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LIGO/Virgo O1-O2 detections



at ð1.74 " 0.05Þ fm s−2=
ffiffiffiffiffiffi
Hz

p
above 2 mHz and ð6 " 1Þ × 10 fm s−2=

ffiffiffiffiffiffi
Hz

p
at 20 μHz, and discusses the

physical sources for the measured noise. This performance provides an experimental benchmark
demonstrating the ability to realize the low-frequency science potential of the LISA mission, recently
selected by the European Space Agency.
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Introduction.—LISA Pathfinder (LPF) [1] is a European
Space Agency (ESA) mission dedicated to the experimental
demonstration of the free fall of test masses (TMs) as
required by LISA [2], the space-based gravitational-wave
(GW) observatory just approved by ESA. Such TMs are the
reference bodies at the ends of each LISA interferometer
arm and need to be free from spurious acceleration, g,
relative to their local inertial frame; any stray acceleration
competes directly with the tidal deformations caused by
GWs. LPF has two LISA TMs at the ends of a short
interferometer arm, insensitive to GWs because of the
reduced length but sensitive to the differential acceleration,
Δg, of the TMs arising from parasitic forces.
LPF was launched on December 3, 2015 and was in

science operation from March 1, 2016. Operations ended
on June 30, 2017, and the satellite was finally passivated on
July 18, 2017. On June 7, 2016, we published [3] the first
results on the free fall performance of the LPF test masses.
These results showed that the amplitude spectral density
(ASD) ofΔgwas found to be (see Fig. 1 of Ref. [3]) limited
by Brownian noise at S1=2Δg ¼ ð5.2 " 0.1Þ fm s−2=

ffiffiffiffiffiffi
Hz

p
, for

frequencies 1 mHz ≲ f ≲ 30 mHz; rising above the
Brownian noise floor for frequencies f ≲ 1 mHz,

increasing to ≲12 fm s−2=
ffiffiffiffiffiffi
Hz

p
at f ¼ 0.1 mHz; and lim-

ited, for f ≳ 30 mHz, by the interferometer readout noise
of S1=2x ¼ ð34.8 " 0.3Þ fm=

ffiffiffiffiffiffi
Hz

p
, which translates into an

effective Δg ASD of S1=2x ð2πfÞ2.
The previously published data referred to the longest

uninterrupted stretch of data, of about one week duration,
we had measured up to the time of publication. Since that
time, several improvements have allowed a significantly
better performance, presented in Fig. 1. First, the residual
gas pressure has decreased by roughly a factor of 10 since
the beginning of operations, as the gravitational reference
sensor (GRS) surrounding the TM has been continuously
vented to space [3] with a slowly decreasing outgassing
rate. Second, a more accurate calculation of the electrostatic
actuation force has eliminated a systematic source of low-
frequency force noise. Third, another inertial force from the
LPF spacecraft rotation has been identified and corrected in
theΔg time series. This last effect will be highly suppressed
in LISA by the improved rotational spacecraft control.
Finally, we have removed, by empirical fitting, a number of
well-identified, sporadic (less than one per day) quasi-
impulse force events or “glitches” from the data, allowing
uninterrupted data series of up to ∼18 days duration. This

FIG. 1. ASD of parasitic differential acceleration of LPF test masses as a function of the frequency. Data refer to an ∼13 day long run
taken at a temperature of 11 °C. The red, noisy line is the ASD estimated with the standard periodogram technique averaging over 10,
50% overlapping periodograms each 2 × 105 s long. The data points with error bars are uncorrelated, averaged estimates calculated as
explained in the text. For comparison, the blue noisy line is the ASD published in Ref. [3]. Data are compared with LPF requirements [1]
and with LISA requirements taken from Ref. [2]. Fulfilling requirements implies that the noise must be below the corresponding shaded
area at all frequencies. LISA requirements below 0.1 mHz must be considered just as goals [2].
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LISA mission - 2034

Orbits LISA Pathfinder success !

XJUI B NFBO JOUFS�4�$ TFQBSBUJPO EJTUBODF PG ��� NJM�
MJPO LN� " SFGFSFODF PSCJU IBT CFFO QSPEVDFE PQUJ�
NJTFE UPNJOJNJTF UIF LFZ WBSJBCMF QBSBNFUFST PG JOUFS�
4�$ CSFBUIJOH BOHMFT 	ĘVDUVBUJPOT PG WFSUFY BOHMFT
 BOE
UIF SBOHF SBUF PG UIF 4�$ BT CPUI PG UIFTF ESJWF UIF DPN�
QMFYJUZ PG UIF QBZMPBE EFTJHO XIJMF BU UIF TBNF UJNF FO�
TVSJOH UIF SBOHF UP UIF DPOTUFMMBUJPO JT TVďDJFOUMZ DMPTF
GPS DPNNVOJDBUJPO QVSQPTFT�

Earth

Sun
1 AU (150 million km)
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'JHVSF �� %FQJDUJPO PG UIF -*4" 0SCJU�

ćF PSCJUBM DPOĕHVSBUJPO JT EFQJDUFE JO 'JHVSF �� ćFTF
PSCJUT XJMM MFBE UP CSFBUIJOH BOHMFT PG ±� EFH BOE
%PQQMFS TIJęT CFUXFFO UIF 4�$ PG XJUIJO ±�.)[�
ćF MBVODI BOE USBOTGFS BSF PQUJNJ[FE GPS B EFEJDBUFE
"SJBOF ��� MBVODI BOE DBSSZ UIF GPMMPXJOH CBTJD GFB�
UVSFT�
t UPUBM USBOTGFS UJNF PG BCPVU ��� EBZT�
t EJSFDU FTDBQF MBVODI XJUI V∞ = 260N�T�
t UISFF TFUT PGNBOPFVWSFT GPS ĕOBM USBOTGFS PSCJU JOKFD�

UJPO QFSGPSNFE CZ UIF QSPQVMTJPO BOE 4�$ DPNQPTJUF
NPEVMFT� 4FF 4FDUJPO ����� GPS EFUBJMT�

��� -BVODIFS

ćF SFDPNNFOEFE PQUJPO GPS -*4" JT UP VTF POF PG
UIF "SJBOF � GBNJMZ PG MBVODI WFIJDMFT XJUI B EFE�
JDBUFE "SJBOF ��� MBVODI CFJOH UIF QSFGFSSFE PQUJPO�
8JUI B MBVODI DBQBDJUZ EJSFDUMZ JOUP BO FTDBQF USBKFD�
UPSZ PG ���� LH UIF "SJBOF ��� JT WFSZ XFMM TVJUFE UP
UIF -*4" MBVODI SFRVJSFNFOUT BOE UIF SFGFSFODF PSCJU
EFTDSJCFE JO 4FDUJPO ��� JT CBTFE PO UIF DBQBCJMJUJFT PG
UIJT MBVODIFS� ćF DBQBDJUZ PG "SJBOF ��� JT MJNJUFE BOE
JU JT FYUSFNFMZ MJLFMZ UIBU BOZ NJTTJPO TJ[FE UP ĕU XJUIJO
JU XPVME CF TJHOJĕDBOUMZ DPNQSPNJTFE JO UFSNT PG DB�
QBCJMJUZ� 4JNJMBSMZ JU JT MJLFMZ UIBU UIF DPOTUSBJOUT BOE
DPNQMFYJUZ PG B MBVODI UP (FPTUBUJPOBSZ 5SBOTGFS 0S�
CJU DPNCJOFE XJUI UIF OFFE UP ĕOE B TVJUBCMF QBSUOFS
NBLF B TIBSFE "SJBOF ��� MBVODI VOBUUSBDUJWF�

��� $PODFQU PG 0QFSBUJPOT

&BDI 4�$ JT FRVJQQFE XJUI JUT PXO QSPQVMTJPO NPEVMF
UP SFBDI UIF EFTJSFE PSCJU� %VSJOH UIJT DSVJTF QIBTF
DIFDLPVU BOE UFTUJOH PG TPNF FRVJQNFOU DPVME BMSFBEZ
CFHJO� 0ODF UIF 4�$ IBWF CFFO JOTFSUFE JOUP UIFJS DPS�
SFDU PSCJUT BOE UIF QSPQVMTJPO NPEVMFT KFUUJTPOFE UIF
UISFF 4�$ NVTU CF QSFQBSFE UP GPSN B TJOHMF XPSL�
JOH PCTFSWBUPSZ CFGPSF TDJFODF PQFSBUJPOT DBO CF FT�
UBCMJTIFE� ćJT JODMVEFT UIF SFMFBTF PG UIF UFTU NBTTFT
BOE FOHBHJOH UIF %SBH�'SFF "UUJUVEF $POUSPM 4ZTUFN
	%'"$4
� ćJT QSPDFTT DPOTUFMMBUJPO BDRVJTJUJPO BOE
DBMJCSBUJPO JT EFTDSJCFE JO 4FDUJPO ������ 'PMMPXJOH
BDRVJTJUJPO BOE DBMJCSBUJPO -*4" XPVME FOUFS UIF QSJ�
NBSZ TDJFODF NPEF� "U UIJT UJNF BMM UFTU NBTTFT JOTJEF
UIF UISFF 4�$ XJMM CF JO GSFF GBMM BMPOH UIF MJOFT PG TJHIU
CFUXFFO UIF 4�$� $BQBDJUJWF TFOTPST TVSSPVOEJOH FBDI
UFTU NBTT XJMM NPOJUPS UIFJS QPTJUJPO BOE PSJFOUBUJPO
XJUI SFTQFDU UP UIF 4�$� %'"$4 XJMM VTF NJDSP�/FXUPO
UISVTUFST UP TUFFS UIF 4�$ UP GPMMPX UIF UFTUNBTTFT BMPOH
UIF UISFF USBOTMBUJPOBM EFHSFFT�PG�GSFFEPN VTJOH JO�
UFSGFSPNFUSJD SFBEPVU XIFSF BWBJMBCMF BOE DBQBDJUJWF
TFOTJOH GPS UIF SFNBJOJOH EFHSFFT�PG�GSFFEPN� &MFD�
USPTUBUJD BDUVBUPST BSF VTFE UP BQQMZ UIF SFRVJSFE GPSDFT
BOE UPSRVFT JO BMM PUIFS EFHSFFT PG GSFFEPN UP UIF UFTU
NBTTFT� -BTFS JOUFSGFSPNFUSZ JT VTFE UP NPOJUPS UIF
EJTUBODF DIBOHFT CFUXFFO UIF UFTU NBTTFT BOE UIF PQ�
UJDBM CFODI 	0#
 JOTJEF FBDI 4�$� ćFTF UFDIOPMPHJFT
IBWF CFFO EFNPOTUSBUFE CZ UIF -*4" 1BUIĕOEFS NJT�
TJPO�
ćF MPOH�CBTFMJOF MBTFS JOUFSGFSPNFUFS PS TDJFODF JO�
UFSGFSPNFUFS JT VTFE UP NFBTVSF DIBOHFT JO UIF EJT�
UBODF CFUXFFO UIF PQUJDBM CFODIFT XIJMF B UIJSE JO�
UFSGFSPNFUFS TJHOBM NPOJUPST UIF EJČFSFOUJBM MBTFS GSF�
RVFODZ OPJTF CFUXFFO UIF UXP MPDBM MBTFS TZTUFNT� "MM
JOUFSGFSPNFUFS TJHOBMT BSF DPNCJOFE PO HSPVOE UP EF�
UFSNJOF UIF EJČFSFOUJBM EJTUBODF DIBOHFT CFUXFFO UXP
QBJST PG XJEFMZ TFQBSBUFE UFTU NBTTFT� 4DJFODF .PEF
XPVME GFBUVSF OFBS�DPOUJOVPVT PQFSBUJPO PG UIF TZTUFN
BU UIF EFTJHO TFOTJUJWJUZ� ćF TZTUFN EFTJHO TIPVME CF
TVDI UIBU JO TDJFODF NPEF FYUFSOBM QFSUVSCBUJPOT UP
UIF TZTUFN BSFNJOJNJTFE BOE JO QBSUJDVMBS UIF CBTFMJOF
EFTJHO EPFT OPU SFRVJSF TUBUJPO LFFQJOH PS PSCJU DPS�
SFDUJPO NBOPFVWSFT� *O MJOF XJUI UIF TDJFODF SFRVJSF�
NFOUT PO EBUB MBUFODZ DPNNVOJDBUJPOT XPVME PDDVS
PODF QFS EBZ GPS B EVSBUJPO PG BQQSPYJNBUFMZ � IPVST�
ćFSF BSF UXP QSJODJQBM FWFOUT XIJDI XJMM DBVTF TPNF
EJTSVQUJPO UP UIF TDJFODF NPEF PG PQFSBUJPOT� UIFTF
BSF SF�QPJOUJOH PG UIF BOUFOOBT BOE SF�DPOĕHVSBUJPO
PG UIF MBTFS MPDLJOH UP NBJOUBJO UIF CFBU OPUFT XJUIJO
UIF QIBTFNFUFS CBOEXJEUI UIFTF BSF DPWFSFE JO NPSF
EFUBJM JO 4FDUJPOT ��� BOE ��� SFTQFDUJWFMZ� *O BEEJUJPO
UP UIF NBJO TDJFODF NPEF B TQFDJBM QSPUFDUFE QFSJPE

-*4" o �� .*44*0/ 130'*-& 1BHF ��

exchanging a laser beam over a few million kilometres.
To achieve the full science objectives of LISA, the ASD of
spurious random accelerations of the TMs must be limited
to S1=2g ðfÞ ≤ 3 fm s−2=

ffiffiffiffiffiffi
Hz

p
×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðf=8 mHzÞ4

p
within

the frequency band of the detector, 0.1 mHz ≤ f ≤ 1 Hz.
The f2 relaxation for f ≥ 8 mHz arises because at those
frequencies the noise is expected to be dominated by white
interferometer displacement noise that, when converted to
equivalent acceleration, scales like f2. The requirement
should be given in terms of the differential acceleration,
Δg, between the two test masses. However, as the two
spacecraft are separated by a large distance, force fluctua-
tions around each TM are assumed to be incoherent and
S1=2Δg ¼

ffiffiffi
2

p
S1=2g .

At frequencies below 1 Hz, there is currently no realistic
possibility to reach such a level of free fall in a ground
based laboratory. The main problems are the large accel-
eration of the laboratory relative to a local inertial frame
and low-frequency terrestrial gravitational noise. This
pushes low-frequency GW detectors to space but also
prevents an end-to-end experimental demonstration of
the required free-fall performance in a terrestrial laboratory,
leading to the need for the LISA Pathfinder mission, whose
requirements for the ASD of Δg have been set atS1=2Δg ðfÞ ≤

30 fm s−2=
ffiffiffiffiffiffi
Hz

p
×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðf=3 mHzÞ4

p
within the fre-

quency band 1 mHz ≤ f ≤ 30 Hz. Note that for LPF the
cross-over frequency to the f2 branch (3 mHz), corresponds
to the value used in the earliest LISA concept [4], while the
change to 8 mHz results from the latest studies [2]. This
difference has no practical impact on thework presented here.

A. The instrument

The core instrument of LPF [5], consists of two quasi-
cubic test masses, of size ð46.000% 0.005Þ mm and mass
M ¼ ð1.928% 0.001Þ kg, formed from a high-purity gold-
platinum alloy. During science operations, these masses are
in free fall inside a single spacecraft with their centers
separated by a nominal distance of ð376.00% 0.05Þ mm
along a line that we take as the x axis (see Fig. 2 and
Ref. [6]). Each TM is contained within an electrode housing
[7], which serves as an electrostatic shield in addition to a
6 degree-of-freedom sensor and electrostatic force actuator,
with gaps around the mechanically and electrically isolated
TM of 2.9–4 mm on the different axes. Charge accumulated
by the TMs due to cosmic rays is removed by a UV light
discharge system [8].
DC and slowly varying electrostatic forces are applied

with dedicated audio frequency voltages between 60 and

FIG. 1. Gray: ASD of Δg, S1=2Δg ðfÞ, measured for 6.5 days starting 127 days after launch. The ASD is the result of averaging 26
periodograms of 40 000 s each, which results in a relative error (1σ) of 10% inS1=2Δg . The effective spectral resolution, set by the spectral
window, is Δf ≃%50 μHz. The absolute calibration of the measurement is better than 5%. Red: ASD of the same time series after
correction for the centrifugal force (visible at the lowest frequencies). Light blue: ASD after correction for the pickup of spacecraft
motion by the interferometer (IFO), visible in the 20–200 mHz range. Dashed smooth black line: SΔgðfÞ ¼ S0 þSIFOð2πfÞ4 with

S1=20 ¼ ð5.57% 0.04Þ fm s−2=
ffiffiffiffiffiffi
Hz

p
and S1=2IFO ¼ ð34.8% 0.3Þ fm=

ffiffiffiffiffiffi
Hz

p
. Note that the level of S0 has decreased further in subsequent

measurements, as quoted in the abstract and shown in Fig. 3. Shaded areas: LISA and LISA Pathfinder requirements for Δg. The LISA
single test-mass acceleration requirement [2] has been multiplied by

ffiffiffi
2

p
to be presented here as a differential acceleration.
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IV. A STRAWMAN MISSION FOR 
THE eLISA SPACE GRAVITATIONAL 
WAVE OBSERVATORY

All of the above scientific objectives can be addressed by a 
single L-class mission consisting of 3 drag-free spacecraft 
forming a triangular constellation with arm lengths of one 
million km and laser interferometry between “free-falling” 
test masses. The interferometers measure the variations in 
light travel time along the arms due to the tidal deforma-
tion of spacetime by gravitational waves. Compared to the 
Earth-based gravitational wave observatories like LIGO 
and VIRGO, eLISA addresses the much richer frequency 
range between 0.1 mHz and 1 Hz, which is inaccessible on 
Earth due to arm length limitations and terrestrial gravity 
gradient noise.
The Next Gravitational wave Observatory (NGO) mission 
studied for the L1 selection [15] is an eLISA strawman mis-
sion concept. It enables the ambitious science program de-
scribed here, and has been evaluated by ESA as both tech-
nically feasible and compatible with the L2 cost target. Its 
foundation is mature and solid, based on decades of devel-
opment for LISA, including a mission formulation study, 
and the extensive heritage of flight hardware and ground 
preparation for the upcoming LISA Pathfinder geodesic 
explorer mission, which will directly test most of the eLI-
SA performance and validate the eLISA instrumental noise 
model [144–145].

Mission design
The NGO mission has three spacecraft, one ‘mother’ at the 
vertex and two ‘daughters’ at the ends, which form a single 
Michelson interferometer configuration (Figure 9). The 
spacecraft follow independent heliocentric orbits without 
any station-keeping and form a nearly equilateral triangle 
in a plane that is inclined by 60° to the ecliptic. The con-
stellation follows the Earth at a distance between 10° and 

30°, as shown in Figure 10. Celestial mechanics causes the 
triangle to rotate almost rigidly about its centre as it orbits 
around the sun, with variations of arm length and opening 
angle at the percent level.
The payload consists of four identical units, two on the 
mother spacecraft and one on each daughter spacecraft 
(Figure 11). Each unit contains a Gravitational Reference 
Sensor (GRS) with an embedded free-falling test mass that 
acts both as the end point of the optical length measure-
ment, and as a geodesic reference test particle. A telescope 
with 20 cm diameter transmits light from a 2 W laser at 
1064 nm along the arm and also receives a small fraction 
of the light sent from the far spacecraft. Laser interferom-
etry is performed on an optical bench placed between the 
telescope and the GRS.
On the optical bench, the received light from the distant 
spacecraft is interfered with the local laser source to pro-

Figure 9: eLISA configuration (not to scale). One mother and two daugh-
ter spacecraft exchanging laser light form a two-arm Michelson interfer-
ometer. There are four identical payloads, one at the end of each arm, as 
shown in Figure 11.

Figure 10: eLISA Orbits. The three eLISA-NGO spacecraft follow the Earth 
as an almost stiff triangle, purely due to celestial mechanics. 

