The origin of cosmic rays (and gamma-ray astronomy)

Pierre Cristofari pierre.cristofari@obspm.fr

Journée du LUTH 7 Décembre 2022

The origin of cosmic rays

The origin of cosmic rays

Minimal requirements on proton sources:

Sources of Galactic cosmic rays

Pevatrons

+ Z dependent knee

Pevatrons

MORE PRECISELY

Source of Galactic CRs must accelerate up to AT LEAST the knee!

~100 PeV

Figure 4: Sketch of the GCR/EGCR transition, with the proton and Fe components indicated (respectively in green and in blue on the color version of the figure). In ordinate, the CR flux is multiplied by E^x , where x is the logarithmic slope of the CR spectrum below the knee. (See also Fig. 3).

Z dependent knee

Hillas 2006, Parizot 2014

Pevatrons

MORE PRECISELY

Source of Galactic CRs must accelerate up to AT LEAST the knee!

Figure 4: Sketch of the GCR/EGCR transition, with the proton and Fe components indicated (respectively in green and in blue on the color version of the figure). In ordinate, the CR flux is multiplied by E^x , where x is the logarithmic slope of the CR spectrum below the knee. (See also Fig. 3).

Smooth transition from Galactic to extraGalactic

Hillas 2006, Parizot 2014

Sufficient amount of PeV protons? « Hard-enough » spectra above 10¹⁵ eV? What sources can be (super)pevatrons? 10¹⁶ 10¹⁷ eV

 \star

Not clear if hadronic or leptonic (probably leptonic for most sources)

De Ona Whilhelmi et al. (2022)

Hadronic interactions : Pion decay

CR

ISM

 $\rightarrow p + p + \pi^0$

 $E_{\gamma} \approx \frac{1}{10} E_p$

Leptonic interactions : Inverse Compton scattering

Klein-Nishina suppression: Inefficient above >50 TeV

100 TeV gamma rays probe the acceleration of PeV protons (hadronic)

De Ona Whilhelmi et al. (2022)

CR

ISM

 $\rightarrow p + p + \pi^0$

 $E_{\gamma} \approx \frac{1}{10} E_p$

Leptonic interactions : Inverse Compton scattering

Klein-Nishina suppression: Inefficient above >50 TeV

100 TeV gamma rays probe the acceleration of PeV protons (hadronic)

Vannoni et al. (2007), Brehaus et al. (2021)

De Ona Whilhelmi et al. (2022)

Science with CTA: Starburst galaxies

1. Starburst nucleus (SBN)

2. Starburst « super » wind

M82 Hubble

Science with CTA: Starburst galaxies

 $\dot{M}_{\star} \sim 10 - 100 \,\,\mathrm{M_{\odot}yr^{-1}} \quad \dot{M}_{\star,\mathrm{MW}} \sim 1 \,\,\mathrm{M_{\odot}yr^{-1}} \\ \nu_{\mathrm{SN}} \sim 0.1 - 1 \,\,\mathrm{yr^{-1}} \quad \nu_{\mathrm{SN,MW}} \sim 0.03 \,\,\mathrm{yr^{-1}} \\ \mathrm{NuSTAR - NASA}$

Gamma rays from M82

Paglione et al. 1996, Torres et al. 2004, Persic et al. 2008, Rephaeli et al 2010, Lacki & Thompson 2013, Peretti et al. 2018,2020, 2021, Kornecki et al. 2021

Not resolved yet, could be with CTA!

Large scale structures of starburst galaxies

MHD ARMVAC Zakaria Meliani, PC et al.

AGN-driven wind bubbles (UFOs)

Seyfert NGC3079 - Image credit: X-ray: NASA/CXC/University of Michigan/J-T Li et al.; Optical: NASA/STSc

1arcmin=1115px

Ultra fast outflows (UFOs) in AGN winds

0.5 arcsec

Blue shifted Fe-K lines in X rays Chandra APM 08279+5255

Ultra fast outflows (UFOs) in AGN winds

FIG. 3.— Wind velocity as a function of radius from the central source for a radiation pressure driven wind. For a qualitative comparison we have estimated the wind velocities for launching radii of 2×10^{17} cm, 5×10^{17} cm, and 1×10^{18} cm. We have over-plotted the observed C IV BAL (dashed lines) and Fe XXV BAL (dotted lines) velocities.

Cha

ys

Ultra fast outflows (UFOs) in AGN winds

Peretti, Lamastra, Saturni, Ahlers, Blasi, Morlino, PC in prep. 2022

Cherenkov Telescope Array (CTA)

France (INSU, IN2P3, CEA), Observatoire de Paris, LUTH involved on many levels

Next years: France (OP) involved in the building of SSTs

Zech

Catherine Boisson

Andreas Hélène Sol

« Data » in CTA

FAIR = Findable, Accessible, Interoperable, Reusable

- 1. Portal to access data
- 2. Archive
- 3. Provenance
- 4. Data lake (all data, proposals, etc.)

5. Gammapy (tool for gamma-ray astronomy)

Catherine Boisson, Mathieu Servillat, Paula Kornecki, PC

Goal: understanding particle acceleration at strong collisionless shocks shocks (SNRs, SNe, Superbulles, Starbursts, AGN winds)