Around neutron stars

- Pulsar magnetosphere and wind
- Pulsar timing and tests of gravity
- Spider binaries
- Fast radio bursts

Magnetospheres

F. Mottez, G. Voisin

What's a pulsar?

Timing

Welcome to Nançay !

I. Cognard L. Guillemot G. Desvignes G. Theureau

Deer **NUPPI** instrumentation 100mReceiver L50m ld boar **Preliminary!**

Strong Equivalence Principle: effect of assuming a planet in the system

(Against $|\Delta| < 2.05 \times 10^{-6}$ in Voisin+2020)

Spider binaries

<u>tMSP</u> : Transitional Millisecond Pulsars</u>

• More than 70 spiders systems, '<u>Black Widow</u>' or '<u>Redback</u>', discovered over the last decade

• Rotation-powered millisecond pulsars that have retained a low-mass stellar companion, where the neutron star can swing between the radio-pulsar and accretion states in shorter timescales than stellar evolution timescales

2013 : LMXB

2004 : MSP

2D Hydrodynamical simulations

Using Adaptive Mesh Refinement code <u>AMRVAC 2.0</u> we aim at :

- Describing the *multi-physical interaction between the winds* of a millisecond pulsar and its stellar companion
- Understanding the *formation and evolution of an accretion disc* interacting with the pulsar wind
- Modeling the effect on the companion's atmosphere of the *irradiation flux* from the pulsar and its consequences on the *accretion flow*

Post Processing : Shock Detection

Using *user-defined threshold* on different variables to the particular simulation, we detect the *existence of a Intra-Binary Shock* (*IBS*), result of the collision between the pulsar wind and the companion wind or its magnetosphere

Post Processing : Orbital variability of the X-ray flux

• IBS : efficient site of particle acceleration and nonthermal emission due to the Doppler boosting, SR and IC.

• Wind momentum ratio will set the shock orientation and opening angle, thus determining the shape of the X-ray orbital light curve

X-ray orbital modulation observed from PSR J1227–4853 (RB) on 2013, Dec 29 (red points) and 2014, Jun 27 (blue points), Papitto and de Martino, 2020

Fast Radio Bursts

Fast radio bursts

- Extragalactic DM/distance
- Intense : >> 10²³ erg/Hz/s
- Fast : a few ms with ~10µs
 substructures
- Narrow bandwidth : ~1GHz
- Downward drifting subpulses
- Polarisation :
 - Mostly or totally linear
 - No clear trend on Faraday rotation (across sources)
 - Moderate or no swing

FRBs: A geometrical model

Preliminary

Hypothesis :

- Emission duration is trigger limited, not visibility limited (as in e.g. pulsars)
- Emission takes place on a small bundle of lines
- Propagation though bundle much shorter than trigger duration

Preliminary

Down-drifting sub-bursts

Preliminary The Galactic magnetar bursts

Summary

- A "1st principle" kinetic code in development
- Testing gravity with a numerical timing model
- Probing interaction of pulsars with their spider companions with RMHD simulations
- Modelling Fast Radio Bursts