Figure 11: eLISA payload. Each payload unit contains a 20 cm telescope, 
the test mass enclosed inside the Gravitational Reference Sensor (GRS) 
and an optical bench hosting the interferometers. (Auxiliary reference in-
terferometer omitted for clarity, see [15] for details.)
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LISA science - overview
� *OUSPEVDUJPO

ćF HSPVOECSFBLJOH EJTDPWFSZ PG (SBWJUBUJPOBM 8BWFT
	(8T
 CZ HSPVOE�CBTFE MBTFS JOUFSGFSPNFUSJD EFUFD�
UPST JO ���� JT DIBOHJOH BTUSPOPNZ <�> CZ PQFOJOH
UIF IJHI�GSFRVFODZ HSBWJUBUJPOBM XBWF XJOEPX UP PC�
TFSWF MPX NBTT TPVSDFT BU MPX SFETIJę� ćF 4FOJPS
4VSWFZ $PNNJUUFF 	44$
 <�> TFMFDUFE UIF -� TDJFODF
UIFNF ćF (SBWJUBUJPOBM 6OJWFSTF <�> UP PQFO UIF ���
UP ���N)[ (SBWJUBUJPOBM 8BWF XJOEPX UP UIF 6OJ�
WFSTF� ćJT MPX�GSFRVFODZ XJOEPX JT SJDI JO B WBSJFUZ
PG TPVSDFT UIBU XJMM MFU VT TVSWFZ UIF 6OJWFSTF JO B OFX
BOE VOJRVF XBZ ZJFMEJOH OFX JOTJHIUT JO B CSPBE SBOHF
PG UIFNFT JO BTUSPQIZTJDT BOE DPTNPMPHZ BOE FOBCMJOH
VT JO QBSUJDVMBS UP TIFE MJHIU PO UXP LFZ RVFTUJPOT� 	�

)PX XIFO BOE XIFSF EP UIF ĕSTU NBTTJWF CMBDL IPMFT
GPSN HSPX BOE BTTFNCMF BOE XIBU JT UIF DPOOFDUJPO
XJUI HBMBYZ GPSNBUJPO 	�
 8IBU JT UIF OBUVSF PG HSBW�
JUZ OFBS UIF IPSJ[POT PG CMBDL IPMFT BOE PO DPTNPMPHJ�
DBM TDBMFT 
8F QSPQPTF UIF -*4" NJTTJPO JO PSEFS UP SFTQPOE UP
UIJT TDJFODF UIFNF JO UIF CSPBEFTU XBZ QPTTJCMF XJUIJO
UIF DPOTUSBJOFE CVEHFU BOE HJWFO TDIFEVMF� -*4" FO�
BCMFT UIF EFUFDUJPO PG (8T GSPN NBTTJWF CMBDL IPMF
DPBMFTDFODFT XJUIJO B WBTU DPTNJD WPMVNF FODPNQBTT�
JOH BMM BHFT GSPN DPTNJD EBXO UP UIF QSFTFOU BDSPTT
UIF FQPDIT PG UIF FBSMJFTU RVBTBST BOE PG UIF SJTF PG
HBMBYZ TUSVDUVSF� ćF NFSHFS�SJOHEPXO TJHOBM PG UIFTF
MPVE TPVSDFT FOBCMFT UFTUT PG &JOTUFJO�T (FOFSBM ćFPSZ
PG 3FMBUJWJUZ 	(3
 JO UIF EZOBNJDBM TFDUPS BOE TUSPOH�
ĕFME SFHJNF XJUI VOQSFDFEFOUFE QSFDJTJPO� -*4" XJMM
NBQ UIF TUSVDUVSF PG TQBDFUJNF BSPVOE UIF NBTTJWF
CMBDL IPMFT UIBU QPQVMBUF UIF DFOUSFT PG HBMBYJFT VTJOH
TUFMMBS DPNQBDU PCKFDUT BT UFTU QBSUJDMF�MJLF QSPCFT� ćF
TBNF TJHOBMT XJMM BMTP BMMPX VT UP QSPCF UIF QPQVMBUJPO
PG UIFTF NBTTJWF CMBDL IPMFT BT XFMM BT BOZ DPNQBDU PC�
KFDUT JO UIFJS WJDJOJUZ� " TUPDIBTUJD (8 CBDLHSPVOE PS
FYPUJD TPVSDFT NBZ QSPCF OFX QIZTJDT JO UIF FBSMZ 6OJ�
WFSTF� "EEFE UP UIJT MJTU PG TPVSDFT BSF UIF OFXMZ EJTDPW�
FSFE -*(0�7JSHP IFBWZ TUFMMBS�PSJHJO CMBDL IPMF NFSH�
FST XIJDIXJMM FNJU(8T JO UIF -*4"CBOE GSPN TFWFSBM
ZFBST VQ UP B XFFL QSJPS UP UIFJS NFSHFS FOBCMJOH DPPS�
EJOBUFE PCTFSWBUJPOT XJUI HSPVOE�CBTFE JOUFSGFSPNF�
UFST BOE FMFDUSPNBHOFUJD UFMFTDPQFT� ćF WBTU NBKPSJUZ
PG TJHOBMT XJMM DPNF GSPN DPNQBDU HBMBDUJD CJOBSZ TZT�
UFNT XIJDI BMMPX VT UP NBQ UIFJS EJTUSJCVUJPO JO UIF
.JMLZ 8BZ BOE JMMVNJOBUF TUFMMBS BOE CJOBSZ FWPMVUJPO�
-*4" CVJMET PO UIF TVDDFTT PG -*4" 1BUIĕOEFS
	-1'
 <�> UXFOUZ ZFBST PG UFDIOPMPHZ EFWFMPQNFOU
BOE UIF (SBWJUBUJPOBM 0CTFSWBUPSZ "EWJTPSZ 5FBN
	(0"5
 SFDPNNFOEBUJPOT� -*4" XJMM VTF UISFF BSNT

BOE UISFF JEFOUJDBM TQBDFDSBę 	4�$
 JO B USJBOHVMBS GPS�
NBUJPO JO B IFMJPDFOUSJD PSCJU USBJMJOH UIF &BSUI CZ
BCPVU ��○� ćF FYQFDUFE TFOTJUJWJUZ BOE TPNF QPUFO�
UJBM TJHOBMT BSF TIPXO JO 'JHVSF ��

'JHVSF �� &YBNQMFT PG (8 TPVSDFT JO UIF GSF�
RVFODZ SBOHF PG -*4" DPNQBSFE XJUI JUT TFOTJ�
UJWJUZ GPS B ��BSNDPOĕHVSBUJPO� ćFEBUB BSF QMPU�
UFE JO UFSNT PG EJNFOTJPOMFTT ADIBSBDUFSJTUJD TUSBJO
BNQMJUVEF� <�>� ćF USBDLT PG UISFF FRVBMNBTT CMBDL
IPMF CJOBSJFT MPDBUFE BU z = 3 XJUI UPUBM JOUSJO�
TJD NBTTFT 107 106 BOE 105M⊙ BSF TIPXO� ćF
TPVSDF GSFRVFODZ 	BOE 4/3
 JODSFBTFT XJUI UJNF
BOE UIF SFNBJOJOH UJNF CFGPSF UIF QMVOHF JT JOEJ�
DBUFE PO UIF USBDLT� ćF � TJNVMUBOFPVTMZ FWPMW�
JOH IBSNPOJDT PG BO &YUSFNF .BTT 3BUJP *OTQJSBM
TPVSDF BU z = 1.2 BSF BMTP TIPXO BT BSF UIF USBDLT PG
B OVNCFS PG TUFMMBS PSJHJO CMBDL IPMF CJOBSJFT PG UIF
UZQF EJTDPWFSFE CZ -*(0� 4FWFSBM UIPVTBOE HBMBD�
UJD CJOBSJFT XJMM CF SFTPMWFE BęFS B ZFBS PG PCTFS�
WBUJPO� 4PNF CJOBSZ TZTUFNT BSF BMSFBEZ LOPXO
BOE XJMM TFSWF BT WFSJĕDBUJPO TJHOBMT� .JMMJPOT PG
PUIFS CJOBSJFT SFTVMU JO B ADPOGVTJPO TJHOBM� XJUI B
EFUFDUFE BNQMJUVEF UIBU JT NPEVMBUFE CZ UIF NP�
UJPO PG UIF DPOTUFMMBUJPO PWFS UIF ZFBS� UIF BWFSBHF
MFWFM JT SFQSFTFOUFE BT UIF HSFZ TIBEFE BSFB�

"O PCTFSWBUPSZ UIBU DBO EFMJWFS UIJT TDJFODF JT EF�
TDSJCFE CZ B TFOTJUJWJUZ DVSWF XIJDI CFMPX �N)[ XJMM
CF MJNJUFE CZ BDDFMFSBUJPO OPJTF BU UIF MFWFM EFNPO�
TUSBUFE CZ -1'� *OUFSGFSPNFUSZ OPJTF EPNJOBUFT BCPWF
�N)[ XJUI SPVHIMZ FRVBM BMMPDBUJPOT GPS QIPUPO TIPU
OPJTF BOE UFDIOJDBM OPJTF TPVSDFT� 4VDI B TFOTJUJWJUZ
DBO CF BDIJFWFE XJUI B ���NJMMJPO LN BSN�MFOHUI DPO�
TUFMMBUJPO XJUI �� DN UFMFTDPQFT BOE �8 MBTFS TZTUFNT�
ćJT JT DPOTJTUFOU XJUI UIF (0"5 SFDPNNFOEBUJPOT
BOE CBTFE PO UFDIOJDBM SFBEJOFTT BMPOF B MBVODINJHIU
CF GFBTJCMF BSPVOE ����� 8F QSPQPTF BNJTTJPO MJGFUJNF
PG � ZFBST FYUFOEBCMF UP �� ZFBST GPS -*4"�

1BHF � -*4" o �� */530%6$5*0/

SJOH�EPXOPG UIF OFX.#) UIBU GPSNFE� #FJOH TPVSDFT
BU DPTNPMPHJDBM SFETIJęT NBTTFT JO UIF PCTFSWFS GSBNF
BSF (1+ z) IFBWJFS UIBO JO UIF TPVSDF GSBNF BOE TPVSDF
SFETIJęT BSF JOGFSSFE GSPN UIF MVNJOPTJUZ EJTUBODF Dl 
FYUSBDUFE GSPN UIF TJHOBM 	XJUI UIF FYDFQUJPO PG UIPTF
TPVSDFT GPS XIJDIXF IBWF BO JOEFQFOEFOUNFBTVSF PG z
GSPN BO JEFOUJĕFE FMFDUSPNBHOFUJD DPVOUFSQBSU
� $PO�
TJTUFOU XJUI DVSSFOU DPOTFSWBUJWF QPQVMBUJPO NPEFMT
<�> UIF FYQFDUFE NJOJNVN PCTFSWBUJPO SBUF PG B GFX
.#) #JOBSJFT 	.#)#
 QFS ZFBS XPVME GVMĕMM UIF SF�
RVJSFNFOUT PG 40��

'JHVSF �� .BTTJWF CMBDL IPMF CJOBSZ DPBMFTDFODFT�
DPOUPVST PG DPOTUBOU 4/3 GPS UIF CBTFMJOF PCTFS�
WBUPSZ JO UIF QMBOF PG UPUBM TPVSDF�GSBNF NBTT M
BOE SFETIJę z 	MFę NBSHJO�BTTVNJOH 1MBODL DPT�
NPMPHZ
 BOE MVNJOPTJUZ EJTUBODF Dl 	SJHIU NBS�
HJO
 GPS CJOBSJFT XJUI DPOTUBOU NBTT SBUJP PG q =
0.2� 0WFSMBJE BSF UIF QPTJUJPOT PG UIF UISFTIPME CJ�
OBSJFT VTFE UP EFĕOF UIF NJTTJPO SFRVJSFNFOUT�

'JHVSF � QSFTFOUT UIF SJDIOFTT PG TPVSDFT UIBU TIPVME
CF WJTJCMF UP -*4" TIPXJOH B XJEF SBOHF PG NBTTFT PC�
TFSWBCMF XJUI IJHI 4/3 PVU UP IJHI SFETIJę� ćF EFG�
JOJUJPO PG UIF UISFTIPME TZTUFNT 	XIJDI BSF TIPXO BT
SFE TUBST JO 'JHVSF �
 GPS FBDI 03 MFBET UP POF PS NPSF
.3 TIPXO JO 'JHVSF ��

4*���� 4FBSDI GPS TFFE CMBDL IPMFT BU DPTNJD EBXO

03��� )BWF UIF DBQBCJMJUZ UP EFUFDU UIF JOTQJSBM PG
.#)#T JO UIF JOUFSWBM CFUXFFO B GFX 103M⊙ BOE B GFX
105M⊙ JO UIF TPVSDF GSBNF BOE GPSNBUJPO SFETIJęT CF�
UXFFO �� BOE ��� &OBCMF UIFNFBTVSFNFOU PG UIF TPVSDF
GSBNF NBTTFT BOE UIF MVNJOPTJUZ EJTUBODF XJUI B GSBD�
UJPOBM FSSPS PG ��� UP EJTUJOHVJTI GPSNBUJPO NPEFMT�

.3���� &OTVSF UIF TUSBJO TFOTJUJWJUZ JT CFUUFS UIBO 1.6×
10−20Hz−1/2 BU ���N)[ BOE 1 × 10−20Hz−1/2 BU �N)[
UP FOBCMF UIF PCTFSWBUJPO PG CJOBSJFT BU UIF MPX FOE PG
UIJT QBSBNFUFS TQBDF XJUI B 4/3 PG BU MFBTU ��� 4VDI
B iUISFTIPMEw TZTUFN XPVME IBWF B NBTT PG 3000M⊙

NBTT SBUJP q = 0.2, BOE CF MPDBUFE BU B SFETIJę PG ���
"MM PUIFS .#)#T JO 03��� XJUI NBTTFT JO UIF RVPUFE
SBOHF BOE NBTT SBUJPT IJHIFS UIBO UIJT BOE�PS BU MPXFS
SFETIJę XJMM UIFO CF EFUFDUFEXJUI IJHIFS 4/3 ZJFMEJOH
CFUUFS QBSBNFUFS FTUJNBUJPO�

4*���� 4UVEZ UIF HSPXUI NFDIBOJTN PG .#)T GSPN
UIF FQPDI PG UIF FBSMJFTU RVBTBST

03����B )BWF UIF DBQBCJMJUZ UP EFUFDU UIF TJHOBM GPS DP�
BMFTDJOH .#)T XJUI NBTT 104 < M < 106M⊙ JO UIF
TPVSDF GSBNF BU z ≲ 9� &OBCMF UIF NFBTVSFNFOU PG UIF
TPVSDF GSBNF NBTTFT BU UIF MFWFM MJNJUFE CZ XFBL MFOT�
JOH 	� �
�

03����C 'PS TPVSDFT BU z < 3 BOE 105 < M < 106M⊙
FOBCMF UIF NFBTVSFNFOU PG UIF EJNFOTJPOMFTT TQJO PG
UIF MBSHFTU .#) XJUI BO BCTPMVUF FSSPS CFUUFS UIBO ���
BOE UIF EFUFDUJPO PG UIF NJTBMJHONFOU PG TQJOT XJUI
UIF PSCJUBM BOHVMBS NPNFOUVN CFUUFS UIBO 10 EFHSFFT�
ćJT QBSBNFUFS BDDVSBDZ DPSSFTQPOET UP BO BDDVNV�
MBUFE 4/3 	VQ UP UIF NFSHFS
 PG BU MFBTU ∼ 200�
.3���� ćF NPTU TUSJOHFOU SFRVJSFNFOU JT TFU CZ CF�
JOH BCMF UP NFBTVSF UIF TQJO PG B UISFTIPME TZTUFN XJUI
UPUBM JOUSJOTJD NBTT PG 105M⊙ NBTT SBUJP PG q = 0.2, MP�
DBUFE BU z = 3� ćJT XJMM TBUJTGZ CPUI 03����B BOE ����C�
"DIJFWJOH BO 4/3 PG ��� SFRVJSFT B TUSBJO TFOTJUJWJUZ
PG 4 × 10−20Hz−1/2 BU �N)[ BOE 1.3 × 10−20Hz−1/2 BU
��N)[� "MM TZTUFNT JO 03����B BOE ����C XJUI IJHIFS
NBTT NBTT SBUJPT TQJOT PS MPXFS SFETIJę XJMM SFTVMU JO
IJHIFS 4/3 BOE CFUUFS TQJO FTUJNBUJPO�

4*���� 0CTFSWBUJPO PG &. DPVOUFSQBSUT UP VOWFJM UIF
BTUSPQIZTJDBM FOWJSPONFOU BSPVOENFSHJOH CJOBSJFT

03����B 0CTFSWF UIFNFSHFST PG.JMLZ�8BZ UZQF.#�
)#T XJUI UPUBM NBTTFT CFUXFFO 106 BOE 107M⊙ BSPVOE
UIF QFBL PG TUBS GPSNBUJPO 	z ∼ 2
 XJUI TVďDJFOU 4/3
UP BMMPX UIF JTTVJOH PG BMFSUT UP &. PCTFSWBUPSJFT XJUI
B TLZ�MPDBMJTBUJPO PG 100deg2 BU MFBTU POF EBZ QSJPS UP
NFSHFS� ćJT XPVME ZJFME DPJODJEFOU &.�(8 PCTFSWB�
UJPOT PG UIF TZTUFNT JOWPMWFE�

03����C "ęFS HSBWJUBUJPOBMMZ PCTFSWJOH UIF NFSHFS PG
TZTUFNT EJTDVTTFE JO 03����B UIF TLZ MPDBMJTBUJPO XJMM
CF TJHOJĕDBOUMZ JNQSPWFE BMMPXJOH GPMMPX�VQ &. PC�
TFSWBUJPOT UP UBLF QMBDF� ćJT IBT UIF QPUFOUJBM UP XJU�
OFTT UIF GPSNBUJPO PG B RVBTBS GPMMPXJOH B #) NFSHFS�
ćJT OFFET FYDFMMFOU TLZ MPDBMJTBUJPO 	BCPVU � EFH2
 UP
EJTUJOHVJTI GSPN PUIFS WBSJBCMF &. TPVSDFT JO UIF ĕFME
NPOUIT UP ZFBST BęFS UIF NFSHFS�

.3���� 'PS UIF MPXFTU 4/3 TZTUFN JO 03����B XIJDI
DPSSFTQPOET UP B NBTT PG 106M⊙ BU z = 2 XF XJMM EFUFDU
UIF JOTQJSBM TJHOBM 	XJUI 4/3���
 ∼ 11.5 EBZT QSJPS UP

-*4" o �� 4$*&/$& 1&3'03."/$& 1BHF �

LISA sources MBHB/SBHB SNR

Terminology:
• Massive black holes binaries (MBHBs)
• Stellar-mass black hole binaries (SBBHs): 

masses observable by ground-based 
detectors [Sesana 2016]

(source-frame mass)
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Contrasting LIGO/Virgo and LISA responses: LIGO/Virgo

Pattern functions

s = F+h+ + F⇥h⇥
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Time-of-arrival triangulation

18

FIG. 8. Parameter estimation summary plots V. The contours show 90% and 50% credible regions for the sky locations of all GW events
in a Mollweide projection. The probable position of the source is shown in equatorial coordinates (right ascension is measured in hours,
and declination is measured in degrees). 50% and 90% credible regions of posterior probability sky areas for the GW events. Top panel:

Confidently detected O2 GW events [21] (GW170817, GW170104, GW170823, GW170608, GW170809, GW170814) for which alerts were
sent to EM observers. Bottom panel: O1 events (GW150914, GW151226, GW151012), along with O2 events (GW170729, GW170818) not
previously released to EM observers.

([1.36, 1.58]M�) and the smaller NS m2 in [1.03, 1.36]M�
([1.18, 1.36]M�) for the high spin (low spin) prior. In Fig. 5
we show contours for the mass ratio and aligned e↵ective spin
posteriors for the IMRPhenomPv2NRT model assuming the
high-spin prior. The results are consistent with those pre-
sented in [90]. The e↵ective precession spin �p shown in the
bottom right panel of Fig. 5 peaks at lower values than the
prior and the KL-divergence D

�p

KL between this prior and pos-
terior is 0.20+0.03

�0.03 bits. When conditioning the prior on the
measured �e↵ , D

�p

KL decreases to 0.07+0.02
�0.02 bits, providing very

little evidence for precession. The strongly constrained �e↵
restricts most of the spin degrees of freedom into the orbital
plane, and in-plane spins are only large when the binary’s in-
clination angle approaches 180� where they have the least im-
pact on the waveform.

We show marginal posteriors for the e↵ective tidal param-
eter ⇤̃ in the bottom panels of Fig. 9. The prior and pos-

terior for ⇤̃ go to zero as ⇤̃ ! 0 because of the flat prior
on the component deformability parameters ⇤1 and ⇤2. We
reweight the posterior for ⇤̃ by dividing by the prior used,
e↵ectively imposing a flat prior in ⇤̃. The reweighted poste-
rior has nonzero support at ⇤̃ = 0. We find bounds on the
e↵ective tidal parameter that are about 10% wider compared
to the results presented in [90]. For the high-spin prior, the
90% upper limit on the tidal parameter is 686 for IMRPhe-
nomPv2NRT, compared to the value 630 found in [90]. The
upper limit for SEOBNRv4NRT is very close, 664, and the
value for TaylorF2 is higher at 816. For SEOBNRv4T and
TEOBResumS we find 843 and 841, respectively. For the low-
spin prior, we quote the two-sided 90% highest posterior den-
sity (HPD) credible interval on ⇤̃ that does not contain ⇤̃ = 0.
This 90% HPD interval is the smallest interval that contains
90% of the probability. For IMRPhenomPv2NRT we obtain
⇤̃ = 330+438

�251 which is slightly higher than the interval 300+420
�230

found in [90]. For SEOBNRv4NRT we find ⇤̃ = 305+432
�241 and

Simple multiplicative response

F+ =
1

2

�
1 + cos2 ✓

�
cos (2�) ,

F⇥ = cos ✓ sin (2�)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Angular dependence:

• Two detectors: ~ring on the sky
• Better localization for 3 or more 

detectors (even low SNR!)

