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Halo Collapse

ΛCDM : concordance model with 6 parameters ans w = −1.

Other dynamical realistic DE models (quintessence w > −1, phantom w < −1 ...) exist that are
compatible with CMB/SNIa. We will use here the 2 · 1012 − 1014Ms halos of Dark Energy
universe Simulations
To choose ”the best” cosmological model, you may want to look at ”real” groups/clusters halos,
for example their shape (see later), and compare them to simulated ones assuming various
cosmological models. But Halo collapse is a highly non linear process.

Do we forget cosmology in collapse? Not at all
: Power Spectrum P (k) ∝ 〈|δ(k)|2〉 is
cosmological dependent [Alimi et al. 2010]

on the right, P
P lin /PΛCDM

P lin
ΛCDM

Behaviors and critical kc depend on the
cosmology.
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Halo Collapse

Where are we in terms of mass ?

RMS of Linear fluctuations

σ2

(
M =

4

3
πR3Ωmρc

)
=

1

2π2

∫
R+

k2P lin(k)W 2 (kR) dk

RMS of Non linear fluctuations

σ̃2

(
M =

4

3
πR3Ωmρc

)
=

1

2π2

∫
R+

k2P (k)W 2 (kR) dk

The ”pure” non linear RMS relative to the
ΛCDM one:

σ̃X(M)/σX(M)

σ̃ΛCDM (M)/σΛCDM (M)

<< 1015Ms
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Considerations on the halo shape

Halos are essentially triaxial. [Doroshkevich 1973; Sheth, Mo, and Tormen 2001; Rossi 2012; Jing and Suto 2002; Bailin and Steinmetz

2005; Kasun and Evrard 2005; Allgood 2005; Allgood et al. 2006; Vera-Ciro et al. 2011; Limousin et al. 2013] To capture halo shape
without spherical bias, compute local density (say, with SPH kernel)
Then, compute the shape of each iso-density contour [Jing and Suto 2002] (which is clearly close to an
ellipsoid). ⇐tricky part: substructures, resolution effects ...
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Different cosmologies, same Universe ?

Identical spatial distribution of the halos

but
using mass and (triaxial) shape profiles as
attributes
removing any spurious (Clever Hans)
effects

Gradient boosting trees can recognize Λ CDM
and RPCDM halos (70 %)
It’s working. But why ?
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Making the difference

For the local virial δa = 200 ellipsoidal shell, we compute (diagonalizing mass tensor) semi-axis
lengths a, b, c.

Many indicators :
E = a−c

2(a+b+c)
, p = a−2b+c

2(a+b+c)

Triaxiality ([Franx, Illingworth, and Zeeuw 1991]) T = a2−b2

a2−c2
(0 = pancake // 1 = filament)

T-M median scatter plot:

M
ed

ia
n

T

As already noticed by [Despali, Giocoli, and Tormen 2014]

and [Bonamigo et al. 2015] for ellipticity and prolatness,
T −M relation depends on the formation
history of halos (say, z) and we add that it also
depends (generally) on cosmology.
To understand this cosmological dependence,
the best way is to absorb it , ie to find a
cosmological dependent function fc(M) s.t
T − fc(M) is cosmologically independent.

Rémy Koskas (LUTH) Journées du LUTH December 7, 2022 7 / 19



Making the difference

For the local virial δa = 200 ellipsoidal shell, we compute (diagonalizing mass tensor) semi-axis
lengths a, b, c. Many indicators :

E = a−c
2(a+b+c)

, p = a−2b+c
2(a+b+c)

Triaxiality ([Franx, Illingworth, and Zeeuw 1991]) T = a2−b2

a2−c2
(0 = pancake // 1 = filament)

T-M median scatter plot:

M
ed

ia
n

T

As already noticed by [Despali, Giocoli, and Tormen 2014]

and [Bonamigo et al. 2015] for ellipticity and prolatness,
T −M relation depends on the formation
history of halos (say, z) and we add that it also
depends (generally) on cosmology.
To understand this cosmological dependence,
the best way is to absorb it , ie to find a
cosmological dependent function fc(M) s.t
T − fc(M) is cosmologically independent.

