obs} \right) \right) \right)$

• General study on the impact of a magnetic field configuration (four cases tested);

 e_{th}

Double component toroidal case of jet (with moving shock).

- General study on the impact of a magnetic field configuration (four cases tested);
- Standing shock morphology : difference between H - T and P - HL :
 - Magnetic tension in T \longrightarrow compact;
 - Poloidal component —> instabilities.

Synchrotron flux maps - $\theta_{\rm obs} = 90^{\circ}$ and $\nu = 10^{9}$ Hz.

ACCEPTED IN A&A (<u>LINK</u>):

- Light curves :
 - Flare event during each moving / standing shock interaction;
 - H T : flux coming from the moving shock region, marked flares;
 - P HL : flux coming from the jet itself, less marked flares.

Four light curves for each case - $\theta_{\rm obs} = 90^{\circ}$ and $\nu = 10^{9}$ Hz.

- Qualitative comparison with radio flare event in 2014 in 3C 273;
- Observational constraints :
 - Observation frequency 15 GHz (OVRO Telescope);
 - Observation angle $\theta_{obs} = 2^{\circ}$.
- From observations : flares during first moving / standing emission zone;
- Flare asymmetry compatible with $\theta_{obs} = 2^{\circ}$.

CONCLUSION

- Clear dichotomy on the influence of toroidal / poloidal field;
- First comparison promising by reproducing observational characteristics.

- right now on a toy model);

THANKYOU! QUESTIONS?

• New effects being tested : radiative cooling (MPI-AMRVAC) and time delay effect on flare morphology (tested

• Dedicated study on a specific object (as M87) : the goal is to reproduce observations from radio up to X band.

Believe it or not, thats a moving shock wave...