GWTC-1 sky localisation
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Contrasting LIGO/Virgo and LISA responses: LISA
XJUI B NFBO JOUFS�4�$ TFQBSBUJPO EJTUBODF PG ��� NJM�
MJPO LN� " SFGFSFODF PSCJU IBT CFFO QSPEVDFE PQUJ�
NJTFE UPNJOJNJTF UIF LFZ WBSJBCMF QBSBNFUFST PG JOUFS�
4�$ CSFBUIJOH BOHMFT 	ĘVDUVBUJPOT PG WFSUFY BOHMFT
 BOE
UIF SBOHF SBUF PG UIF 4�$ BT CPUI PG UIFTF ESJWF UIF DPN�
QMFYJUZ PG UIF QBZMPBE EFTJHO XIJMF BU UIF TBNF UJNF FO�
TVSJOH UIF SBOHF UP UIF DPOTUFMMBUJPO JT TVďDJFOUMZ DMPTF
GPS DPNNVOJDBUJPO QVSQPTFT�

Earth

Sun
1 AU (150 million km)

19 – 23°
60°

2.5 million km

1 AU
Sun

'JHVSF �� %FQJDUJPO PG UIF -*4" 0SCJU�

ćF PSCJUBM DPOĕHVSBUJPO JT EFQJDUFE JO 'JHVSF �� ćFTF
PSCJUT XJMM MFBE UP CSFBUIJOH BOHMFT PG ±� EFH BOE
%PQQMFS TIJęT CFUXFFO UIF 4�$ PG XJUIJO ±�.)[�
ćF MBVODI BOE USBOTGFS BSF PQUJNJ[FE GPS B EFEJDBUFE
"SJBOF ��� MBVODI BOE DBSSZ UIF GPMMPXJOH CBTJD GFB�
UVSFT�
t UPUBM USBOTGFS UJNF PG BCPVU ��� EBZT�
t EJSFDU FTDBQF MBVODI XJUI V∞ = 260N�T�
t UISFF TFUT PGNBOPFVWSFT GPS ĕOBM USBOTGFS PSCJU JOKFD�

UJPO QFSGPSNFE CZ UIF QSPQVMTJPO BOE 4�$ DPNQPTJUF
NPEVMFT� 4FF 4FDUJPO ����� GPS EFUBJMT�

��� -BVODIFS

ćF SFDPNNFOEFE PQUJPO GPS -*4" JT UP VTF POF PG
UIF "SJBOF � GBNJMZ PG MBVODI WFIJDMFT XJUI B EFE�
JDBUFE "SJBOF ��� MBVODI CFJOH UIF QSFGFSSFE PQUJPO�
8JUI B MBVODI DBQBDJUZ EJSFDUMZ JOUP BO FTDBQF USBKFD�
UPSZ PG ���� LH UIF "SJBOF ��� JT WFSZ XFMM TVJUFE UP
UIF -*4" MBVODI SFRVJSFNFOUT BOE UIF SFGFSFODF PSCJU
EFTDSJCFE JO 4FDUJPO ��� JT CBTFE PO UIF DBQBCJMJUJFT PG
UIJT MBVODIFS� ćF DBQBDJUZ PG "SJBOF ��� JT MJNJUFE BOE
JU JT FYUSFNFMZ MJLFMZ UIBU BOZ NJTTJPO TJ[FE UP ĕU XJUIJO
JU XPVME CF TJHOJĕDBOUMZ DPNQSPNJTFE JO UFSNT PG DB�
QBCJMJUZ� 4JNJMBSMZ JU JT MJLFMZ UIBU UIF DPOTUSBJOUT BOE
DPNQMFYJUZ PG B MBVODI UP (FPTUBUJPOBSZ 5SBOTGFS 0S�
CJU DPNCJOFE XJUI UIF OFFE UP ĕOE B TVJUBCMF QBSUOFS
NBLF B TIBSFE "SJBOF ��� MBVODI VOBUUSBDUJWF�

��� $PODFQU PG 0QFSBUJPOT

&BDI 4�$ JT FRVJQQFE XJUI JUT PXO QSPQVMTJPO NPEVMF
UP SFBDI UIF EFTJSFE PSCJU� %VSJOH UIJT DSVJTF QIBTF
DIFDLPVU BOE UFTUJOH PG TPNF FRVJQNFOU DPVME BMSFBEZ
CFHJO� 0ODF UIF 4�$ IBWF CFFO JOTFSUFE JOUP UIFJS DPS�
SFDU PSCJUT BOE UIF QSPQVMTJPO NPEVMFT KFUUJTPOFE UIF
UISFF 4�$ NVTU CF QSFQBSFE UP GPSN B TJOHMF XPSL�
JOH PCTFSWBUPSZ CFGPSF TDJFODF PQFSBUJPOT DBO CF FT�
UBCMJTIFE� ćJT JODMVEFT UIF SFMFBTF PG UIF UFTU NBTTFT
BOE FOHBHJOH UIF %SBH�'SFF "UUJUVEF $POUSPM 4ZTUFN
	%'"$4
� ćJT QSPDFTT DPOTUFMMBUJPO BDRVJTJUJPO BOE
DBMJCSBUJPO JT EFTDSJCFE JO 4FDUJPO ������ 'PMMPXJOH
BDRVJTJUJPO BOE DBMJCSBUJPO -*4" XPVME FOUFS UIF QSJ�
NBSZ TDJFODF NPEF� "U UIJT UJNF BMM UFTU NBTTFT JOTJEF
UIF UISFF 4�$ XJMM CF JO GSFF GBMM BMPOH UIF MJOFT PG TJHIU
CFUXFFO UIF 4�$� $BQBDJUJWF TFOTPST TVSSPVOEJOH FBDI
UFTU NBTT XJMM NPOJUPS UIFJS QPTJUJPO BOE PSJFOUBUJPO
XJUI SFTQFDU UP UIF 4�$� %'"$4 XJMM VTF NJDSP�/FXUPO
UISVTUFST UP TUFFS UIF 4�$ UP GPMMPX UIF UFTUNBTTFT BMPOH
UIF UISFF USBOTMBUJPOBM EFHSFFT�PG�GSFFEPN VTJOH JO�
UFSGFSPNFUSJD SFBEPVU XIFSF BWBJMBCMF BOE DBQBDJUJWF
TFOTJOH GPS UIF SFNBJOJOH EFHSFFT�PG�GSFFEPN� &MFD�
USPTUBUJD BDUVBUPST BSF VTFE UP BQQMZ UIF SFRVJSFE GPSDFT
BOE UPSRVFT JO BMM PUIFS EFHSFFT PG GSFFEPN UP UIF UFTU
NBTTFT� -BTFS JOUFSGFSPNFUSZ JT VTFE UP NPOJUPS UIF
EJTUBODF DIBOHFT CFUXFFO UIF UFTU NBTTFT BOE UIF PQ�
UJDBM CFODI 	0#
 JOTJEF FBDI 4�$� ćFTF UFDIOPMPHJFT
IBWF CFFO EFNPOTUSBUFE CZ UIF -*4" 1BUIĕOEFS NJT�
TJPO�
ćF MPOH�CBTFMJOF MBTFS JOUFSGFSPNFUFS PS TDJFODF JO�
UFSGFSPNFUFS JT VTFE UP NFBTVSF DIBOHFT JO UIF EJT�
UBODF CFUXFFO UIF PQUJDBM CFODIFT XIJMF B UIJSE JO�
UFSGFSPNFUFS TJHOBM NPOJUPST UIF EJČFSFOUJBM MBTFS GSF�
RVFODZ OPJTF CFUXFFO UIF UXP MPDBM MBTFS TZTUFNT� "MM
JOUFSGFSPNFUFS TJHOBMT BSF DPNCJOFE PO HSPVOE UP EF�
UFSNJOF UIF EJČFSFOUJBM EJTUBODF DIBOHFT CFUXFFO UXP
QBJST PG XJEFMZ TFQBSBUFE UFTU NBTTFT� 4DJFODF .PEF
XPVME GFBUVSF OFBS�DPOUJOVPVT PQFSBUJPO PG UIF TZTUFN
BU UIF EFTJHO TFOTJUJWJUZ� ćF TZTUFN EFTJHO TIPVME CF
TVDI UIBU JO TDJFODF NPEF FYUFSOBM QFSUVSCBUJPOT UP
UIF TZTUFN BSFNJOJNJTFE BOE JO QBSUJDVMBS UIF CBTFMJOF
EFTJHO EPFT OPU SFRVJSF TUBUJPO LFFQJOH PS PSCJU DPS�
SFDUJPO NBOPFVWSFT� *O MJOF XJUI UIF TDJFODF SFRVJSF�
NFOUT PO EBUB MBUFODZ DPNNVOJDBUJPOT XPVME PDDVS
PODF QFS EBZ GPS B EVSBUJPO PG BQQSPYJNBUFMZ � IPVST�
ćFSF BSF UXP QSJODJQBM FWFOUT XIJDI XJMM DBVTF TPNF
EJTSVQUJPO UP UIF TDJFODF NPEF PG PQFSBUJPOT� UIFTF
BSF SF�QPJOUJOH PG UIF BOUFOOBT BOE SF�DPOĕHVSBUJPO
PG UIF MBTFS MPDLJOH UP NBJOUBJO UIF CFBU OPUFT XJUIJO
UIF QIBTFNFUFS CBOEXJEUI UIFTF BSF DPWFSFE JO NPSF
EFUBJM JO 4FDUJPOT ��� BOE ��� SFTQFDUJWFMZ� *O BEEJUJPO
UP UIF NBJO TDJFODF NPEF B TQFDJBM QSPUFDUFE QFSJPE

-*4" o �� .*44*0/ 130'*-& 1BHF ��

LISA-frame
SSB-frame: global view of the orbits

Low-f approximation: two LIGO-type 
detectors in motion [Cutler 1997]
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Main sky degeneracy for MBHBs: 
reflection by the LISA plane

Short-lived 
signals: LISA 
frame

Sky localisation from the 
modulations induced by the orbits 
for long-lived signals

High-f: three channels 
with complicated 
frequency-dependence
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Higher harmonics in the waveform

Higher harmonics
26
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FIG. 17. Comparison between NR (solid black), SEOBNRv4HM (dashed green) and SEOBNRv4 (dotted yellow) waveforms in an edge-on
orientation (◆ = ⇡/2,'0 = 1.2) for the NR simulation SXS:BBH:0065 (q = 8, �1 = 0.5, �2 = 0). In the top panel is plotted the real part of
the observer-frame’s gravitational strain h+(◆,'0; t) � i hx(◆,'0; t), while in the bottom panel the dephasing with the NR waveform ��h.The
dotted-dashed red horizontal line in the bottom panel indicates zero dephasing with the NR waveform. Both SEOBNRv4 and SEOBNRv4HM
waveforms are phase aligned and time shifted at low frequency using as alignment window tini = 1000M and t f in = 3000M.
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MBHB with higher modes

h+ � ih⇥ =
X

`�2

X̀

m=�`

�2Y`m(◆,')h`m
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Example in time domain:

• Dominant harmonic h22
• Higher modes more 

important for high q and 
edge-on

M = 2 · 106 M�, q = 2
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Ticks:
• SNR/64 (40h)
• SNR/16 (2.5h)
• SNR/4 (7min)
• merger
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• Large (>1000) SNR: accurate waveforms needed
• Large SNR for merger/ringdown and higher harmonics (HM)
• Wide range of mass ratios and spins
• Possible significant eccentricity in triplets
• Signal length: from days to months for IMBHs
• Observations not SNR-limited: edge-on common

MBHB features

SBHB features
• Small SNR (<20), long signals (years), at high frequencies
• Very deep inspiral; chirping signals and slowly-chirping signals
• Masses and spins: cf LIGO/Virgo!
• Possible significant eccentricity if formation in clusters

Instrument response
• Instrument response is time- and frequency-dependent, 

carrying information about the sky position

Challenges of parameter estimation for LISA

Data analysis challenges

• Signal superposition requiring global fit
• Non-stationarity, glitches, gaps…

Non-spinning, q=3
Inspiral-Merger-Ringdown

Higher Harmonics

This study:

Aligned spin
Chirping signals
No eccentricity

This study:

Full FD response

This study:

Idealized noise

This study:

Sylvain Marsat — GdR Ondes Gravitationnelles                   IPNL — Lyon — 2019-10-10

Accurate waveforms needed to extract 
physical information without bias
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Outline

• Introduction and motivation

•The duration of Black Hole Binary signals in LISA

• The LISA response in the Fourier domain

• Methods for Bayesian parameter estimation

• Parameter estimation for Massive Black Hole Binaries

• Parameter estimation for Stellar-mass Black Hole Binaries

• Conclusions and outlook
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Accumulation of SNR with time for MBHB/IMBHB

M = 106M�, q = 5, z = 2
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M = 104M�, q = 5, z = 2
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Accumulation of SNR as time left before merger diminishes
Shaded areas: thresholds SNR=1 and SNR=10

Two different definitions of “signal duration”:
• Looking back in time from merger, when is the signal negligible ? Here SNR=1
• Accumulating signal towards merger, when is the signal detected ? Here SNR=10

For MBHBs, SNR accumulates 
shortly before merger (days)
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Length of MBHB LISA signals: for the observer

t(SNR): time to merger left when the signals has accumulated a given SNR

• SNR=1 assuming everything before that 
point can be neglected in PE

• SNR=10 as the time to merger 
left when we can claim detection
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Length of MBHB LISA signals: for waveform models

t(SNR)/M: same length of signal, but seen in geometric units for 
waveforms models (longest NR simulation: t/M=10^5)

• SNR=1 assuming everything before that 
point can be neglected in PE

• SNR=10 as the time to merger 
left when we can claim detection
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LISA: simulated catalog for MBHB astrophysical models

Astrophysical models:
• Heavy seeds - delay
• Light seeds - no delay
• PopIII seeds - delay

 [Barausse 2012] 
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Outline

• Introduction and motivation

• The duration of Black Hole Binary signals in LISA

•The LISA response in the Fourier domain

• Methods for Bayesian parameter estimation

• Parameter estimation for Massive Black Hole Binaries

• Parameter estimation for Stellar-mass Black Hole Binaries

• Conclusions and outlook
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LISA instrument response

One-arm frequency observables

• Crucial to cancel laser noise
• First generation: unequal arms
• Second generation: propagation and flexing
• Michelson X,Y,Z - Uncorrelated noises A,E,T

yslr “ 1

2

1

1 ´ k̂ ¨ nl

nl ¨ phptsq ´ hptrqq ¨ nl

From spacecraft s to spacecraft r 
through link s:

3

FIG. 1: Schematic LISA configuration. The spacecraft are labeled 1, 2, and 3; each spacecraft contains two optical benches,
denoted by 1, 1∗, . . . , as indicated. The optical paths are denoted by Li, where the index i corresponds to the opposite
spacecraft. The unit vectors n̂i point between pairs of spacecraft, with the orientation indicated.

The frequency fluctuations introduced by the lasers, by the optical benches, by the proof masses, by the fiber optics,
and by the measurement itself at the photo-detector (i.e., the shot-noise fluctuations) enter the Doppler observables
yij and zij with specific time signatures; see Refs. [3, 4, 10] for a detailed discussion. The contribution yGW

ij due to
GW signals was derived in Ref. [2] in the case of a stationary array. (Note that in Ref. [2], and indeed in all the
literature on first-generation TDI, the notation yij indicates the one-way Doppler measurement for the laser beam
received at spacecraft j and traveling along arm i. In this paper we conform to the notation used in Refs. [7, 8, 9, 10]).

Since the motion of the LISA array around the Sun introduces a difference between (and a time dependence in) the
corotating and counterrotating light travel times, the exact expressions for the GW contributions to the various first-
generation TDI combinations will in principle differ from the expressions valid for a stationary array [2]. However,
the magnitude of the corrections introduced by the motion of the array are proportional to the product between
the time derivative of the GW amplitude and the difference between the actual light travel times and those valid
for a stationary array. At 1 Hz, for instance, the larger correction to the signal (due to the difference between the
corotating and counterrotating light travel times) is two orders of magnitude smaller than the main signal. Since the
amplitude of this correction scales linearly with the Fourier frequency, we can completely disregard this effect (and the
weaker effect due to the time dependence of the light travel times) over the entire LISA band [10]. Furthermore, since
along the LISA orbit the three armlengths will differ at most by ∼ 1%–2%, the degradation in signal-to-noise ratio
introduced by adopting signal templates that neglect the inequality of the armlengths will be at most a few percent.
For these reasons, in what follows we shall derive the GW responses of various second-generation TDI observables
by disregarding the differences in the delay times experienced by light propagating clockwise and counterclockwise,
and by assuming the three LISA armlengths to be constant and equal to L = 5 × 106 km ≃ 16.67 s [23]. These
approximations, together with the treatment of the moving-LISA GW response discussed at the end of Sec. II C, are
essentially equivalent to the rigid adiabatic approximation of Ref. [20], and to the formalism of Ref. [18].

A. Geometry of the orbiting LISA array

We denote the positions of the three spacecrafts by pi and the unit vectors along the arms by n̂i, where n̂1 points
from spacecraft 3 to 2, n̂2 points from spacecraft 1 to 3, and n̂3 points from spacecraft 2 to 1. In the coordinate frame
where the spacecraft are at rest, we can set without loss of generality

pL
i = (L/

√
3)(− cos 2σi, sin 2σi, 0), (1)

and

n̂L
i = (cosσi, sinσi, 0), (2)

where

σi = 3π/2 − 2(i − 1)π/3. (3)

y “ �⌫{⌫

Time-delay interferometry (TDI)

ts “ t ´ L ´ k̂ ¨ ps, tr “ t ´ k̂ ¨ pr
h “ h`P`pk̂q ` hˆPˆpk̂q GW at SSB

7

f = 10−3 Hz f = 2 × 10−2 Hz f = 5 × 10−2 Hz f = 10−1 Hz
Binary N 1PN N 1PN N 1PN Doppler N 1PN Doppler

WD–WD 0 0 24† 0 - -

WD–NS 0 0 69† 0 - -

WD–BH 0 0 190† 0 - -

NS–NS 0 0 240† 0 6.9 × 103 3.4 0 9.3 × 104 78 2.7

NS–BH 0 0 740 0.33 2.2 × 104 19.0 0.66 3.5 × 105 640 8.5

TABLE I: Contributions to the evolution of GW frequency for various types of compact, stellar-mass binaries (white dwarfs with
m = 0.35M⊙, neutron stars with m = 1.4M⊙, and black holes with m = 6M⊙), for selected (initial) GW frequencies within the
LISA band. The contributions are expressed as GW cycles over one year of evolution, and the effects of Newtonian-order (N)
and first post–Newtonian-order (1PN) terms are shown separately. The column labeled “Doppler” reports the integrated phase
shift (in cycles) due to the increased Doppler shifting of the source as the frequency increases [see Eq. (45)], where significant.
At f = 10−3 Hz there is no significant evolution of GW frequency over one year. The symbol “†” indicates that the Taylor
expansion of the phase given by Eq. (21) is accurate to within a quarter of a cycle. Numbers are not shown where a binary of
a given class cannot exist at a given frequency. Some of the conclusions that can be drawn from this table are apparent also in
Figs. 10 and 12 of Ref. [20]: up to about 1 mHz, LISA cannot differentiate (using one year of data) between a monochromatic
binary and a chirping binary (see Fig. 10 of Ref. [20]); above that frequency, chirping becomes appreciable (one additional GW
cycle over a year in this table corresponds to a frequency shift of one bin in Fig. 12 of Ref. [20]), but we see that it can still be
modeled faithfully by the linear-chirp model of Eq. (21).

In Table I, for binaries consisting of various combinations of white dwarfs (WDs, with m = 0.35M⊙), neutron stars
(NSs, with m = 1.4M⊙), and black holes (BHs, with m = 6M⊙), and for various fiducial GW frequencies within
the LISA band, we show the contributions to the evolution of GW frequency over one year caused by terms at the
Newtonian (N) and first post–Newtonian (1PN) order. The table shows that at frequencies smaller or equal to 10−3

Hz, the evolution of frequency is negligible. At frequencies approaching 10 mHz, the change in frequency becomes
significant, and needs to be included in the model of the signal; however, only the first derivative of the frequency is
needed up to about 50 mHz. In binaries with WDs of mass ∼ 0.35M⊙, above ∼ 20 mHz the WDs fill their Roche
lobe, and the dynamical evolution of the system is then determined by tidal interaction between the stars. In binaries
with either a NS or a BH, post–Newtonian effects become important at about ∼ 50 mHz. At 1 Hz and above, these
binaries will coalesce in less than 1 yr; furthermore, population studies [25] suggest that the expected number of
binaries above 50 mHz containing neutron stars and black holes is negligible. (The effects of frequency evolution in
the LISA response to GW signals from inspiraling binaries are also discussed in Ref. [26].)