Rémy Koskas (LUTH) Journées du LUTH December 7, 2022 7 / 19



Making the difference

For the local virial δa = 200 ellipsoidal shell, we compute (diagonalizing mass tensor) semi-axis
lengths a, b, c. Many indicators :

E = a−c
2(a+b+c)

, p = a−2b+c
2(a+b+c)

Triaxiality ([Franx, Illingworth, and Zeeuw 1991]) T = a2−b2

a2−c2
(0 = pancake // 1 = filament)

T-M median scatter plot:

M
ed

ia
n

T

As already noticed by [Despali, Giocoli, and Tormen 2014]

and [Bonamigo et al. 2015] for ellipticity and prolatness,
T −M relation depends on the formation
history of halos (say, z) and we add that it also
depends (generally) on cosmology.
To understand this cosmological dependence,
the best way is to absorb it , ie to find a
cosmological dependent function fc(M) s.t
T − fc(M) is cosmologically independent.

Rémy Koskas (LUTH) Journées du LUTH December 7, 2022 7 / 19



Making the difference

For the local virial δa = 200 ellipsoidal shell, we compute (diagonalizing mass tensor) semi-axis
lengths a, b, c. Many indicators :

E = a−c
2(a+b+c)

, p = a−2b+c
2(a+b+c)

Triaxiality ([Franx, Illingworth, and Zeeuw 1991]) T = a2−b2

a2−c2
(0 = pancake // 1 = filament)

T-M median scatter plot:

M
ed

ia
n

T

As already noticed by [Despali, Giocoli, and Tormen 2014]

and [Bonamigo et al. 2015] for ellipticity and prolatness,
T −M relation depends on the formation
history of halos (say, z) and we add that it also
depends (generally) on cosmology.

To understand this cosmological dependence,
the best way is to absorb it , ie to find a
cosmological dependent function fc(M) s.t
T − fc(M) is cosmologically independent.

Rémy Koskas (LUTH) Journées du LUTH December 7, 2022 7 / 19



Making the difference

For the local virial δa = 200 ellipsoidal shell, we compute (diagonalizing mass tensor) semi-axis
lengths a, b, c. Many indicators :

E = a−c
2(a+b+c)

, p = a−2b+c
2(a+b+c)

Triaxiality ([Franx, Illingworth, and Zeeuw 1991]) T = a2−b2

a2−c2
(0 = pancake // 1 = filament)

T-M median scatter plot:

M
ed

ia
n

T

As already noticed by [Despali, Giocoli, and Tormen 2014]

and [Bonamigo et al. 2015] for ellipticity and prolatness,
T −M relation depends on the formation
history of halos (say, z) and we add that it also
depends (generally) on cosmology.
To understand this cosmological dependence,
the best way is to absorb it , ie to find a
cosmological dependent function fc(M) s.t
T − fc(M) is cosmologically independent.

Rémy Koskas (LUTH) Journées du LUTH December 7, 2022 7 / 19



Toward universality (I)

Following [Despali, Giocoli, and Tormen 2014], let us
introduce the linear r.m.s density field :

σ2

(
M =

4

3
πR3Ωmρc

)

=
1

2π2

∫
R+

k2P lin(k)W 2 (kR) dk

where W is a Gaussian window function and
the peak height [BBKS] is ν = δc/σ. The critical
density δc is a very slowly varying function of
Ωm

M
ed

ia
n

T

Surprisingly, the curves are closer in (ν, T )
space than in (M,T ) space.
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Toward Universality (II)

Why?

Our guess:

Halo shape ⇔ Power Spectrum

2pt corr (Real) ⇔ 2pt corr (Fourier)

If true, because shapes are computed on fully
collapsed halo, we should rather consider fully
non linear matter power spectrum !!
So, use the non-linear rms :

σ̃2

(
M =

4

3
πR3Ωmρc

)
=

1

2π2

∫
R+

k2P (k)W 2 (kR) dk

and the corresponding peak height ν̃.
In (ν̃, T ) space, the curves superpose almost
completely: quotients to ΛCDM curve are 5
times lower

M
ed

ia
n

T

This result holds not only for the median curves
(we plot here) but for the whole of the T
distribution (except the most extreme values).
In other words, we have showed that all the
cosmological content of clusters’ shape is
embedded in the (non linear) power spectrum
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completely: quotients to ΛCDM curve are 5
times lower
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This result holds not only for the median curves
(we plot here) but for the whole of the T
distribution (except the most extreme values).
In other words, we have showed that all the
cosmological content of clusters’ shape is
embedded in the (non linear) power spectrum
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Getting all together

Now we have in hand all the tools to build a brand new procedure to measure the non-linear
power spectrum:

1 Measure the (M,T ) curve in our universe.
2 Since we know the universal (ν̃, T ) relation, one can deduce the ν̃(M) function of our

Universe.
3 P (k) is finally directly inferred from ν̃(M)

In terms of cosmological parameters, shape curves are not very sensitive to Ωm but highly depend
on (the non linear) σ8. Complete computations are in [Alimi Koskas 2022]