Therefore, for sufficiently small binary masses, for sufficiently small GW frequencies (and definitely for all non-
tidally-interacting binaries that contain WDs), we can approximate the phase of the signal by Taylor-expanding it,
and then neglecting terms of cubic and higher order. The resulting expression for the signal phase φs(t) is

φs(t) ≃ ωt + 1
2 ω̇t2, where ω̇ =

48

5

(
GMc

2c3

)5/3

ω11/3. (21)

E. TDI responses

The response of the second-generation TDI observables to a transverse–traceless, plane GW is obtained by setting
yij(t) = yGW

ij (t) [according to Eqs. (12) and (13)] in the TDI expressions of Ref. [9, 10]. For instance, the GW response
of the second-generation TDI observable X1 is given by

XGW
1 =

[

(yGW
31 + yGW

13,2) + (yGW
21 + yGW

12,3),22 − (yGW
21 + yGW

12,3) − (yGW
31 + yGW

13,2),33

]

︸ ︷︷ ︸

XGW(t)

−
[

(yGW
31 + yGW

13,2) + (yGW
21 + yGW

12,3),22 − (yGW
21 + yGW

12,3) − (yGW
31 + yGW

13,2),33

]

,2233
︸ ︷︷ ︸

XGW(t−2L2−2L3)≃XGW(t−4L)

. (22)

As anticipated above, here we are disregarding the effects introduced by the time dependence of light travel times,
and by the rotation-induced difference between clockwise and counterclockwise light travel times [27]. Each of the
two terms delimited by square brackets in Eq. (22) corresponds to the GW response of the first-generation Michelson
observable X [2]. The TDI observables X2 and X3 are obtained by cyclical permutation of indices in Eq. (22).

Approximations
• Long-wavelength approximation: two moving LIGOs rotated by          + orbital delay
• Rigid approximation (order of the delays does not matter, delay=L simple in Fourier 

domain)

⇡{4

8

FIG. 5: Tracing the light paths in the Michelson and unequal-
arm Michelson TDI combinations.

combinations of various types are possible:
The Sagnac-type observables (α, β, γ) are sums of six

basic Doppler observables, and they involve the difference
between the Doppler shifts accumulated by light propa-
gating around the LISA array in the two senses. Thus,
the Sagnac-type observables use all the LISA laser links
in both directions. A fully symmetric Sagnac observ-
able (ζ) is considerably less sensitive than most others
to GWs with frequencies at the lower end of the LISA
band; it was suggested [21] that the comparison between
the power observed in ζ and in the other TDI variables
could be used to discern a stochastic GW background
from instrumental noise. The observables built from six
Doppler variables are also known as six-pulse combina-
tions, because their response to an impulsive plane GW
consists of six separate pulses.

Eight-pulse combinations involve sums and differences
of the Doppler shifts measured along four of the six LISA
laser links. The unequal-arm Michelson observables (X ,
Y , Z) use both links of two arms; as discussed above,
they can be interpreted as measuring the phase differ-
ence accumulated by light traveling (twice, in opposite
orders) along the two arms of a Michelson interferometer
centered in one of the spacecraft. Perhaps for this reason,
and in analogy with ground-based GW interferometers,
a single unequal-arm Michelson observable (generally X)
is often used in LISA data analysis to compute expected
detection rates and parameter-estimation accuracies.

More eight-pulse combinations can be formed: the bea-
con observables (P , Q, R) use only the two links depart-
ing from one of the spacecraft, and both links along the
opposite arm; the monitor observables (E, F , G) use only
the two links arriving at one of the spacecraft, and both
links along the opposite arm; last, the relay observables
(U , V , W ) use one departing link and the adjacent arriv-
ing link at one of the spacecraft, together with both links
along the opposite arm. The eight-pulse combinations
can be considered as LISA contingency modes, because
they are available even if one or two of the laser links fail.
Note however that all six lasers must still be available to
build the intra-spacecraft observables zslr required for
the eight-pulse combinations, except in the case of the

unequal-arm Michelson observables: one of these can al-
ways be built even if one or both lasers directed along
one of the arms happen to fail.

Dhurandhar and colleagues [25] proved that the space
of all the first-generation TDI observables can be con-
structed by combining four generators, which they iden-
tify in α, β, γ, and ζ. Prince and colleagues [20] showed
how to diagonalize the cross noise spectrum of the gen-
erators to obtain three observables (A, E, and T ) with
uncorrelated noises. The three optimal observables A, E,
and T are written as sums and differences of α, β, and γ,
and when used in combination they achieve the optimal
S/N for GW sources at any frequency in the LISA band.

Modified TDI. Also known as TDI 1.5. Shaddock [26]
recently pointed out that the rotation of the LISA array
introduces a difference in the armlengths experienced by
beams traveling in the corotating and counterrotating
directions (i.e., Lk ̸= L−k). Furthermore, this difference
becomes much larger if we take into account also the
orbital motion of the array around the Sun [5]. Some
of the first-generation observables (the X-type, P -type,
E-type, and U -type combinations), cancel laser noise
also for Lk ̸= L−k, if time delays for the appropriate
oriented arms are used [as we have already arranged,
for instance, in Eq. (14)]; these observables can be in-
terpreted as tracing light paths that enclose vanishing
areas. Conversely, the first-generation observables that
trace light paths that enclose a finite area (such as α,
β, γ, and ζ) are equivalent to Sagnac interferometers
[28], and must necessarily be sensitive to the rotation
of the array, which shows up as a spurious phase dif-
ference between the lasers, originating from the starting
points of the light paths. The Sagnac observables can be
modified by means of a finite-difference procedure anal-
ogous to the change undergone between the equal-arm
and unequal-arm Michelson combinations (see Fig. 5), so
that the modified Sagnac observables have null enclosed
area, and cancel laser noise [3, 4]. The resulting com-
binations [α1, α2, and α3, which generalize α, β, and γ;
and ζ1, ζ2, and ζ3 [5], which nonuniquely generalize ζ] in-
clude twice as many yslr variables as the first-generation
combinations (i.e., they are 12-pulse observables).

Second-generation TDI. Also known as TDI 2.0. The
motion of the LISA array introduces not only a direc-
tional dependence of the armlengths, but also a time de-
pendence, as first recognized by Cornish and Hellings [3].
In this case, the order of the TDI retardations becomes
important: for instance, if the armlengths are constant,
then

t,2−2 ≡ t − L−2 − L2 = t − L2 − L−2 ≡ t,−22 (14)

but if they are not (as signaled by a semicolon index
notation), then

t;2−2 ≡
(

t − L−2(t) − L2(t − L−2)
)

̸=
(

t − L2(t) − L−2(t − L2)
)

≡ t;−22. (15)
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LISA FD response - motivation

Frequency observables

Decomposition of the response:
• Orbital delay
• Time-varying orientation
• Inter-spacecrafts delays
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y “ �⌫{⌫

yslr “ 1

2

1

1 ´ k̂ ¨ nl

nl ¨ phptsq ´ hptrqq ¨ nl

TDI: combination of delayed yslr

Transfer function for modulated and delayed signal

FT rF ptqhpt ` dptqqs “ T pfqh̃pfq

Motivation
• Aim: computationally intensive applications (PE)
• Take advantage of recent FD IMR waveform models
• Response directly in the Fourier domain
• Keep a compact representation (~1000 pts)
• Assess errors of FD processing

Terminology:
• Orbital: main motion around 

the Sun
• Constellation: other motion 

and inter-spacecrafts delays
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The timescales in the problem

GW timescales

Instrumental timescales
• Motion (approximately) periodic 

• Transfer frequencies for the delays: when the baseline is one wavelength
         Orbital : 
         Constellation:

f0 “ 1{yr » 3.10´8
Hz

• Wave frequency

• Radiation-reaction timescale

fR “ 3.2 ˆ 10
´4

Hz

fL “ 1.9 ˆ 10
´2

Hz

f " f0

TRR „ 1{
?

9!

Separation of timescales
• Conditioned by

• Also dimensionless factors 

TRR{T0 ! 1

2⇡fd

Separation will be good for chirping 
binaries but breaks in the quasi-

monochromatic limit 

Separation of timescales becomes a 
frequency-dependent statement due 

to the presence of delays

Inspiral will be harder than merger-
ringdown — opposite of the SPA 

assumptions

Guessing…
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A local time-to-frequency map

sptq “ F ptqhpt ` dptqq
Separation of timescales: if F, d have 

only frequencies <<f, local 
convolution - expand h(f-f ’) in f ’ 

Keeping linear term in the phase:

tf ” ´ 1

2⇡

d 

df

h̃pfq “ Apfqe´i pfq

s̃pfq “
ª
df 1 h̃pf ´ f 1qG̃pf ´ f 1, f 1q

Close to the SPA 
- but extends 
through MRD

Input:

s̃pfq “ T pfqh̃pfq
T pfq “ Gpf, tf q

Convolution with f-dependent 
kernel

Leading-order: time-of-frequency

7

FIG. 1. Time-to-frequency correspondence tf , as defined di-
rectly from the phase of the Fourier-domain signal in (20), in
geometric units. We show only the high-frequency part of the
signal, corresponding to the merger region. The PhenomD
waveforms have been aligned such that the time-domain am-
plitude (obtained by an IFFT) peaks at t = 0. The two
aligned spins are equal, with components of 0.95 (++, blue),
0 (00, red), and �0.95 (��, yellow), for mass ratios q = 1 (full
line) and q = 8 (dashed). The vertical lines shows the time-
domain instantaneous frequency at the peak !22

peak/(2⇡), and
the fact that the curves tf do not pass exactly by the cross-
ing with the t = 0 horizontal line reflects the fact that the
link between time-domain frequency and Fourier frequency f
is only approximate at merger. Note that tf increases to at
most ⇠ 30M after the peak, and is not monotonous.

function G(f, t) at a frequency-dependent e↵ective time

tf ⌘ �
1

2⇡

d 

df
. (20)

It is worth noting that a shift in time of the time-domain
signal will, by virtue of (A2), be appropriately propa-
gated to tf . Because of the freedom of adding a linear
term to  (f) by simply shifting the signal in time, no
assumption can be made on the smallness of the first
derivative of the phase, and this is really a leading order
approximation.

The definition (20) is a straightforward generalization
of the time-to-frequency correspondence at the heart of
the SPA (8). Indeed, using (8) one can verify that the
derivative of the SPA phase  SPA (10c) with respect to
f yields back t

SPA

f , as

t
SPA

f = �
1

2⇡

d SPA

df
. (21)

However, our defintion (20) refers only to the Fourier-
domain waveform. We do not need to relate the fre-
quency f to a time-domain frequency like the orbital fre-
quency !, and the defintion is independent of the SPA
being valid or not for the underlying signal h̃.

The main advantage of our time-of-frequency func-
tion (20) is that it extends naturally to the merger-
ringdown part of the signals. Fig. 1 shows the behaviour

of the time function tf around merger for six example
waveforms, for mass ratios q = 1 and q = 8 and for
aligned spin components � = 0.95, 0.,�0.95. In partic-
ular, one should note that tf is not monotonically in-
creasing with frequency anymore after reaching in the
high-frequency part of the waveform, corresponding to
the ringdown. As long as the Fourier phase is di↵eren-
tiable tf is a well-defined function of f . While its non-
monotonicity would forbid an unambiguous definition of
a reciprocal frequency-of-time function f(t), like that in
the SPA, no such function will be needed in our treat-
ment.
With (19) we have brought the modulated and delayed

signal in to the form (2) with transfer function

Tlocal(f) = G(f, tf ) = F (tf )e
�2i⇡fd(tf ) . (22)

The interpretation of this approximation is straightfor-
ward: the signal is simply multiplied by the response
function evaluated at the time tf , the delay phase be-
coming the same linear phase contribution as one would
have in (A2) with a time shift d(tf ) treated like a con-
stant. The locality in frequency at f for h̃ translates into
a locality in time at tf for F, d.

C. Taylor expansion in the Fourier domain

If the width of the kernel function G(f � f
0
, f

0) is not
quite negligible compared to the scale of significant vari-
ations of h̃(f) with f , it can be useful to extend our ap-
proach beyond the leading-order approximation. With
the waveform represented in the amplitude and phase
form (A10), the elements of (16) may be formally Taylor-
expanded in the variable f

0:

 (f � f
0) =  (f) + 2⇡f 0

tf +
X

p�2

(�1)p

p!
f
0p d

p 

dfp
,

(23a)

A(f � f
0) = A(f) +A(f)

X

q�1

(�1)q

q!
f
0q 1

A

dqA

dfq
,

(23b)

G̃(f � f
0
, f

0) = G̃(f, f 0) +
X

r�1

(�1)r

r!
f
0r @

r

@fr
G̃(f, f 0) ,

(23c)

using the definition of tf introduced in (20).
The leading order transfer function (22) is obtained

by leaving o↵ all the terms in the sums. In the follow-
ing, we will consider the resulting transfer functions when
keeping some of the next few terms in each of these ex-
pansions. Notice that we expand G̃(f � f

0
, f

0) in f
0 only

in its first argument, and that we can commute the f -
derivatives of G with the Fourier transform operation.
We can also formally expand the exponential of the

phase corrections � beyond the first two terms in (23a)

Gpf, tq ” e´2i⇡fdptqF ptq

Tslr “ i⇡fL

2
sinc

”
⇡fL

´
1 ´ k̂ ¨ nl

¯ı
exp

”
i⇡f

´
L ` k̂ ¨ pp1 ` p2q

¯ı
nl ¨ P ¨ nlptf q

Beyond leading order: [Marsat&Baker]

Leading-order one-arm transfer function:
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Outline

• Introduction and motivation

• The duration of Black Hole Binary signals in LISA

• The LISA response in the Fourier domain

•Methods for Bayesian parameter estimation

• Parameter estimation for Massive Black Hole Binaries

• Parameter estimation for Stellar-mass Black Hole Binaries

• Conclusions and outlook
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Bayesian analysis

ph1|h2q “ 4Re

ª
df

h̃1pfqh̃˚
2 pfq

Snpfq

Bayesian formalism

Fisher matrix analysis

• Matched-filtering overlap:

• For Gaussian, stationary noise, for independent 
channels:

• Bayes theorem defines the posterior:
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• Quadratic expansion of log-likelihood around 
injection

• Matrix inversion to get to the covariance of the 
Gaussian

• Valid at high SNR, and misses degeneracies

lnL = �
1

2
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0-noise parameter 
estimation

• Simply put the noise realisation to 0, 
otherwise sample from the posterior

• Allows to explore the full likelihood
• Likelihood automatically peaks at 

injection

Fij = (@ih|@jh)
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Fast likelihoods and implementation
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f HHzL

Overlaps: oscillatory integrands

ph1|h2q “ 4Re

ª
df

h̃1pfqh̃˚
2 pfq

Snpfq

ª fi`1

fi

P pfqeiraf`bf2s
ª fi`1

fi

eiraf`bf2s

Likelihood cost
Single mode h22: 1-3ms

5 modes hlm: 15ms

Accelerated zero-noise overlaps

Waveforms

• Sparse grids: amplitude/phase and response
• Cubic spline representation 300-800 pts
• Mode-by-mode overlaps: significant cost 

increase with higher modes
• Much simpler than Reduced Order 

Quadratures, but cannot handle noise

• Non-spinning model, includes modes (22, 21, 
33, 44, 55)

• Reduced Order Model implementation for 
sub-millisecond sparse waveform evaluation

MBHB: EOBNRv2HM waveforms

[Katz&al]: PhenomHM waveforms, 
fast GPU computation of 

likelihoods with noise
SBHB: PhenomD waveforms
• Aligned spins, 22 mode
• Analytic ansatz, sub-millisecond sparse waveform
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Bayesian samplers

MultiNest [Feroz&al 2009]

PTMCMC

• Implements Nested Sampling [Skilling 2006]
• Evolves a population of live points by 

replacements from within isolikelihood 
contours

• Evaluates the evidence
• Drawing from within a set of ellipsoids, 

clustering

• Custom code
• Parallel tempering [Swendsen&al 1986]
• Differential evolution [Braak&al 2008]
• Can be informed with proposal jumps
• Can be used as brute-force method to 

resolve all degeneracies

• Available as off-the-shelf sampler
• Less flexible than MCMC (jumps, …)

MULTINEST: efficient and robust Bayesian inference 3

(a) (b)

Figure 1. Cartoon illustrating (a) the posterior of a two dimensional prob-
lem; and (b) the transformed L(X) function where the prior volumes Xi

are associated with each likelihood Li.

function of X. Thus, if one can evaluate the likelihoods Li =
L(Xi), whereXi is a sequence of decreasing values,

0 < XM < · · · < X2 < X1 < X0 = 1, (6)

as shown schematically in Fig. 1, the evidence can be approximated
numerically using standard quadrature methods as a weighted sum

Z =
MX

i=1

Liwi. (7)

In the following we will use the simple trapezium rule, for which
the weights are given by wi = 1

2 (Xi−1 − Xi+1). An example of
a posterior in two dimensions and its associated function L(X) is
shown in Fig. 1.

The summation (Eq. 7) is performed as follows. The itera-
tion counter is first set to i = 0 and N ‘active’ (or ‘live’) sam-
ples are drawn from the full prior π(Θ) (which is often simply
the uniform distribution over the prior range), so the initial prior
volume is X0 = 1. The samples are then sorted in order of their
likelihood and the smallest (with likelihood L0) is removed from
the active set (hence becoming ‘inactive’) and replaced by a point
drawn from the prior subject to the constraint that the point has
a likelihood L > L0. The corresponding prior volume contained
within this iso-likelihood contour will be a random variable given
byX1 = t1X0, where t1 follows the distribution Pr(t) = NtN−1

(i.e. the probability distribution for the largest ofN samples drawn
uniformly from the interval [0, 1]). At each subsequent iteration i,
the removal of the lowest likelihood point Li in the active set, the
drawing of a replacement with L > Li and the reduction of the
corresponding prior volume Xi = tiXi−1 are repeated, until the
entire prior volume has been traversed. The algorithm thus travels
through nested shells of likelihood as the prior volume is reduced.
The mean and standard deviation of log t, which dominates the ge-
ometrical exploration, are E[log t] = −1/N and σ[log t] = 1/N .
Since each value of log t is independent, after i iterations the prior
volume will shrink down such that log Xi ≈ −(i ±

√
i)/N . Thus,

one takesXi = exp(−i/N).
The algorithm is terminated on determining the evidence to

some specified precision (we use 0.5 in log-evidence): at iteration
i, the largest evidence contribution that can be made by the remain-
ing portion of the posterior is ∆Zi = LmaxXi, where Lmax is
the maximum likelihood in the current set of active points. The
evidence estimate (Eq. 7) may then be refined by adding a final
increment from the set of N active points, which is given by

∆Z =
NX

j=1

LjwM+j , (8)

where wM+j = XM/N for all j. The final uncertainty on the cal-
culated evidence may be straightforwardly estimated from a single
run of the nested sampling algorithm by calculating the relative en-
tropy of the full sequence of samples (see FH08).

Once the evidence Z is found, posterior inferences can be eas-
ily generated using the full sequence of (inactive and active) points
generated in the nested sampling process. Each such point is simply
assigned the weight

pj =
Ljwj

Z ., (9)

where the sample index j runs from 1 to N = M + N , the total
number of sampled points. These samples can then be used to cal-
culate inferences of posterior parameters such as means, standard
deviations, covariances and so on, or to construct marginalised pos-
terior distributions.

4 ELLIPSOIDAL NESTED SAMPLING

The most challenging task in implementing the nested sampling
algorithm is drawing samples from the prior within the hard con-
straint L > Li at each iteration i. Employing a naive approach that
draws blindly from the prior would result in a steady decrease in
the acceptance rate of new samples with decreasing prior volume
(and increasing likelihood).

Ellipsoidal nested sampling (Mukherjee et al. 2006) tries to
overcome the above problem by approximating the iso-likelihood
contour L = Li by aD-dimensional ellipsoid determined from the
covariance matrix of the current set of active points. New points
are then selected from the prior within this ellipsoidal bound (usu-
ally enlarged slightly by some user-defined factor) until one is ob-
tained that has a likelihood exceeding that of the removed lowest-
likelihood point. In the limit that the ellipsoid coincides with the
true iso-likelihood contour, the acceptance rate tends to unity.

Ellipsoidal nested sampling as described above is efficient for
simple unimodal posterior distributions without pronounced degen-
eracies, but is not well suited to multimodal distributions. As advo-
cated by Shaw et al. (2007) and shown in Fig. 2, the sampling ef-
ficiency can be substantially improved by identifying distinct clus-
ters of active points that are well separated and constructing an in-
dividual (enlarged) ellipsoid bound for each cluster. In some prob-
lems, however, some modes of the posterior may exhibit a pro-
nounced curving degeneracy so that it more closely resembles a
(multi–dimensional) ‘banana’. Such features are problematic for all
sampling methods, including that of Shaw et al. (2007).

In FH08, we made several improvements to the sampling
method of Shaw et al. (2007), which significantly improved its effi-
ciency and robustness. Among these, we proposed a solution to the
above problem by partitioning the set of active points into as many
sub–clusters as possible to allow maximum flexibility in following
the degeneracy. These clusters are then enclosed in ellipsoids and
a new point is then drawn from the set of these ‘overlapping’ el-
lipsoids, correctly taking into account the overlaps. Although this
sub-clustering approach provides maximum efficiency for highly
degenerate distributions, it can result in lower efficiencies for rel-
atively simpler problems owing to the overlap between the ellip-
soids. Also, the factor by which each ellipsoid was enlarged was
chosen arbitrarily. Another problem with the our previous approach
was in separating modes with elongated curving degeneracies. We
now propose solutions to all these problems, along with some addi-
tional modifications to improve efficiency and robustness still fur-
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(a)

(b)

Figure 3. Illustrations of the ellipsoidal decompositions returned by Algo-
rithm 1: the points given as input are overlaid on the resulting ellipsoids.
1000 points were sampled uniformly from: (a) two non-intersecting ellip-
soids; and (b) a torus.

expect the ellipsoidal decomposition calculated at some earlier it-
eration to become less optimal. We therefore perform a full re-
partitioning of the active points using Algorithm 1 if F (S) ! h;
we typically use h = 1.1.

The approach outlined above allows maximum flexibility and
sampling efficiency by breaking up a posterior mode resembling
a Gaussian into relatively few ellipsoids, but a mode possesses a
pronounced curving degeneracy into a relatively large number of
small ‘overlapping’ ellipsoids. In Fig. 3 we show the results of ap-
plying Algorithm 1 to two different problems in three dimensions:
in (a) the iso-likelihood surface consists of two non-overlapping
ellipsoids, one of which contains correlations between the param-
eters; and in (b) the iso-likelihood surface is a torus. In each case,
1000 points were uniformly generated inside the iso-likelihood sur-
face are used as the starting set S in Algorithm 1. In case (a), Al-
gorithm 1 correctly partitions the point set in two non-overlapping

ellipsoids with F (S) = 1.1, while in case (b) the point set is parti-
tioned into 23 overlapping ellipsoids with F (S) = 1.2.

In our nested sampling application, it is possible that the el-
lipsoids found by Algorithm 1 might not enclose the entire iso-
likelihood contour, even though the sum of their volumes is con-
strained to exceed the prior volume X This is because the ellip-
soidal approximation to a region in the prior space might not be
perfect. It might therefore be desirable to sample from a region with
volume greater than the prior volume. This can easily be achieved
by using X/e as the desired minimum volume in Algorithm 1,
where X is the prior volume and e the desired sampling efficiency
(1/e is the enlargement factor). We also note that if the desire sam-
pling efficiency e is set to be greater than unity, then the prior can
be under-sampled. Indeed, setting e > 1 can be useful if one is not
interested in the evidence values, but wants only to have a general
idea of the posterior structure in relatively few likelihood evalua-
tions. We note that, regardless of the value of e, it is always en-
sured that the ellipsoids Ek enclosing the subsets Sk are always
the bounding ellipsoids.

5.3 Sampling from overlapping ellipsoids

Once the ellipsoidal bounds have been constructed at some iteration
of the nested sampling process, one must then draw a new point
uniformly from the union of these ellipsoids, many of which may be
overlapping. This is achieved using the method presented in FH08,
which is summarised below for completeness.

Suppose at iteration i of the nested sampling algorithm, one
hasK ellipsoids {Ek}. One ellipsoid is then chosen with probabil-
ity pk equal to its volume fraction

pk = V (Ek)/Vtot, (23)

where Vtot =
PK

k=1 V (Ek). Samples are then drawn uniformly
from the chosen ellipsoid until a sample is found for which the hard
constraint L > Li is satisfied, where Li is the lowest-likelihood
value among all the active points at that iteration. There is, of
course, a possibility that the chosen ellipsoid overlaps with one or
more other ellipsoids. In order to take an account of this possibil-
ity, we find the number of ellipsoids, ne, in which the sample lies
and only accept the sample with probability 1/ne. This provides a
consistent sampling procedure in all cases.

5.4 Decreasing the number of active points

For highly multimodal problems, the nested sampling algorithm
would require a large number N of active points to ensure that
all the modes are detected. This would consequently result in very
slow convergence of the algorithm. In such cases, it would be de-
sirable to decrease the number of active points as the algorithm
proceeds to higher likelihood levels, since the number of isolated
regions in the iso-likelihood surface is expected to decrease with in-
creasing likelihood. modes Fortunately, nested sampling does not
require the number of active points to remain constant, provided
the fraction by which the prior volume is decreased after each it-
eration is adjusted accordingly. Without knowing anything about
the posterior, we can use the largest evidence contribution that can
be made by the remaining portion of the posterior at the ith itera-
tion∆Zi = LmaxXi, as the guide in reducing the number of active
points by assuming that the change in∆Z is linear locally. We thus
set the number of active points Ni at the ith iteration to be

Ni = Ni−1 − Nmin
∆Zi−1 − ∆Zi

∆Zi − tol
, (24)
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Fig. 1 Parallel direction update in DE-MC in two dimensions with 30
parallel chains, each represented by a point (d = 2,N = 30). (a) For
updating the ith chain, which is in state xi , the proposed state is x*,
generated from xi , the difference of the states of two other chains (xR1
and xR2) and a random vector e by (1) with γ = 2.4/(2 × 2)1/2 = 1.2.
(b) The reverse jump from x* to xi is obtained by reversing e and the
order of the two other states

Fig. 2 Parallel direction update in DE-MC in two dimensions.
(a) DE-MC can jump between modes with γ = 1.0 and (b) an out-
lier chain (xi ) may need considerable time to reach the modal region
because the differences within this region are small. In (a) and (b) the
random term e is neglected as it is small compared to the jumps

of γ is 2.38/
√

(2d), with d the number of parameters of
the posterior. This choice is motivated by comparison with
random walk Metropolis with a normal jumping distribu-
tion (RWMN) (Roberts and Rosenthal 2001). This choice
of γ gives, at least for Gaussian and Student target distri-
butions, DE-MC acceptance probabilities close to 0.44 for
d = 1,0.28 for d = 5 and 0.23 for large d (see Sect. 7.84 of
Robert and Casella (2004) for a cautionary note on these ref-
erences acceptance rates). After a burn-in period, the states
of the chains are independent so that convergence of a DE-
MC run can be monitored with the R̂-statistic of Gelman
et al. (2004). DE-MC shares this useful feature with other
population MCMC samplers (Mengersen and Robert 2003).

DE-MC can be effective to explore multimodal densities.
With an occasional choice of γ ≈ 1, a chain can jump be-
tween two disconnected modes (Fig. 2a). If a mode is rep-
resented by at least a single chain, a second chain can be
moved to it in accordance with the posterior mass of the
mode. This simple strategy of DE-MC balances exploration
and exploitation of the space.

For DE-MC to work well the number of chains N must be
larger than d . Our previous work has shown that N = 2d or
3d worked fine for simple unimodal posteriors for d < 50,

say, but that N = 10d to 20d was required for more com-
plicated posteriors (ter Braak 2006). A large N has a dis-
advantage though. When initialized from a wide prior, each
chain must travel to the high density region of the poste-
rior. Although jumps can initially be larger than in RWMN,
the time for all N chains to converge is typically a factor N

larger than for a single chain. For slowly converging adap-
tive chains the performance could even be worse.

There are two other reasons why using a smaller N might
be advantageous. First, if the posterior is unimodal and all
but one chain have converged to the modal region, it might
still take considerable time to also move this outlier chain
to the mode, irrespective of the value of γ (Fig. 2b). Conse-
quently, standard DE-MC has potentially an outlier problem.
Empirically outlier chains occur more often with large N

which is necessary for large d . Second, in a multi-processor
environment, chains could run on individual computational
nodes (processors). The lower the number of nodes required,
the greater the practical applicability of DE-MC for compu-
tationally demanding problems. It would then also be advan-
tageous that the proposal of the ith chain would not require
the updated states of the chains 1, . . . , (i − 1), as they do
in Metropolis-within-Gibbs and thus in standard DE-MC.
There is therefore sufficient scope to further increase the ef-
ficiency and implementation of DE-MC.

One device that allows for the use of smaller N is
to decrease the number of parameters that is simultane-
ously altered in each jump. Rather than performing a full-
dimensional update, one can update blocks of parameters
in turn. With blocks of one parameter, each parameter is up-
dated in turn as in Gibbs sampling. More generally, the para-
meters to be updated jointly can be selected randomly with
some probability CR, the crossover rate (Price et al. 2005;
Vrugt et al. 2008a, 2008b). Preferably, highly correlated pa-
rameters should be updated jointly; so better probabilistic
schemes can be devised. An extreme case is to fix the blocks
of parameters in advance as illustrated in ter Braak (2006)
for a nonlinear mixed-effects model. The model in question
had d = 43 and was sampled with blocks of size one to three
using N = 9. Some computational tricks and special fea-
tures of the model were used to let the method outperform
standard DE-MC using 2d = 86 chains with full-space up-
dates.

This paper explores another way to decrease N , namely
by sampling the difference vectors in the DE-MC jump
from past states, which turns the method into an adaptive
Metropolis sampler (Haario et al. 2001; Roberts and Rosen-
thal 2007, 2008).

It is always of interest to have a larger variety of effi-
cient update schemes. In analogy with adaptive direction
sampling (Gilks et al. 1994), we present a snooker up-
date for DE-MC. Gibbs sampling usually samples along
each coordinate axis in turn (each representing a parame-
ter). A snooker update also samples along one axis at a

with order parameters other than temperature, such as pair
potentials or chemical potentials. Of interest is how to choose
the order parameter whose swapping will give the most efficient
equilibration. It has also become apparent that multi-dimen-
sional parallel tempering is possible. That is, swapping between
a number of parameters in the same simulation, in a multi-
dimensional space of order parameters, is feasible and some-
times advised. The improvement in sampling resulting from the
use of parallel tempering has revealed deficiencies in some of
the most popular force fields used for atomistic simulations,
and it would seem that the use of parallel tempering will be
essential in tests of new and improved force fields.

Parallel tempering can be combined with most other simula-
tion methods, as the exchanges, if done correctly, maintain the
detailed balance or balance condition of the underlying simu-
lation. Thus, there is almost an unlimited scope for the
utilization of the method in computer simulation. This leads
to intriguing possibilities, such as combining parallel tempering
with quantum methods.

2. Theory

2.1 Theory of Monte Carlo parallel tempering

In a typical parallel tempering simulation we have M replicas,
each in the canonical ensemble, and each at a different tem-
perature, Ti. In general T1 o T2 o . . . o TM, and T1 is
normally the temperature of the system of interest. Since the
replicas do not interact energetically, the partition function of
this larger ensemble is given by

Q ¼
YM

i¼1

qi
N!

R
drNi exp½#biUðrNi Þ&; ð1Þ

where qi ¼ PN
j¼1(2pmjkBTi)

3/2 comes from integrating out the
momenta, mj is the mass of atom j, ri

N specifies the positions of
the N particles in system i, bi ¼ 1/(kBTi) is the reciprocal
temperature, and U is the potential energy, or the part of the
Hamiltonian that does not involve the momenta. If the prob-
ability of performing a swap move is equal for all conditions,
exchanges between ensembles i and j are accepted with the
probability

A ¼ min{1, exp[þ(bi # bj)(U(ri
N) # U(rj

N))]}. (2)

Swaps are normally attempted between systems with adjacent
temperatures, j ¼ i þ 1.

Parallel tempering is an exact method in statistical me-
chanics, in that it satisfies the detailed balance or balance
condition,6 depending on the implementation. This is an im-
portant advantage of parallel tempering over simulated anneal-
ing, as ensemble averages cannot be defined in the latter
method. Parallel tempering is complementary to any set of
Monte Carlo moves for a system at a single temperature, and
such single-system moves are performed between each at-
tempted swap. To satisfy detailed balance, the swap moves
must be performed with a certain probability, although per-
forming the swaps after a fixed number of single-temperature
Monte Carlo moves satisfies the sufficient condition of bal-
ance.6 A typical sequence of swaps and single-temperature
Monte Carlo moves is shown in Fig. 2.

Kofke conducted an analysis of the average acceptance rate,
hAi, of exchange trials and argued that this quantity should be
related to the entropy difference between phases.7–9 For sys-
tems assumed to have Gaussian energy distributions, typical of
many systems that are studied using computer simulation, see
Fig. 3, he found the average acceptance ratio, hAi, to be given
by

hAi ¼ erfc
1

2
Cv

! "1=2 1# bj=bi
ð1þ ðbj=biÞ

2Þ1=2

" #
; ð3Þ

where Cv is the heat capacity at constant volume, which is
assumed to be constant in the temperature range between bi
and bj. Simply put, the acceptance rate for the trials depends on
the likelihood that the system sampling the higher temperature
happens to be in a region of phase space that is important at
the lower temperature. This theoretical analysis of the accep-
tance rates becomes useful when considering the optimal
choice of temperatures for a parallel tempering simulation
(see section 2.3).

2.2 Theory of molecular dynamics parallel tempering

In Monte Carlo implementations of parallel tempering, we
need only consider the positions of the particles in the simula-
tion. In molecular dynamics, we must also take into account
the momenta of all the particles in the system. Sugita and
Okamoto proposed a parallel tempering molecular dynamics
method in which after an exchange, the new momenta for
replica i, p(i)0, should be determined as

pðiÞ
0
¼

ffiffiffiffiffiffiffiffiffiffi
Tnew

Told

r
pðiÞ; ð4Þ

where p(i) are the old momenta for replica i, and Told and Tnew

are the temperatures of the replica before and after the swap,
respectively.5 This procedure ensures that the average kinetic
energy remains equal to 3

2NkBT . The acceptance criterion for
an exchange remains the same as for the MC implementation
(eqn (2)) and satisfies detailed balance.
When doing parallel tempering molecular dynamics, one

must take care in the interpretation of the results. A parallel
tempering exchange is an ‘unphysical’ move, and so one cannot
draw conclusions about dynamics. That is, when using parallel
tempering molecular dynamics, one is only really doing a form
of sampling and not ‘true’ molecular dynamics.

2.3 Optimal choice of temperatures

How one chooses both the number of replicas employed in a
parallel tempering simulation and the temperatures of the
replicas are questions of great importance. One wishes to
achieve the best possible sampling with the minimum amount
of computational effort. The highest temperature must be
sufficiently high so as to ensure that no replicas become
trapped in local energy minima, while the number of replicas
used must be large enough to ensure that swapping occurs
between all adjacent replicas. Several suggestions for the
number and temperature of the replicas have been offered. It
is clear from Fig. 3 and eqn (2) that the energy histograms must
overlap for swaps to be accepted. Sugita et al. and Kofke have
proposed that the acceptance probability could be made uni-
form across all of the different replicas, in an attempt to ensure
that each replica spends the same amount of simulation time at
each temperature.5,7,8 Kofke showed that a geometric progres-
sion of temperatures (Ti/Tj ¼ constant) for systems in which Cv

Fig. 2 Schematic representation of parallel tempering swaps between
adjacent replicas at different temperatures. In-between the swaps,
several constant-temperature Monte Carlo moves are performed.
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• Introduction and motivation

• The duration of Black Hole Binary signals in LISA

• The LISA response in the Fourier domain

• Methods for Bayesian parameter estimation

•Parameter estimation for Massive Black Hole 
Binaries

• Parameter estimation for Stellar-mass Black Hole Binaries

• Conclusions and outlook
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SMBH analysis setting

Sources
• Plausible SMBH sources at z=4
• Masses
• Vary orientation

EvaluationsSNR
Multinest:
PTMCMC:

I II
22 857 645
HM 945 666

120 · 106
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400 · 106
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M = 2 · 106 M�, q = 2
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MBHB 22-mode PE: normal case

injection
ptmcmc 22
multinest 22
Fisher Sky position

Distance-inclination
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MBHB 22-mode PE: degenerate case

injection
ptmcmc 22
multinest 22
Fisher Sky position

Distance-inclination
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Understanding degeneracies in the likelihood

The frozen LISA approximation

• Neglect all LISA motion for the duration of 
the signal, take low-frequency response

• Neglect weak correlations between intrinsic 
and extrinsic parameters - fix masses, time, 
and vary extrinsic parameters only
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Two independent channels A and E:
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Single-channel response for A:
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and similarly for E.

Analogous roles of (�L,�L) $ ('L, ◆)
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Understanding degeneracies in the likelihood

The face-on / face-off limit

• Two branches: close to face-on or face-off

• Effective amplitude and phase degenerate in 
distance/inclination and in phase/polarization

Explicit solution for the degeneracy

For example for sin4
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Reproduce          of injection if condition on 
sky position is met:
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Exploring the analytic simplified extrinsic likelihood

injection
ptmcmc
multinest

• Very extended degeneracies 
• Multinest only captures a small 

region of the degenerate likelihood
• Extra symmetry
• Qualitatively explains what multinest 

is missing in the actual analysis

lnL = �1

2
⇤
⇣��sa � sinja

��2 +
��se � sinje

��2
⌘
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Understanding degeneracies

A projection effect for the marginal posterior
Sky, full likelihood 22-mode Sky, simple likelihood

The role of higher harmonics

injection
ptmcmc 22
multinest 22
analytic 
degeneracy

h+ � ih⇥ =
X

�2Y`m(◆,')h`m
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Different modes have different 
inclination and phase dependence

• Measuring relative amplitude of two modes 
gives the inclination

• Distance is then fixed by the amplitude
• Phase affects modes differently, not 

degenerate with polarization anymore
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MBHB HM PE: normal case

injection
ptmcmc 22
ptmcmc HM

Sky position

Distance-inclination
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MBHB HM PE: degenerate case

injection
ptmcmc 22
ptmcmc HM

Sky position

Distance-inclination
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SMBH PE: accumulation of information with time

Method

• Represent a cut in time-to-
merger by a cut in frequency, 
becomes inaccurate at merger

• Use Multinest and PTMCMC 
with and without higher 
harmonics

8-maxima sky degeneracy 
only broken shortly before merger

LISA-frame sky map 22

SNR-based time cuts:

SNR DeltaT

10 40h

42 2.5h

167 7min
666 -

LISA-frame sky map hm2-maxima sky degeneracy 
survives after merger
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MBHB PE: accumulation of information with time

Decomposing the response

• ‘Full’: keep all terms
• ‘Frozen’: ignore LISA motion
• ‘Low-f’: ignore f-dependency
• ‘Frozen Low-f’: ignore both

10�4 10�3 10�2

�0.10

�0.05

0.00

R
e
� T

22 h
a

�

7 min2.5 h40 h peak

10�4 10�3 10�2

f (Hz)

�0.10

�0.05

0.00

Im
� T

22 h
a

�

Full
Frozen
Low-f
Frozen low-f

Tslr =
i⇡fL

2
sinc [⇡fL (1� k · nl)] exp [i⇡f (L+ k · (pr + ps))]nl · P · nl(tf )
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Time and frequency-dependency in transfer functions
Time: motion of LISA on its orbit
Frequency: departure from long-wavelength approx.
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h`m , Full response

PE max ln L
�L
��L
�L
�L + ⇡/2
�L + ⇡
�L � ⇡/2
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h`m , Frozen response
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h`m , Low-f response

Degeneracy breaking for 8 sky maxima
Log-likelihood values when frequency increases:

High-f features 
crucial
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Outline

• Introduction and motivation

• The duration of Black Hole Binary signals in LISA

• The LISA response in the Fourier domain

• Methods for Bayesian parameter estimation

• Parameter estimation for Massive Black Hole Binaries

•Parameter estimation for Stellar-mass Black 
Hole Binaries

• Conclusions and outlook
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SBHB analysis setting
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Each block is computed inverting the Fisher matrix of that
group of parameters. This separation was based on the intu-
ition that the stronger correlations are within these groups of
parameters and is intended to avoid numerical instabilities that
may arise when dealing with full Fisher matrices. Notice that
by making this choice we do not discard possible correlations
between parameters of di↵erent groups, we are simply not tak-
ing them into account when proposing points and if those exist
they should appear in the resulting covariance matrix that we
use in the main chain. The consequence of neglecting possible
existing correlations is to reduce the e�ciency of our sampler.
If necessary this splitting can easily be adapted.

We rotate the current state vector ✓ to the basis of the covari-
ance matrix’s eigenvectors. In this basis the covariance matrix
is diagonal, formed by the eigenvalues of the covariance ma-
trix in the original basis. Because for some parameters the dis-
tribution is very flat, the eigenvalues of the covariance matrix
predicted by Fisher can be very large, reducing the e�ciency
of the sampler. This is usually the case for cos(◆) and spins. To
avoid this issue we truncate the eigenvalues of the (cos(◆),DL)
matrices and define an e↵ective Fisher matrix accounting for
the finite extent of the prior on spins: Fe f f = F + Fp. We
take Fp,�+,�+ = Fp,��,�� =

1
2�2 and 0 elsewhere with � = 0.5.

This amounts approaching the prior on �+ and �� by a Gaus-
sian distribution with standard deviation �0.5 and is a good
approximation as we will discuss in section IV C.

In order to better sample the complicated correlation be-
tween intrinsic parameters, we exploit the metric interpreta-
tion of Fisher matrix and recompute the covariance matrix for
the first group of parameters from times to times with a given
probability. By doing so we might violate the balance equa-
tion, but the purpose of the burn-in being only to explore the
parameter space, this is not a matter of concern.

We test the convergence of the chains by running multi-
ple chains with di↵erent random number generator seeds and
checking that they all give a similar distributions. Each of
these chains were ran for ⇠ 107 points. We downsample the
chains using the autocorrelation length to ensure we have in-
dependent samples and combine the resulting samples from
the di↵erent chains.

III. SETUPS

A. Systems

We start by considering a system with masses and spins
compatible with the first GW detection and label it Fiducial
system. Its characteristics are given in Table I with its SNR in
the Tobs = 4 years and Tobs = 10 years cases. All parameters
are given in the solar system barycenter (SSB) frame. Note
that Tobs is the mission duration, not the time spent by the
system in LISA band. The initial frequency is derived from
the time to coalescence once LISA starts its observation that
we fix to 8 years for the Fiducial system. In the following
subscripts f refer to the Fiducial system.