ν̃
(M

)

P
(k
)

Model ΛCDM RPCDM wCDM
Exact σ8 0.8 0.7 0.9

Estimated σ8 0.8 0.6 0.9

Model ΛCDM RPCDM wCDM
Exact σ̃8 0.9 0.8 1

Estimated σ̃8 0.9 0.7 1

Rémy Koskas (LUTH) Journées du LUTH December 7, 2022 10 / 19



Getting all together

Now we have in hand all the tools to build a brand new procedure to measure the non-linear
power spectrum:

1 Measure the (M,T ) curve in our universe.

2 Since we know the universal (ν̃, T ) relation, one can deduce the ν̃(M) function of our
Universe.

3 P (k) is finally directly inferred from ν̃(M)

In terms of cosmological parameters, shape curves are not very sensitive to Ωm but highly depend
on (the non linear) σ8. Complete computations are in [Alimi Koskas 2022]

ν̃
(M

)

P
(k
)

Model ΛCDM RPCDM wCDM
Exact σ8 0.8 0.7 0.9

Estimated σ8 0.8 0.6 0.9

Model ΛCDM RPCDM wCDM
Exact σ̃8 0.9 0.8 1

Estimated σ̃8 0.9 0.7 1

Rémy Koskas (LUTH) Journées du LUTH December 7, 2022 10 / 19



Getting all together

Now we have in hand all the tools to build a brand new procedure to measure the non-linear
power spectrum:

1 Measure the (M,T ) curve in our universe.
2 Since we know the universal (ν̃, T ) relation, one can deduce the ν̃(M) function of our

Universe.

3 P (k) is finally directly inferred from ν̃(M)

In terms of cosmological parameters, shape curves are not very sensitive to Ωm but highly depend
on (the non linear) σ8. Complete computations are in [Alimi Koskas 2022]

ν̃
(M

)

P
(k
)

Model ΛCDM RPCDM wCDM
Exact σ8 0.8 0.7 0.9

Estimated σ8 0.8 0.6 0.9

Model ΛCDM RPCDM wCDM
Exact σ̃8 0.9 0.8 1

Estimated σ̃8 0.9 0.7 1

Rémy Koskas (LUTH) Journées du LUTH December 7, 2022 10 / 19



Getting all together

Now we have in hand all the tools to build a brand new procedure to measure the non-linear
power spectrum:

1 Measure the (M,T ) curve in our universe.
2 Since we know the universal (ν̃, T ) relation, one can deduce the ν̃(M) function of our

Universe.
3 P (k) is finally directly inferred from ν̃(M)

In terms of cosmological parameters, shape curves are not very sensitive to Ωm but highly depend
on (the non linear) σ8. Complete computations are in [Alimi Koskas 2022]

ν̃
(M

)

P
(k
)

Model ΛCDM RPCDM wCDM
Exact σ8 0.8 0.7 0.9

Estimated σ8 0.8 0.6 0.9

Model ΛCDM RPCDM wCDM
Exact σ̃8 0.9 0.8 1

Estimated σ̃8 0.9 0.7 1

Rémy Koskas (LUTH) Journées du LUTH December 7, 2022 10 / 19



Getting all together

Now we have in hand all the tools to build a brand new procedure to measure the non-linear
power spectrum:

1 Measure the (M,T ) curve in our universe.
2 Since we know the universal (ν̃, T ) relation, one can deduce the ν̃(M) function of our

Universe.
3 P (k) is finally directly inferred from ν̃(M)

In terms of cosmological parameters, shape curves are not very sensitive to Ωm but highly depend
on (the non linear) σ8. Complete computations are in [Alimi Koskas 2022]

ν̃
(M

)

P
(k
)

Model ΛCDM RPCDM wCDM
Exact σ8 0.8 0.7 0.9

Estimated σ8 0.8 0.6 0.9

Model ΛCDM RPCDM wCDM
Exact σ̃8 0.9 0.8 1

Estimated σ̃8 0.9 0.7 1

Rémy Koskas (LUTH) Journées du LUTH December 7, 2022 10 / 19



Getting all together

Now we have in hand all the tools to build a brand new procedure to measure the non-linear
power spectrum:

1 Measure the (M,T ) curve in our universe.
2 Since we know the universal (ν̃, T ) relation, one can deduce the ν̃(M) function of our

Universe.
3 P (k) is finally directly inferred from ν̃(M)

In terms of cosmological parameters, shape curves are not very sensitive to Ωm but highly depend
on (the non linear) σ8. Complete computations are in [Alimi Koskas 2022]