We explore the parameter space of SBHBs by changing a
few parameters of the Fiducial system at a time. In the fol-

m1 (M�) 40

m2 (M�) 30

tc (yrs) 8

f0 (mHz) 12.7215835397

�1 0.6

�2 0.4

� (rad) 1.9

� (rad) ⇡/3

 (rad) 1.2

' (rad) 0.7

◆ (rad) ⇡/6

DL (Mpc) 250

Tobs (yrs) 4 10

SNR 13.5 21.5

TABLE I. Parameters of a representative SBHB system labeled Fidu-
cial. The masses and spins of this system are compatible with
GW150914 [52]. The initial frequency is computed such that the
system is merging in 8 years from the start of LISA observations.
We consider two possible durations of the LISA mission: 4 and 10
years.

lowing we list all the systems we consider, specifying what
are the changes with respect to the Fiducial system and the la-
bel we give to each of them. For all other systems we consider
both mission durations unless specified. In Table II we list all
systems considered and their respective SNR.

1. Intrinsic Parameters

Unless specified we take tc = 8 years. In any case we com-
pute the initial frequency so that the system coalesces at tc.
Changing tc (or equivalently f0) amounts in shifting the stage
of the binary evolution at which LISA starts observing it. In
practice this will be completely random.

• Time to coalescence:

Earlier: tc = 20 years,

Later: tc = 2 years

• Chirp mass:

Heavy:Mc = 1.5Mc, f , q=q f , DL = 445 Mpc

LightMc =
Mc, f

1.5 , q=q f , DL = 150 Mpc

• Mass ratio:

q3: q = m1
m2
= 3,Mc =Mc, f

q8: q = m1
m2
= 8,Mc =Mc, f

5

• Spins:

Spinup: �1 = 0.95, �2 = 0.95

Spindown: �1 = �0.95, �2 = �0.95

Spinop12: �1 = 0.95, �2 = �0.95

Spinop21: �1 = �0.95, �2 = 0.95.

For the Heavy and Light systems we scaled the distance so
that and both have the same SNR than the Fiducial system in
the Tobs = 10 years case. Changing spins or mass ratio barely
a↵ects the SNR so we keep the same distance for those sys-
tems. Since the Earlier system merges in 2 years, increasing
the observation time has no impact on its PE.

2. Extrinsic parameters

Changes in extrinsic parameters do not a↵ect the time to
coalescence so all systems below have same intial frequency
than the Fiducial system.

• Sky localisation:

Polar: � = ⇡2 �
⇡
36 , � = � f

Equatorial: � = ⇡
36 , � = � f

• Inclination:

Edge-on: ◆ = ⇡2 �
⇡
36 , DL = 150 Mpc,

Tobs = 10 years

• Distance:

Close: DL = 190 Mpc

Far: DL = 350 Mpc

Very Far: DL = 500 Mpc.

The drop in SNR being very large for an almost edge-on
system, we decrease the distance of the Edge-on system to
sustain a reasonably high SNR. Furthermore in this case we
work only in the Tobs = 10 years case. The purpose of the
last variation, the one in distance, is to assess the impact of
the SNR on the PE. This also mimicks the e↵ect of changing
the noise curve. For the Close system we only consider the
Tobs = 4 years case and for the Far and Very Far systems we
only consider the Tobs = 10 years case.

B. Prior

Regarding the Bayesian analysis, we take our fiducial prior
to be flat in m1 and m2 with m1 � m2, flat in spin magnitude
between �1 and 1, flat in initial frequency, volume uniform
for the source location and flat in the source orientation, its
polarisation and its initial phase. We obtain the prior proba-
bility density function (PDF) in terms of the sampling param-
eters by computing the Jacobian of the transformation from
(m1,m2, �1, �2,DL) to (Mc, ⌘,�+, ��, log10(DL)) which gives:

Tobs = 4 years Tobs = 10 years

Fiducial 13.5 21.1

Earlier 10.3 17.2

Later 11.8 /

Heavy 12.8 20.9

Light 14.1 21.1

q3 13.5 21.1

q8 13.5 21.1

Spinup 13.5 21.1

Spindown 13.5 21.1

Spinop12 13.5 21.1

Spinop21 13.5 21.1

Polar 12.8 20.1

Equatorial 14.9 23.1

Edgeon / 14.7

Close 17.8 /

Far / 15.1

Very Far / 10.6

TABLE II. SNR of all systems considered. Di↵erent systems are
derived from the Fiducial system, varying few parameters at once.
We use the Full response.

p f (✓) =

8>>>>>>><
>>>>>>>:

N Mc⌘�11/5

DL
p

1�4⌘
if � 1  �1, �2, cos(◆), sin(�)  1

and 0.06  ⌘  0.25

0 otherwise.
(3.1)

Just like the evidence in Eq. (2.3), N acts only as a normal-
isation constant and thus it is of no importance for us. The
lower limit for ⌘ was set according to the maximum mass ra-
tio up to which PhenomD is calibrated (q = 16). We label this
prior Flatphys and unless specified this is the one we use in
our Bayesian analysis. We consider two additional priors:

• Flatsvol: volume uniform prior for spins

• Flatsampl: flat prior inMc, ⌘.

In the Flatsvol case we assume a volume uniform prior for
the spins and compute the resulting prior for their projection
on the orbital axis: p(�i) = 1

2 ln(|�i|). The Flatsvol PDF is:
p(✓) = p f (✓)p(�1)p(�2) where p f (✓) is given in Eq. (3.1).

The Flatsampl PDF is given by:

• Initial frequency (earlier/later)
• Mass (heavy light)
• Mass ratio (q=3, q=8)
• Spin configuration
• Sky position (polar/equatorial)
• Inclination and distance

From a fiducial system, vary: SNR

Time to coalescence: Tc = 8yrs
 Tobs=4years: slowly chirping
Tobs=10yrs: merger during 
observations

Note: SNR with 
‘Proposal’ noise curve, 
not ‘Requirement’ (50% 
margin)

Detection might 
be a challenge
[Moore&al]

Work led by Alexandre Toubiana at APC, in preparation



40

SBHB parameter estimation results 7

FIG. 2. Infered parameter distribution for the Fiducial system, both in the Tobs = 4 years case (blue) and the Tobs = 10 years case (orange).
The true parameters are indicated by black lines and squares. All parameters are given in the solar system barycenter frame.

the structure of correlation between intrinsic parameters and
then move to extrinsic parameters. Following this we provide
a comparison with Fisher matrices and then discuss how does
the PE when using the low frequency approximation for LISA
response.

A. Intrinsic parameters

One of the main features appearing in Fig. 2 is the strong
correlation between intrinsic parameters, in particular the one
between Mc and ⌘ and the large extent of these degenera-
cies when observing for 4 years only. This is due to the

limited evolution of the GW frequency: in 4 years of obser-
vation the Fiducial system spans a very narrow range from
f0 = 12.7 mHz to f4years = 16.5 mHz. To understand the con-
sequences of this we work on a simplified problem: we fix f0,
�+, �� and all extrinsic parameters to their injected values and
perform a PE onMc and ⌘ for the Fiducial system.

Since the GW frequencies changes so little, we do a Taylor
expansion of the phase around f0:

 ( f ) '  ( f0) +
d 
d f

�����
f0

( f � f0) +
1
2

d2 

d f 2

������
f0

( f � f0)2. (4.2)

From our convention on initial time, the stationary phase

q
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Time to coalescence: Tc = 8yrs 

Significant qualitative differences 
between Tobs = 4yrs and Tobs = 10yrs  
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Symmetric/antisymmetric spin combinations:
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SBHB parameter estimation results: masses and spin
7

FIG. 2. Infered parameter distribution for the Fiducial system, both in the Tobs = 4 years case (blue) and the Tobs = 10 years case (orange).
The true parameters are indicated by black lines and squares. All parameters are given in the solar system barycenter frame.

the structure of correlation between intrinsic parameters and
then move to extrinsic parameters. Following this we provide
a comparison with Fisher matrices and then discuss how does
the PE when using the low frequency approximation for LISA
response.

A. Intrinsic parameters

One of the main features appearing in Fig. 2 is the strong
correlation between intrinsic parameters, in particular the one
between Mc and ⌘ and the large extent of these degenera-
cies when observing for 4 years only. This is due to the

limited evolution of the GW frequency: in 4 years of obser-
vation the Fiducial system spans a very narrow range from
f0 = 12.7 mHz to f4years = 16.5 mHz. To understand the con-
sequences of this we work on a simplified problem: we fix f0,
�+, �� and all extrinsic parameters to their injected values and
perform a PE onMc and ⌘ for the Fiducial system.

Since the GW frequencies changes so little, we do a Taylor
expansion of the phase around f0:

 ( f ) '  ( f0) +
d 
d f

�����
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From our convention on initial time, the stationary phase
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From our convention on initial time, the stationary phase

The relevant spin combination 
observed is

Determining intrinsic parameters can 
depend strongly on the duration of 
observations (chirp/no chirp)

�PN =
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Leading spin-orbit combination 
in the phase at 1.5PN:

�PN
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Tobs = 10yrs
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SBHB parameter estimation results: sky position

Offset spherical angles, centered on 
injected signal: eliminate coordinate 
effects near the pole

The sky localization  is generally 
very good and very Gaussian

As a consequence of the length of the 
signal and of the LISA motion:

Signals near the ecliptic plane can 
show degeneracies in their localization

Example:

• Fiducial (SNR=13.5)
• Polar (SNR=12.8)
• Equatorial (SNR=14.9)

Tobs = 4yrs
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SBHB parameter estimation results: SNR and high-f
10

FIG. 6. Distribution of ⌘ and �+ for the Later system and the Fidu-
cial systems for both observation times. Since we observe the Later
system chirping, the determination of ⌘ and �+ is much better than
for the Fiducial system in the Tobs = 4 years case. But because
of its lower SNR, the posterior distribution still peaks at ⌘ = 0.25,
as an e↵ect of the prior contrarily to the Fiducial system in the
Tobs = 10 years case which peaks at the injected value indicated
by black lines and cross.

of the samples obtained for the Fiducial system and the shape
of the (⌘, �+) degeneracy is extremely well reproduced. This
correlation leads to the large extent of the (Mc, ⌘) degener-
acy in the full case compared to the model where only Mc
and ⌘ were allowed to vary. When observing for longer time,
the frequency evolves more and higher PN terms give relevant
contributions, allowing to break the degeneracy between ⌘ and
�PN .

In order to emphasise the di↵erence in the parameter esti-
mation as a function of the frequency range where a system
is observed, we compare how much information on the intrin-
sic parameters is gained through observations of the Earlier,
Fiducial and Later systems. We remind that the only di↵er-
ence between these systems is the initial frequency of observa-
tion which is chosen so that the system is merging in 20, 8 and
2 years respectively. We compute the KL divergence between
the marginalised posterior and the marginalised prior for each
intrinsic parameter. The smaller it is the less the likelihood is
informative about the parameter, meaning that our prior be-
liefs are stronger than the information provided by observa-
tion itself. Values are given in Table III. In the Earlier case
only the chirp mass shows a significant deviation from the
prior. In the Tobs = 4 years case, for all parameters the Later
system is the one for which the likelihood is the most infor-
mative although it leaves the band during the mission and we
observe it for a shorter period (less than 2 years). It is even

more informative that when observing the Earlier system for
10 years, despite its lower SNR. We repeated this analysis us-
ing the Flatsvol and Flatsampl priors for the Fiducial system.
For all choices of prior, the KL divergences are similar, prov-
ing the ⌘, �+ and �� distributions are prior dominated when
observing at low frequencies. In particular, the peaking of the
posterior distribution at ⌘ = 0.25 when Tobs = 4 years on Fig.
2 is an e↵ect of the prior as discussed in section III B. Due to
its smaller SNR, the posterior distribution of the Later system
also peaks at ⌘ = 0.25 but the error on ⌘ is much smaller than
for the Fiducial in the Tobs = 4 years as can be seen on Fig.
6. This suggests that the likelihood is informative enough to
reduce the width of the distribution but not enough to totally
overcome our prior beliefs. This is in good agreement with the
KL divergences of the marginalised ⌘ distribution for those
systems. Notice that KL divergences for spins are slightly
smaller when using the Flatsvol prior, meaning that the poste-
rior is even more dominated by the prior. It is due to the strong
peaking of this prior distribution at �+ = �� = 0 as discussed
in section III B. This analysis establishes that the most impor-
tant factor in the PE of SBHBs is the frequency range where
they are observed and not the SNR or observation time per se.

Although the frequency is slowly evolving, the signal is
far from being monochromatic as it is the case for galactic
binaries (e.g. double withe dwarf binaries). As an element
of comparison, using the quadrupole formula to compute the
frequency derivative at f0, for the Earlier system we find
ḟ0 = 1.9 ⇥ 10�11 Hz2 which is 4 orders of magnitude higher
than the fastest evolving galactic binaries [Alex: from LDC
catalogue, which reference?] . Thus, despite the strong cor-
relation between intrinsic parameters, the chirp mass is always
well measured, within 10�4% for the Earlier system when ob-
serving for 4 years (and below 10�6% for chirping systems)
which is much better than current LIGO/VIRGO measure-
ments [2]. In Table IV we give the 90% confidence inter-
vals (CI) on parameters of the Fiducial system. Whenever
the marginalised distribution of a given parameter is leaning
against the upper (lower) boundary of the prior as for m1 (m2)
we define the 90% CI as the the value between the 0.1 and
1 quantile (0 and 0.9). Otherwise, in all other situations we
define the 90% CI as the values between the 0.05 and 0.95
quantiles. In both cases we report the median as a point esti-
mate.

The tight constraint onMc leads to the banana shape corre-
lation between m1 and m2 seen on the top right part of Fig. 2.
Because two distinct combinations of masses are needed in or-
der to determine individual masses, they can only be measured
if we see the system chirping. In that case they are measured
within 20 � 30%. For non chirping systems the error on indi-
vidual masses is above 100%. Systems with higher mass ratio
give a similar error on the chirp mass compared the Fiducial
system but a better determination of the mass ratio. This is be-
cause of the negative powers of ⌘ in the PN expansion, since
higher mass ratios correspond to lower values of ⌘, enhancing
the contribution of ⌘ to the phase. For an observation time of
4 years the error on each mass is still of order of 100% but for
an observation time of 10 years, it is below 10% and 1% for
the q3 and q8 system respectively. As discussed above, when

Observing high frequencies matters in 
measuring intrinsic parameters

Determination of intrinsic parameters 
differs strongly for Tobs=4yrs and 
Tobs=10yrs

Is it due to the SNR increase, or to the 
signal reaching higher frequencies 
(more affected by subdominant PN 
terms) ?

Example:

• Fiducial Tobs=4yrs (SNR=13.5)

• Fiducial Tobs=10yrs (SNR=21.1)

• ‘Later’ Tc=2yrs (SNR=11.8)

f = 12.1� 16.5 mHz
<latexit sha1_base64="Z2kcwt54VkOUwYYIOyYE4bTPNBE=">AAACCHicbVDLSsNAFJ34rPUVdenCwSK4MST1VRCh4KbLCvYBTSiT6aQdOpOEmYlQQ5du/BU3LhRx6ye482+ctFlo64ELh3Pu5d57/JhRqWz721hYXFpeWS2sFdc3Nre2zZ3dpowSgUkDRywSbR9JwmhIGooqRtqxIIj7jLT84U3mt+6JkDQK79QoJh5H/ZAGFCOlpa55EMBr6JQtB55A58I6h+4VdDlSA8FTXnsYd82SbdkTwHni5KQEctS75pfbi3DCSagwQ1J2HDtWXoqEopiRcdFNJIkRHqI+6WgaIk6kl04eGcMjrfRgEAldoYIT9fdEiriUI+7rzuxGOetl4n9eJ1FBxUtpGCeKhHi6KEgYVBHMUoE9KghWbKQJwoLqWyEeIIGw0tkVdQjO7MvzpKlTPLXKt2elaiWPowD2wSE4Bg64BFVQA3XQABg8gmfwCt6MJ+PFeDc+pq0LRj6zB/7A+PwBqmuWmg==</latexit>

f = 12.1 mHz ! merger
<latexit sha1_base64="n4DBox/b8irHd93wR1dzUWyEmao=">AAACIHicbVBNS8NAEN3Ur1q/qh69LBbBU0mq0IIIBS89VrAf0JSy2U7apbtJ2N0oNfSnePGvePGgiN7017hpe7CtDwYe780wM8+LOFPatr+tzNr6xuZWdju3s7u3f5A/PGqqMJYUGjTkoWx7RAFnATQ00xzakQQiPA4tb3ST+q17kIqFwZ0eR9AVZBAwn1GijdTLl318jZ1S0cHuFXYF0UMpElF7nGBXssFQEynDhwUP5ADkpJcv2EV7CrxKnDkpoDnqvfyX2w9pLCDQlBOlOo4d6W5CpGaUwyTnxgoiQkdkAB1DAyJAdZPpgxN8ZpQ+9kNpKtB4qv6dSIhQaiw805meqZa9VPzP68Tar3QTFkSxhoDOFvkxxzrEaVq4zyRQzceGECqZuRXTIZGEapNpzoTgLL+8Spom3Yti6fayUK3M48iiE3SKzpGDyqiKaqiOGoiiJ/SC3tC79Wy9Wh/W56w1Y81njtECrJ9f8CyiTg==</latexit>

f = 21.4 mHz ! merger
<latexit sha1_base64="nWqskczKpI/KQo7ZuBG+v5tIfCI=">AAACIHicbVDLSgNBEJz1GeNr1aOXwSB4CrsxkIAIAS85RjAPyIYwO+lNhszsLjOzSlzyKV78FS8eFNGbfo2Tx8EkFjQUVd10d/kxZ0o7zre1tr6xubWd2cnu7u0fHNpHxw0VJZJCnUY8ki2fKOAshLpmmkMrlkCEz6HpD28mfvMepGJReKdHMXQE6YcsYJRoI3XtUoCvccHNF7F3hT1B9ECKVFQfx9iTrD/QRMroYcED2Qc57to5J+9MgVeJOyc5NEeta395vYgmAkJNOVGq7Tqx7qREakY5jLNeoiAmdEj60DY0JAJUJ50+OMbnRunhIJKmQo2n6t+JlAilRsI3nZMz1bI3Ef/z2okOyp2UhXGiIaSzRUHCsY7wJC3cYxKo5iNDCJXM3IrpgEhCtck0a0Jwl19eJY1C3r3MF26LuUp5HkcGnaIzdIFcVEIVVEU1VEcUPaEX9IberWfr1fqwPmeta9Z85gQtwPr5BfVGolE=</latexit>
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Conclusions and outlook

Outlook
• Inclusion of spins and precession
• Optimize samplers for known degeneracies (MCMC jump proposals)
• Explore the parameter space (from most massive MBHB to IMBHB)
• Explore the effect of eccentricity
• Make the link to instrumental requirements
• Explore joint LISA/LIGO observations
• Assess waveform model requirements: how accurate need the waveforms to be ?
• Are these methods applicable to EMRIs ?

Highlights
• Developed a generic approach to the Fourier domain response of LISA
• Developed fast likelihood enabling zero-noise Bayesian explorations of high-SNR or 

long signals
• Explored the LISA parameter recovery of MBHB signals
• Analytic understanding of degeneracies in the MBHB likelihood when including only the 

dominant quadrupolar harmonic
• Shown the crucial role of higher modes in breaking degeneracies for MBHBs
• Shown that high-frequency effects in the response are crucial in breaking degeneracies 

when accumulating signal with time
• Explored the LISA parameter recovery of SBHB signals with aligned spins
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Higher-order corrections

Expansion of f-dependent 
convolution

Timescales and error estimates

Amplitude:

Delays:

Quadratic phase term:
Evaluation on a stencil
cf SUA [Klein&al 2014]
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Evaluation through a 
change of time variable

Amplitude timescales: TA1 “ 1
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Error measures: estimates for the 
magnitude of corrections
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FIG. 4. Error estimates as defined in (52), for an equal-mass, non-spinning system and for total masses M = 107M�, 10
4M�

and 102M�. The top row corresponds to the orbital delay part of the response (54), and the lower row shows the LISA-centered
constellation response (55). The error measures ✏ 2 for the phase corrections, ✏A1 for the amplitude, ✏d for the delay are shown
from left to right. The central line and interval are the mean and 1� standard deviation of the logarithm of ✏ computed with
numerical derivatives over 400 random values for the position in the sky, inclination and polarization. The starting frequency is
set by an observation time of �t = 10yrs before merger. We overlay in dashed the analytical estimates obtained from from (70)
and (67)-(68).

(orbital radius R or armlength L) as well as the presence
of a time-varying prefactor F (t) both a↵ect the result.
When estimating the magnitude of the relevant deriva-
tives of G, we must also take into account dimensionless
delay factors of the type 2⇡fd.

We start with the orbital response, which takes the
form of a pure delay G0(f, t) = e

�2i⇡fd0(t), and obtain

1

G0

@tG0 = �2i⇡fḋ0 , (65a)

1

G0

@ttG0 = �2i⇡fd̈0 � 4⇡2
f
2
ḋ
2

0
, (65b)

1

G0

@tfG0 = �2i⇡ḋ0 � 4⇡2
fd0ḋ0 . (65c)

Since the one-arm constellation response (61)-(63) is
analogous to a discrete time derivative of the signal, it is
appropriate to keep explicit an overall factor f reflecting
this structure. Hence we write symbolically GL(f, t) ⇠

fF (t)e�2i⇡fdL(t), where dL represents a delay term and
F (t) represents the rest of the geometric factors in (63),
for which we momentarily ignore the f -dependence. This
gives

1

GL
@tGL ⇠ �2i⇡fḋL +

Ḟ

F
, (66a)

1

GL
@ttGL ⇠ �2i⇡fd̈L � 4⇡2

f
2
ḋ
2

L � 2i⇡fḋL
Ḟ

F
�

Ḟ
2

F 2
+

F̈

F
,

(66b)

1

GL
@tfGL ⇠ �4i⇡ḋL � 2i⇡dL

Ḟ

F
� 4⇡2

fdLḋL +
1

f

Ḟ

F
.

(66c)

In order to obtain simple scalings for the error esti-
mates, we will make the replacements @

n
t d ⇠ ⌦n

0
d as

well as @
n
t F ⇠ ⌦n

0
F . These scalings are only approx-

imate as di↵erent orientation angles can lead to signif-
icant variations. To represent the average of the geo-
metric projection factor of the gravitational wave prop-
agation vector on the plane of the orbit, we will assume
d0 ⇠ Re↵ ⌘ 2R/⇡. For the constellation delays, we sim-
ply take dL ⇠ L as there projection e↵ects can lead to
variations in both ways. The resulting estimates for the
magnitude of these derivatives are

����
1

G0

@tG0

���� ⇠ 2⇡f⌦0Re↵ , (67a)
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, (67b)
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FD response error estimates - chirping

Error estimates: magnitude of the first term 
neglected in the perturbative series (averaged)

10 years signal
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FD response errors - M1e7/M1e2 orbital

Errors: FDResponse[h] vs FFT[TDResponse[IFFT[h]] 18

FIG. 5. Transfer function and residual for the orbital re-
sponse (54), for an equal-mass system with M = 107M�.
The first and second panels show the amplitude and phase of
the transfer function. The bottom panel shows the relative
modulus of the residual of the perturbative treatment (50),
with the color indicating the order of the approximation, com-
pared to a numerical FFT. The starting frequency is set by
the LISA sensitivity band at 10�5Hz, corresponding to 3.8yr.
The thick and thin vertical lines indicate the merger and ring-
down frequencies.

in applications. This treatment is referred to as the fast-
slow decomposition, or heterodyning approach. If the
gravitational wave signal extends only on the narrow fre-
quency band f 2 [f⇤, (1 + ⌘)f⇤] with ⌘ ⌧ 1, then scal-
ing out a carrier frequency of the signal by multiplying
by e

�2i⇡f⇤t will eliminate most of the time variability,
allowing to process the signal through the time-domain
response and to take a FFT with a Nyquist frequency
shifted from (1 + ⌘)f⇤ to ⌘f⇤, i.e. with a much smaller
number of samples. This multiplication is simply equiv-
alent to a shift in frequency domain, which can be re-
stored after the numerical FFT has been computed. The
e�ciency of this approach is contingent to the smallness
of ⌘. Galactic binaries are extremely close to monochro-
matic [53], and this quantity can be as low as 10�6

�10�7.
For SOBH systems, however, ⌘ will take a continuous set
of values from roughly 10�4 to 5. Although the systems
for which ⌘ is the largest are also the easiest to treat with
the perturbative formalism of Sec III, we propose here
yet a third method, based on a discrete Fourier comb,

FIG. 6. Transfer function and residual for the orbital re-
sponse (54), for an equal-mass system with M = 102M�. The
panels are as in Fig. 5. The starting frequency corresponds
to 10 years before merger. The ending frequency is set by the
LISA sensitivity band at 1Hz, and the merger is out of band.
The jump in the residuals for {N : 3|A : 1|d : 1} is due to the
fact that we split the band in two, with two di↵erent sampling
rates, for the FFT; it shows that, at this level, the details of
the conditioning for the FFT start to cause numerical errors
in the reference transfer function.

making sure we can cover the intermediate ground of
slowly-chirping systems with a large ⌘. We leave for the
future a more detailed study of SOBH systems as a pop-
ulation, and the investigation of the precise boundaries
and overlap areas of the three methods (heterodyning,
Fourier comb, perturbative) as well as their respective
computational costs.
The Fourier comb approach we propose here exploits

the fact that, in the LISA case, the modulations and
delays entering (3) are periodic, with a period of one
year and a frequency f0 = ⌦0/2⇡ = 1/yr ' 3.2⇥10�8Hz.
For any given frequency f , G(f, t) is periodic in time, so
that (17) becomes a discrete Fourier series

G(f, t) =
X

n2Z
cn(f)e

�in⌦0t , (71)

with frequency-dependent discrete Fourier coe�cients
(that we will also call comb coe�cients) given by the
integrals (we recall our Fourier convention (A1))

cn(f) =
⌦0

2⇡

Z 2⇡
⌦0

0

dt ein⌦0tG(f, t) . (72)
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with the color indicating the order of the approximation, com-
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the LISA sensitivity band at 10�5Hz, corresponding to 3.8yr.
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FIG. 6. Transfer function and residual for the orbital re-
sponse (54), for an equal-mass system with M = 102M�. The
panels are as in Fig. 5. The starting frequency corresponds
to 10 years before merger. The ending frequency is set by the
LISA sensitivity band at 1Hz, and the merger is out of band.
The jump in the residuals for {N : 3|A : 1|d : 1} is due to the
fact that we split the band in two, with two di↵erent sampling
rates, for the FFT; it shows that, at this level, the details of
the conditioning for the FFT start to cause numerical errors
in the reference transfer function.

making sure we can cover the intermediate ground of
slowly-chirping systems with a large ⌘. We leave for the
future a more detailed study of SOBH systems as a pop-
ulation, and the investigation of the precise boundaries
and overlap areas of the three methods (heterodyning,
Fourier comb, perturbative) as well as their respective
computational costs.
The Fourier comb approach we propose here exploits

the fact that, in the LISA case, the modulations and
delays entering (3) are periodic, with a period of one
year and a frequency f0 = ⌦0/2⇡ = 1/yr ' 3.2⇥10�8Hz.
For any given frequency f , G(f, t) is periodic in time, so
that (17) becomes a discrete Fourier series

G(f, t) =
X

n2Z
cn(f)e

�in⌦0t , (71)

with frequency-dependent discrete Fourier coe�cients
(that we will also call comb coe�cients) given by the
integrals (we recall our Fourier convention (A1))

cn(f) =
⌦0

2⇡

Z 2⇡
⌦0

0

dt ein⌦0tG(f, t) . (72)

M “ 107Md M “ 102Md
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Errors: FDResponse[h] vs FFT[TDResponse[IFFT[h]]

M “ 107Md M “ 102Md
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FIG. 7. Transfer function and residual for the constellation re-
sponse y132 (55), for an equal-mass system with M = 107M�.
The top panel shows the real and imaginary parts of the trans-
fer function, rescaled by the overall scaling ⇡fL of the re-
sponse at low frequencies, while the bottom panel shows the
relative residuals compared to an FFT. The frequencies are
the same as in Fig. 5.

FIG. 8. Transfer function and residual for the constellation re-
sponse y132 (55), for an equal-mass system with M = 102M�.
The top panel shows the real and imaginary parts of the trans-
fer function, without the rescaling of Fig. 7. The bottom
panels shows the residuals normalized by (64) to avoid zero-
crossings. The frequencies are the same as in Fig. 6, and the
discontinuity in the residuals for {N : 3|A : 1|d : 1} is again
due to the conditioning of the FFT.

FIG. 9. Extent of the Fourier-domain comb entering the con-
volution (74), determined from the criterion (75) with trun-
cation levels ⌘ = 10�12, 10�6, 10�3. Blue corresponds to the
orbital delay comb coe�cients c0n given by (73), and red to
the constellation comb cLn for the response (62). The result
is shown after averaging over 100 random orientation angles.
Most of the slowly-chirping systems considered here will have
f . 10�2 Hz.

FIG. 10. Transfer function and residual for the orbital delay
d0 (60), for an SOBH with ✏ 2 ⇠ 1 for the orbital response.
The frequency band corresponds to 4 years of observation
for this system with M = 50M�, �t = 200 yr away from
merger. The top panels show the transfer function amplitude
and phase at various orders of approximation in (50), with the
numerical result of the FFT in black and the comb result (74)
in green. The bottom panel shows the relative residuals with
respect ot the FFT.
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in green. The bottom panel shows the relative residuals with
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FIG. 7. Transfer function and residual for the constellation re-
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fer function, rescaled by the overall scaling ⇡fL of the re-
sponse at low frequencies, while the bottom panel shows the
relative residuals compared to an FFT. The frequencies are
the same as in Fig. 5.

FIG. 8. Transfer function and residual for the constellation re-
sponse y132 (55), for an equal-mass system with M = 102M�.
The top panel shows the real and imaginary parts of the trans-
fer function, without the rescaling of Fig. 7. The bottom
panels shows the residuals normalized by (64) to avoid zero-
crossings. The frequencies are the same as in Fig. 6, and the
discontinuity in the residuals for {N : 3|A : 1|d : 1} is again
due to the conditioning of the FFT.

FIG. 9. Extent of the Fourier-domain comb entering the con-
volution (74), determined from the criterion (75) with trun-
cation levels ⌘ = 10�12, 10�6, 10�3. Blue corresponds to the
orbital delay comb coe�cients c0n given by (73), and red to
the constellation comb cLn for the response (62). The result
is shown after averaging over 100 random orientation angles.
Most of the slowly-chirping systems considered here will have
f . 10�2 Hz.

FIG. 10. Transfer function and residual for the orbital delay
d0 (60), for an SOBH with ✏ 2 ⇠ 1 for the orbital response.
The frequency band corresponds to 4 years of observation
for this system with M = 50M�, �t = 200 yr away from
merger. The top panels show the transfer function amplitude
and phase at various orders of approximation in (50), with the
numerical result of the FFT in black and the comb result (74)
in green. The bottom panel shows the relative residuals with
respect ot the FFT.

cnpfq “ ⌦0

2⇡

ª 2⇡
⌦0

0
dt ein⌦0tGpf, tq

Slowly-chirping systems

• Some SOBHs will be >100-1000 years away from 
merger

• Quasi-monochromatic limit: breaks separation of 
timescale, in this limit analogous to galactic binaries

Handling the response

• Heterodyning (narrow frequency band)

• Response is periodic: convolution with a small 
frequency-dependent Fourier comb 

s̃pfq “
ÿ

nPZ
cnpf ´ nf0qh̃pf ´ nf0q
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For the constellation part of response (55), treated sep-
arately from the delay (60), we write

F
L
slr(t) =

1

2

1

1� k · nl(t)
nl(t) · P`m · nl(t) ,
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⌘
. (61)

The superscript L indicates that the orbital delay (60) is
not included. Since we also assume the rigid approxima-
tion for the constellation, where the armlengths are fixed,
a particular simplification occurs when combining these
individual delays, thanks to the relation p

L
r � p

L
s = Lnl:

G
L
slr(f, t) =

i⇡fL

2
sinc [⇡fL (1� k · nl)]

· exp
⇥
i⇡f

�
L+ k ·

�
p
L
1
+ p

L
2

��⇤
nl · P`m · nl ,

(62)

with all time-dependent vectors evaluated at t. In the
local approximation (22), the Fourier-domain transfer
function then reads

T
L,local
slr (f) = G

L
slr(f, tf ) . (63)

For plotting purposes, we will also define

T
L
slr(f) =

i⇡fL

2
nl · P`m · nl(tf ) (64)

which will serve as an estimate for the enveloppe func-
tion of the response, devoid of the zero-crossings at high
frequencies of the sinc term in (62).

Note that, if the corrections of Sec. IIIG, for non-
negligible ḋ, are included for the constellation delays, the
transfer function will not have this simple form anymore,
as ḋ will have a di↵erent velocity-dependent expression
for the sending and receiving spacecraft. One must then
separately handle ds,L and dr in (61) to compute the
corrections.

The orbital response (59)-(60) takes a simple analytic
form, but the phase contribution of this delay is signifi-
cant across most of the frequency band and can be large
for f � fR.

The constellation response (62)-(63) can be interpreted
as the Fourier-domain translation of a discrete derivative
taken on the waveform. The leading factor in (62) shows
that the amplitude of the response is proportional to f

in the low-frequency limit f ⌧ fL, where the other fac-
tors are essentially unity. For f & fL, the sinc and the
phase of the exponential generate additional structure
in the response, including zero-crossings when the pro-
jected armlength is an integer number of wavelengths.
From (63), an expansion for small f ⌧ fL yields back a
Fourier-domain analog of the low-frequency approxima-
tion of the response [33, 44], which is equivalent to having
two LIGO-type interferometers turned by ⇡/4 and set in
motion.
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FIG. 3. [To be checked and redone in matplotlib] [remove
grey shading] [add labels to contours] Contour levels for the
analytical estimate of the error measure ✏ 2 at the starting
frequency, as a function of chirp mass Mc and time to co-
alescence �t. Blue corresponds to the orbital response and
red to the constellation response. The colored shaded areas
indicate regions where ✏ 2 � 1, where the perturbative for-
malism is expected to break down. In the region to the right
of the black line, fstart given in (69) is lower than the lowest
in-band frequency fmin = 10�5 Hz, so that the signal starts
at fmin and ✏ 2 becomes independent of �t.

For analysis of the response we need a concrete set
of gravitational waveforms. We will use the PhenomD
model [14, 15], which provides Fourier-domain inspiral-
merger-ringdown waveforms for aligned spins. We refer
to App. E for a brief discussion of the prospects for ap-
plying our formalism for the LISA response to precessing
Fourier-domain waveforms.

B. Estimates for the magnitude of higher-order
corrections

Using the approximate error measures ✏ introduced
in (52), we will now estimate, for each type of correc-
tion (phase, amplitude, delay), the size of errors in the
transfer function.
To obtain an order-of-magnitude estimate for the er-

ror measures ✏ (52), we will use the Newtonian-order ex-
pressions (35) for the signal-dependent timescales Tf and
TA1. Higher-order amplitude terms beyond the first one
in (27), as well as phase terms beyond the second deriva-
tive in (23a), will turn out to be negligible in the LISA
case and we will ignore them in the following. It is useful
to separate the orbital response (59) and the constella-
tion response (63), as the di↵erent baseline of the delays
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FIG. 7. Transfer function and residual for the constellation re-
sponse y132 (55), for an equal-mass system with M = 107M�.
The top panel shows the real and imaginary parts of the trans-
fer function, rescaled by the overall scaling ⇡fL of the re-
sponse at low frequencies, while the bottom panel shows the
relative residuals compared to an FFT. The frequencies are
the same as in Fig. 5.

FIG. 8. Transfer function and residual for the constellation re-
sponse y132 (55), for an equal-mass system with M = 102M�.
The top panel shows the real and imaginary parts of the trans-
fer function, without the rescaling of Fig. 7. The bottom
panels shows the residuals normalized by (64) to avoid zero-
crossings. The frequencies are the same as in Fig. 6, and the
discontinuity in the residuals for {N : 3|A : 1|d : 1} is again
due to the conditioning of the FFT.

FIG. 9. Extent of the Fourier-domain comb entering the con-
volution (74), determined from the criterion (75) with trun-
cation levels ⌘ = 10�12, 10�6, 10�3. Blue corresponds to the
orbital delay comb coe�cients c0n given by (73), and red to
the constellation comb cLn for the response (62). The result
is shown after averaging over 100 random orientation angles.
Most of the slowly-chirping systems considered here will have
f . 10�2 Hz.

FIG. 10. Transfer function and residual for the orbital delay
d0 (60), for an SOBH with ✏ 2 ⇠ 1 for the orbital response.
The frequency band corresponds to 4 years of observation
for this system with M = 50M�, �t = 200 yr away from
merger. The top panels show the transfer function amplitude
and phase at various orders of approximation in (50), with the
numerical result of the FFT in black and the comb result (74)
in green. The bottom panel shows the relative residuals with
respect ot the FFT.
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FIG. 11. Same as Fig. 10, but for an SOBH with ✏ 2 ⇠ 7
for the orbital response. The frequency band corresponds
to 4 years of observation for this system with M = 15M�,
�t = 1500 yr away from merger. The perturbative treatment
breaks down in this case, with errors of order 1.

FIG. 12. Transfer function and residual for the constellation
response y132 (62), for the same SOBH as in Fig. 10. Here
✏ 2 ⇠ 0.01 for the constellation part of the response. The
top panel shows the real and imaginary part of the transfer
function.

FIG. 13. Transfer function and residual for the constellation
response y132 (62), for the same SOBH as in Fig. 11. Here
✏ 2 ⇠ 0.1 for the constellation part of the response. The
top panel shows the real and imaginary part of the transfer
function.

For slowly-chirping systems, the orbital-delay part of the
response gives a transfer function that has significant
structure, by contrast with fast-chirping systems where it
reduces essentially to an extra phase contribution. Thus,
in practice this approach is to be applied to G(f, t) repre-
senting the full response, orbital delay and constellation
modulation.
For illustration purposes, however, we will keep the or-

bital and constellation response separated in the follow-
ing. In the case of the orbital delay, with G0(f, t) given
by (58) and (60), the particularly simple expression of
the delay gives an analytic expression for the coe�cients
c
0
n in terms of Bessel functions of the first kind, as

c
0

n = i
n
e
in�

Jn [�2⇡fR cos�] . (73)

By contrast, for the constellation response (or for the
full response), to our knowledge the coe�cients c

L
n do

not admit such a simple close-form expression, and they
must be computed numerically using the integrand given
by (62). Truncating (71) to a finite order N , this com-
putation reduces to an FFT and the cn coe�cients are
given by (A13) and (A14).
Inserting (71) into the convolution (16) leads to the

following generalized discrete convolution:

s̃(f) =
X

n2Z
cn(f � nf0)h̃(f � nf0) . (74)

Thus, computing the Fourier-domain response now re-
quires to convolve the signal with a discrete comb with
frequency-dependent coe�cients cn. In practice, this sum

M “ 15Md, �t “ 1500yr, ✏0 2 „ 7M “ 50Md, �t “ 200yr, ✏0 2 „ 1
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�t = 1500 yr away from merger. The perturbative treatment
breaks down in this case, with errors of order 1.
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✏ 2 ⇠ 0.01 for the constellation part of the response. The
top panel shows the real and imaginary part of the transfer
function.
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✏ 2 ⇠ 0.1 for the constellation part of the response. The
top panel shows the real and imaginary part of the transfer
function.
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Figure 12. The predictions of our model (in the light-seed scenario) for the distribution of mass ratios q = Mbh,2/Mbh,1 (whereMbh,2 ≤ Mbh,1) in MBH
mergers, as a function of redshift and in different mass ranges.
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Figure 13. The same as in Fig. 12, but in the heavy-seed scenario.

first and give rise to spheroids by instabilities and major merg-
ers, predicts the presence of a significant number of outliers in
theMbh − σ andMbh −Mb relations, while MBHs settle on the
Mbh − σ andMbh −Mb relations earlier in the case of this “two-
phase” model (see Cook et al. (2010b)). This is because spheroidal
structures form first, and as a result of radiation drag they feed the
MBHs at higher redshifts than in the “standard” model. Clearly, in
such a scenario one does not have high-redshift mergers between
galaxies with little or no bulges, and therefore the ejection rate of
black-hole seeds should be significantly reduced. Also, the earlier
growth of the MBHs may boost the event rates for LISA/SGO or
eLISA/NGO in the light-seed scenario. We will explore in detail
the effects of this alternative galaxy-formation model on the MBH
mergers and evolution in a future paper.

Finally, as mentioned in the introduction, the results of this
section depend on our assumption that the MBH spins gets aligned
by gravitomagnetic torques in gas-rich environments. However, due
to processes such as star formation and feedback in the circumnu-
clear disk (Dotti et al. 2010a; Maio et al. 2012) or clump forma-
tion in high-z disk galaxies (Bournaud et al. 2011; Dubois et al.
2011), this alignment is likely to be only partial, which may result
in higher ejection rates for the MBHs resulting from mergers.

5 THE EVOLUTION OF THEMBH SPINS

As a final application of our model, we study the redshift
evolution of the MBH spins. These predictions will be read-
ily testable by LISA/SGO or eLISA/NGO, which will mea-
sure the black-hole masses and spins with astonishing ac-
curacy (∼ 10−3 for the masses and 10−2 for the spins,
see Berti, Buonanno, & Will (2005); Lang & Hughes (2006, 2007,
2008); Lang, Hughes, & Cornish (2011)) and without the system-

atic uncertainties typically affecting electromagnetic (e.g. X-ray)
determinations.