ν̃
(M

)

P
(k
)

Model ΛCDM RPCDM wCDM
Exact σ8 0.8 0.7 0.9

Estimated σ8 0.8 0.6 0.9

Model ΛCDM RPCDM wCDM
Exact σ̃8 0.9 0.8 1

Estimated σ̃8 0.9 0.7 1

Rémy Koskas (LUTH) Journées du LUTH December 7, 2022 10 / 19



Results for other geometrical quantities (p)
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What about 2D ?
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Conclusion and perspectives

From an halo by halo point of view, mass & shape profiles, associated with AI, can detect
cosmological signature

- provided that we understand our AI and avoid any spurious effect, by
paving the way with much physical knowledge.
It works because, from a statistical point of view, halos shape indeed carries cosmological
information: one can read in halos shape the non linear PS (which is highly cosmology-
impregnated)
Also the equivalence between 2pt corr. in real and Fourier spaces seems to be a Fundamental
Geometric Rule : it is independent on the DE model (above) but it is also independent on the
f(R) parameters [Simulations of Inigo and Yann]
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Universality of halos shape as a strong cosmological probe
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Resolution Effects

Example for prolatness:

From inertia tensor without treatment From inertia tensor after substructures removal
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Machine Learning

Where does the cosmology lie among the morphological or velocity-related attributes of the halos ? ⇒ weak
signals to be detected
Machine learning (aka AI) could do so

Already used in cosmology/astrophysics
N-body simulations - learn to associate to nitial conditions the final matter distribution
[Lucie-Smith \textit {et al} 2018]
Cosmological estimation From the TOTAL matter distribution, estimate by deep learning the Ω’s of
the background cosmology. [Ravanbakhsh \textit {et al} 2016]

We took a different approach
1 We have a lot of halos simulated in different cosmologies.
2 Each halo is described through quantitative properties (profile parameters and so on - physics priors
3 We conceive a ML engine to associate to any processed halo (= the set of the attributes’ values) the

background cosmology among a list of possibilities (classification task) or the values of cosmological
parameters (regression task)

4 We try to determine which properties are important to achieve the recognition - those are the
”cosmologically impregnated” attributes. this is a physical output
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the background cosmology. [Ravanbakhsh \textit {et al} 2016]

We took a different approach
1 We have a lot of halos simulated in different cosmologies.
2 Each halo is described through quantitative properties (profile parameters and so on - physics priors
3 We conceive a ML engine to associate to any processed halo (= the set of the attributes’ values) the

background cosmology among a list of possibilities (classification task) or the values of cosmological
parameters (regression task)

4 We try to determine which properties are important to achieve the recognition - those are the
”cosmologically impregnated” attributes. this is a physical output
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Looking for the hidden horse

It is crucial to understand how the resulting engine works.

In particular, we have to check that the
classification is achieved only by physical means, ignoring any cosmological clue coming from the
numerical nature of the simulation and other spurious effects. In other words, the engine should
work on a real Universe.

Clever Hans : Encyclopedia Britannica

”The ‘Clever Hans’ effect occurs when the learned model produces correct predictions based on the ‘wrong’ features. This effect
[...] goes undetected by standard validation techniques has been frequently observed [...] where the training algorithm leverages
spurious correlations in the data.” [Kauffman et al 2020]
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Looking for the hidden horse

Do we observe Clever Hans effects if we use brute data in our work ?

A lot ...
Example:

Consider only two cosmological models, say, ΛCDM and Ratra-Peebeles.
All the masses are integer multiple of the particle mass mp. (Each halo contains an integer
number of particles)
Since ρ̄ is different in each cosmology (because of different w ’s and the constraint of realistic
models ...) so is mp.
⇒ So, if the machine is able to detect that

1 all first-cosmology halo masses in the train set are multiple of the same base mass (that the machine
should determine)

And
2 all second-cosmology halo masses are multiple of another base mass

then the machine will also be able to classify the halos of the test set (simply by looking if
their masses are multiple of mΛ

p or mRP
p ).

This is a typical Clever Hans : the data embody clues w.r.t. the target variables of purely
arithmetical nature, which are thus not reproducible out of this set of simulations - on real
observations, for example. This kind of effects should be carefully hunted if we want to obtain
physically reliable results.
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ML Results

About 74% for two models (Λ, RP )
Resistant to ”attacks”
Output probabilities are calibrated [so that each ”prediction” is assorted with a meaningfull
uncertainty]
Almost no biais from total mass (in the studied range)

Rémy Koskas (LUTH) Journées du LUTH December 7, 2022 19 / 19