In Figs. 14 (light-seed scenario) and 15 (heavy-seed scenario),
we present results for the distribution of masses and spins of the
MBHs residing in isolated galaxies or in the central galaxies of
groups or clusters (i.e., we do not consider the MBHs residing
in satellite galaxies), at redshifts ranging from z = 7 to z = 0.
The color code represents the log10 of the density of MBHs per
unit (logarithmic) mass and unit spin, log10(dφbh[Mpc−3]/da) =
log10(d

2nbh[Mpc−3]/(d log10 Mbh[M⊙] da))) . As can be seen,
in the light-seed scenario, already at z = 7 the MBH distribution
has been skewed towards large spins from the initial uniform spin
distribution of the seeds (still visible at Mseed = 150M⊙). This
is because at high redshifts, where the AGN feedback is still inef-
fective and the MBHs small, large amounts of gas are present in
galactic nuclei, and the MBH spins grow as a result of wet, spin-
aligned mergers (cf. Sec. 4) and most importantly because accre-
tion onto the MBHs is coherent and spins them up (cf. Sec. 2.2.4).
We stress, as already mentioned in the introduction, that effects
such as star formation and feedback in the circumnuclear disk,
or the formation of clumps in high-redshift disk galaxies fed by
cold streams, may at least partially randomize the accretion flows
in gas-rich environments. As a result, the large spins abh ∼ 1
shown in Figs. 14 and 15 at high redshift may be substantially re-
duced (e.g. Maio et al. (2012) show that for quasars in merger rem-
nants, sustained accretion results asymptotically in spins parame-
ters abh ∼ 0.7− 0.9).

At smaller redshifts this trends gets modified because the cold
gas in the nuclear regions of galaxies becomes scarcer, hence merg-
ers tend to happen in dry environments (cf. Sec. 4) and accre-
tion turns chaotic. Chaotic accretion, in particular, appears to be
the main driving force behind the spin evolution in this phase, as
can be seen from the appearance of a large number of MBHs with
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first and give rise to spheroids by instabilities and major merg-
ers, predicts the presence of a significant number of outliers in
theMbh − σ andMbh −Mb relations, while MBHs settle on the
Mbh − σ andMbh −Mb relations earlier in the case of this “two-
phase” model (see Cook et al. (2010b)). This is because spheroidal
structures form first, and as a result of radiation drag they feed the
MBHs at higher redshifts than in the “standard” model. Clearly, in
such a scenario one does not have high-redshift mergers between
galaxies with little or no bulges, and therefore the ejection rate of
black-hole seeds should be significantly reduced. Also, the earlier
growth of the MBHs may boost the event rates for LISA/SGO or
eLISA/NGO in the light-seed scenario. We will explore in detail
the effects of this alternative galaxy-formation model on the MBH
mergers and evolution in a future paper.

Finally, as mentioned in the introduction, the results of this
section depend on our assumption that the MBH spins gets aligned
by gravitomagnetic torques in gas-rich environments. However, due
to processes such as star formation and feedback in the circumnu-
clear disk (Dotti et al. 2010a; Maio et al. 2012) or clump forma-
tion in high-z disk galaxies (Bournaud et al. 2011; Dubois et al.
2011), this alignment is likely to be only partial, which may result
in higher ejection rates for the MBHs resulting from mergers.

5 THE EVOLUTION OF THEMBH SPINS

As a final application of our model, we study the redshift
evolution of the MBH spins. These predictions will be read-
ily testable by LISA/SGO or eLISA/NGO, which will mea-
sure the black-hole masses and spins with astonishing ac-
curacy (∼ 10−3 for the masses and 10−2 for the spins,
see Berti, Buonanno, & Will (2005); Lang & Hughes (2006, 2007,
2008); Lang, Hughes, & Cornish (2011)) and without the system-

atic uncertainties typically affecting electromagnetic (e.g. X-ray)
determinations.

In Figs. 14 (light-seed scenario) and 15 (heavy-seed scenario),
we present results for the distribution of masses and spins of the
MBHs residing in isolated galaxies or in the central galaxies of
groups or clusters (i.e., we do not consider the MBHs residing
in satellite galaxies), at redshifts ranging from z = 7 to z = 0.
The color code represents the log10 of the density of MBHs per
unit (logarithmic) mass and unit spin, log10(dφbh[Mpc−3]/da) =
log10(d

2nbh[Mpc−3]/(d log10 Mbh[M⊙] da))) . As can be seen,
in the light-seed scenario, already at z = 7 the MBH distribution
has been skewed towards large spins from the initial uniform spin
distribution of the seeds (still visible at Mseed = 150M⊙). This
is because at high redshifts, where the AGN feedback is still inef-
fective and the MBHs small, large amounts of gas are present in
galactic nuclei, and the MBH spins grow as a result of wet, spin-
aligned mergers (cf. Sec. 4) and most importantly because accre-
tion onto the MBHs is coherent and spins them up (cf. Sec. 2.2.4).
We stress, as already mentioned in the introduction, that effects
such as star formation and feedback in the circumnuclear disk,
or the formation of clumps in high-redshift disk galaxies fed by
cold streams, may at least partially randomize the accretion flows
in gas-rich environments. As a result, the large spins abh ∼ 1
shown in Figs. 14 and 15 at high redshift may be substantially re-
duced (e.g. Maio et al. (2012) show that for quasars in merger rem-
nants, sustained accretion results asymptotically in spins parame-
ters abh ∼ 0.7− 0.9).

At smaller redshifts this trends gets modified because the cold
gas in the nuclear regions of galaxies becomes scarcer, hence merg-
ers tend to happen in dry environments (cf. Sec. 4) and accre-
tion turns chaotic. Chaotic accretion, in particular, appears to be
the main driving force behind the spin evolution in this phase, as
can be seen from the appearance of a large number of MBHs with
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Figure 13. The same as in Fig. 12, but in the heavy-seed scenario.

first and give rise to spheroids by instabilities and major merg-
ers, predicts the presence of a significant number of outliers in
theMbh − σ andMbh −Mb relations, while MBHs settle on the
Mbh − σ andMbh −Mb relations earlier in the case of this “two-
phase” model (see Cook et al. (2010b)). This is because spheroidal
structures form first, and as a result of radiation drag they feed the
MBHs at higher redshifts than in the “standard” model. Clearly, in
such a scenario one does not have high-redshift mergers between
galaxies with little or no bulges, and therefore the ejection rate of
black-hole seeds should be significantly reduced. Also, the earlier
growth of the MBHs may boost the event rates for LISA/SGO or
eLISA/NGO in the light-seed scenario. We will explore in detail
the effects of this alternative galaxy-formation model on the MBH
mergers and evolution in a future paper.

Finally, as mentioned in the introduction, the results of this
section depend on our assumption that the MBH spins gets aligned
by gravitomagnetic torques in gas-rich environments. However, due
to processes such as star formation and feedback in the circumnu-
clear disk (Dotti et al. 2010a; Maio et al. 2012) or clump forma-
tion in high-z disk galaxies (Bournaud et al. 2011; Dubois et al.
2011), this alignment is likely to be only partial, which may result
in higher ejection rates for the MBHs resulting from mergers.

5 THE EVOLUTION OF THEMBH SPINS

As a final application of our model, we study the redshift
evolution of the MBH spins. These predictions will be read-
ily testable by LISA/SGO or eLISA/NGO, which will mea-
sure the black-hole masses and spins with astonishing ac-
curacy (∼ 10−3 for the masses and 10−2 for the spins,
see Berti, Buonanno, & Will (2005); Lang & Hughes (2006, 2007,
2008); Lang, Hughes, & Cornish (2011)) and without the system-

atic uncertainties typically affecting electromagnetic (e.g. X-ray)
determinations.

In Figs. 14 (light-seed scenario) and 15 (heavy-seed scenario),
we present results for the distribution of masses and spins of the
MBHs residing in isolated galaxies or in the central galaxies of
groups or clusters (i.e., we do not consider the MBHs residing
in satellite galaxies), at redshifts ranging from z = 7 to z = 0.
The color code represents the log10 of the density of MBHs per
unit (logarithmic) mass and unit spin, log10(dφbh[Mpc−3]/da) =
log10(d

2nbh[Mpc−3]/(d log10 Mbh[M⊙] da))) . As can be seen,
in the light-seed scenario, already at z = 7 the MBH distribution
has been skewed towards large spins from the initial uniform spin
distribution of the seeds (still visible at Mseed = 150M⊙). This
is because at high redshifts, where the AGN feedback is still inef-
fective and the MBHs small, large amounts of gas are present in
galactic nuclei, and the MBH spins grow as a result of wet, spin-
aligned mergers (cf. Sec. 4) and most importantly because accre-
tion onto the MBHs is coherent and spins them up (cf. Sec. 2.2.4).
We stress, as already mentioned in the introduction, that effects
such as star formation and feedback in the circumnuclear disk,
or the formation of clumps in high-redshift disk galaxies fed by
cold streams, may at least partially randomize the accretion flows
in gas-rich environments. As a result, the large spins abh ∼ 1
shown in Figs. 14 and 15 at high redshift may be substantially re-
duced (e.g. Maio et al. (2012) show that for quasars in merger rem-
nants, sustained accretion results asymptotically in spins parame-
ters abh ∼ 0.7− 0.9).

At smaller redshifts this trends gets modified because the cold
gas in the nuclear regions of galaxies becomes scarcer, hence merg-
ers tend to happen in dry environments (cf. Sec. 4) and accre-
tion turns chaotic. Chaotic accretion, in particular, appears to be
the main driving force behind the spin evolution in this phase, as
can be seen from the appearance of a large number of MBHs with
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LISA source properties: spin

SMBH: spin magnitude

SMBH: spin alignment
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• Wide range of spin magnitude 
possible

• High-z, gas-rich environment, massive circumbinary discs: tendency to align spins
• Low-z, gas-poor environment, small discs: generic spin orientation
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is well known to circularize the orbit. While field and cluster
formation scenarios predict very distinct eccentricity distri-
butions at BHB formation, both scenarios result in nearly
circular binaries in the Advanced LIGO band. The first ob-
served signals did not set strong bounds on the eccentricity
of the binary (Abbott et al. 2016c,b), and it is quite unlikely
that eccentricity measurements with ground-based detectors
will ever di↵erentiate between the field and cluster scenar-
ios. However, Sesana (2016) showed that, depending on the
intrinsic rates (which are only loosely constrained by current
detections) and on the detector baseline, the evolved Laser
Interferometer Space Antenna (eLISA) will observe few to
few thousands BHBs (see also Kyutoku & Seto 2016). Be-
cause of the much lower frequency band, eLISA will detect
these systems before circularization, and in many cases it
will be able to measure their eccentricity (Nishizawa et al.
2016).

In this Letter we use Bayesian model selection to
demonstrate how eLISA eccentricity measurement can con-
clusively distinguish between di↵erent BHB formation chan-
nels. In Section II we consider three models for BHB forma-
tion, and discuss the eccentricity distributions predicted by
these models in the eLISA band1. In Section III we simu-
late and analyse eLISA observations using various models
and detector baselines. In Section IV we present our main
results, and in Section V we discuss their implications. We
assume a concordance ⇤CDM cosmology with h = 0.679,
⌦M = 0.306 and ⌦⇤ = 0.694 (Planck Collaboration et al.
2015).

2 ASTROPHYSICAL MODELS AND
ECCENTRICITY DISTRIBUTIONS

We consider a BHB population merging at a rate R, char-
acterized by a chirp mass probability distribution p(Mr) –
where Mr ⌘ (M1,rM2,r)

3/5
/(M1,r + M2,r)

1/5, and a sub-
script r denotes quantities in the rest frame of the source
– and by an eccentricity probability distribution p(e⇤) at
some reference frequency f⇤ close to coalescence (we set
f⇤ = 10Hz). If p(e⇤) depends only on the BHB formation
route, but not on chirp mass and redshift, the merger rate
density per unit mass and eccentricity is given by

d
3
n

dMrdtrde⇤
= p(Mr) p(e⇤)R. (1)

Equation (1) can be then converted into a number of sources
emitting per unit mass, redshift and frequency at any time
via
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and
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1
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1 For a detailed astrophysical comparison of BHBs formed in
galactic fields and globular clusters observable by eLISA, see
Breivik et al. (2016).

Figure 1. Eccentricity distributions predicted by the field (or-
ange), cluster (turquoise) and MBH (purple) scenarios. The top
panel show the distribution at the reference frequency f⇤ =
10Hz, while the bottom panel is the observable distribution p(e0)
evolved “back in time” to f0 = 0.01Hz.
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We can construct a population of systems potentially observ-
able by eLISA by Monte Carlo sampling from the distribu-
tion in equation (2) using appropriate distribution functions
for p(Mr) and p(e⇤). For the mass distribution we employ
the “flat” mass function of Abbott et al. (2016f), i.e., we as-
sume that the two BH masses are independently drawn from
a log-flat distribution in the range 5M� < M1,2,r < 100M�,
restricting the total BHB mass to the be less than 100M�.
For the eccentricity distribution we consider, as a proof of
concept, three popular BHB formation scenarios:

(i) Model field: this is the default BHB field formation
scenario of Kowalska et al. (2011), taken to be representative
of BHBs resulting from stellar evolution.

(ii) Model cluster: globular clusters e�ciently form BHBs
via dynamical capture. Most of these BHBs are ejected in the
field and evolve in isolation until they eventually merge. Be-
cause of their dynamical nature, BHBs typically form with a
thermal eccentricity distribution. A comprehensive study of
this scenario has been performed by Rodriguez et al. (2016c).

(iii) Model MBH. BHs and BHBs are expected to cluster
in galactic nuclei because of strong mass segregation. In this
case, binaries within the sphere of influence of the central
MBH undergo Kozai-Lidov resonances, forming triplets in
which the external perturber is the MBH itself. This scenario
has been investigated in Antonini & Perets (2012), and it
results in high BHB eccentricities.

The eccentricity distributions at f⇤ = 10Hz, as pre-
dicted by these models, are shown in the top panel of Fig-
ure 1. In the bottom panel we propagate these distributions
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is well known to circularize the orbit. While field and cluster
formation scenarios predict very distinct eccentricity distri-
butions at BHB formation, both scenarios result in nearly
circular binaries in the Advanced LIGO band. The first ob-
served signals did not set strong bounds on the eccentricity
of the binary (Abbott et al. 2016c,b), and it is quite unlikely
that eccentricity measurements with ground-based detectors
will ever di↵erentiate between the field and cluster scenar-
ios. However, Sesana (2016) showed that, depending on the
intrinsic rates (which are only loosely constrained by current
detections) and on the detector baseline, the evolved Laser
Interferometer Space Antenna (eLISA) will observe few to
few thousands BHBs (see also Kyutoku & Seto 2016). Be-
cause of the much lower frequency band, eLISA will detect
these systems before circularization, and in many cases it
will be able to measure their eccentricity (Nishizawa et al.
2016).

In this Letter we use Bayesian model selection to
demonstrate how eLISA eccentricity measurement can con-
clusively distinguish between di↵erent BHB formation chan-
nels. In Section II we consider three models for BHB forma-
tion, and discuss the eccentricity distributions predicted by
these models in the eLISA band1. In Section III we simu-
late and analyse eLISA observations using various models
and detector baselines. In Section IV we present our main
results, and in Section V we discuss their implications. We
assume a concordance ⇤CDM cosmology with h = 0.679,
⌦M = 0.306 and ⌦⇤ = 0.694 (Planck Collaboration et al.
2015).
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some reference frequency f⇤ close to coalescence (we set
f⇤ = 10Hz). If p(e⇤) depends only on the BHB formation
route, but not on chirp mass and redshift, the merger rate
density per unit mass and eccentricity is given by
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Figure 1. Eccentricity distributions predicted by the field (or-
ange), cluster (turquoise) and MBH (purple) scenarios. The top
panel show the distribution at the reference frequency f⇤ =
10Hz, while the bottom panel is the observable distribution p(e0)
evolved “back in time” to f0 = 0.01Hz.
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We can construct a population of systems potentially observ-
able by eLISA by Monte Carlo sampling from the distribu-
tion in equation (2) using appropriate distribution functions
for p(Mr) and p(e⇤). For the mass distribution we employ
the “flat” mass function of Abbott et al. (2016f), i.e., we as-
sume that the two BH masses are independently drawn from
a log-flat distribution in the range 5M� < M1,2,r < 100M�,
restricting the total BHB mass to the be less than 100M�.
For the eccentricity distribution we consider, as a proof of
concept, three popular BHB formation scenarios:

(i) Model field: this is the default BHB field formation
scenario of Kowalska et al. (2011), taken to be representative
of BHBs resulting from stellar evolution.

(ii) Model cluster: globular clusters e�ciently form BHBs
via dynamical capture. Most of these BHBs are ejected in the
field and evolve in isolation until they eventually merge. Be-
cause of their dynamical nature, BHBs typically form with a
thermal eccentricity distribution. A comprehensive study of
this scenario has been performed by Rodriguez et al. (2016c).

(iii) Model MBH. BHs and BHBs are expected to cluster
in galactic nuclei because of strong mass segregation. In this
case, binaries within the sphere of influence of the central
MBH undergo Kozai-Lidov resonances, forming triplets in
which the external perturber is the MBH itself. This scenario
has been investigated in Antonini & Perets (2012), and it
results in high BHB eccentricities.

The eccentricity distributions at f⇤ = 10Hz, as pre-
dicted by these models, are shown in the top panel of Fig-
ure 1. In the bottom panel we propagate these distributions
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Figure 10. Distribution of eISCO of all merging binaries. Colour code as in figure 7. The binaries that merge after a strong interaction
with the third body retain a larger eccentricity close to merger compared to those that are GW-driven. Left panel: linear scale. Right
panel: log scale. Note the peculiar clustering of the red distribution in six di↵erent blocks corresponding to the six di↵erent values of m1,
i.e., from, left to right, 105M� to 1010M�.

over all merging binaries, and normalise to the total time
spent over all bins by all binaries. In this way, we obtain
a bivariate normalised function that gives the probability
of finding a binary in a given logarithmic two-dimensional
interval of frequency and circularity. We construct this func-
tion for the six sampled values of m1, and show in figure 9,
left panels, three cases (m1 = 105, 107, 109 M�). The evo-
lutionary tracks of single illustrative merging binaries are
shown as a red line.

In the orbital frequency-eccentricity plane, a typical
stalled inner binary starts its evolution in the upper left cor-
ner, i.e., at large separation (i.e., low f) and with an eccen-
tricity given by one of the 4 values of ein that we sample (see
table 1). As soon as the perturbations due to the approach-
ing third body become significant, the inner binary becomes
more eccentric. If the system undergoes K-L resonances, the
eccentricity actually oscillates on the K-L timescale between
high and low values (these oscillations are not visible in fig-
ure 9 due to the scale used), with a secular shift to higher
values because of the perturbation exerted by an increas-
ingly closer m3. The orbital frequency (i.e., the separation)
of the inner binary stays nearly constant during this evolu-
tionary phase. An example is given by the red line shown in
the m1 = 105 M� case (figure 9, upper left panel). When
chaotic interactions are instead the main driver of the binary
evolution, f can show large, random variations, as exempli-
fied by the tracks in the middle and lower left panels of
figure 9.

In any case, when the eccentricity becomes very high,

⇠> 0.99, GW emissions starts dominating the dynamics, in-
creasing the orbital frequency and circularising the orbit un-
til coalescence, as can be seen from the rising branch of the
red tracks. The colour code shows that this circularisation
phase is much shorter than the preceding evolution. The

maximum eccentricity reached (the turnover point in the
evolutionary tracks) mainly depends on the mass of the in-
ner binary, i.e. the lower the mass, the higher the maximum
eccentricity. In fact, for more massive binaries GWs start
dominating sooner during the evolution, hence determining
the earlier orbital circularisation. This behaviour is clearly
visible in figure 9, moving from the top panel (m1 = 105

M�) to the bottom one (m1 = 109 M�). Note that for more
massive systems the orbital frequency at merger is necessar-
ily lower, since it scales as M�1, where M ⌘ m1 +m2.

It is of a certain interest to analyse the same evolution
not in terms of the orbital frequency, but rather in terms of
the peak frequency of the GW power spectrum (Wen 2003)

fGW,p =
1
⇡

s
GM

[a(1� e2)]3
(1 + e)1.1954, (6)

which is clearly larger for more eccentric binaries. (Note that
this equation essentially means that GWs are mainly emit-
ted at the pericentre passages). The probability distribution
in the (log fGW,p, log(1�e)) plane is shown in the right pan-
els of figure 9, for the same three values of m1 considered
before.

During the initial phase of eccentricity growth, irrespec-
tive of the evolution driver (K-L resonances or chaotic inter-
actions), the orbital frequency does not change (left panels
in figure 9), but fGW,p increases because of its dependence
on e. As soon as GWs take over, the orbit circularises fast
while maintaining an almost constant fGW,p until the very
last phase of the evolution. This means that during the cir-
cularisation phase, the binaries maintain a fixed pericentre
separation while their the semi-major axis shrinks. Once the
circularisation is completed, GW losses keep shrinking the
semi-major axis. Therefore, fGW,p increases and eventually
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• Triple interactions could be common in 
hierarchical merging of SMBHs (up to 30%)

• Triplets can merge faster and have enhanced 
eccentricity

• SOBHs seen by LIGO could have 
measurable eccentricity in the LISA band


