Extracting parameters of binary black holes with LISA

Sylvain Marsat (APC, Paris)

PARIS
訳IDEROT
$\mathbf{u}^{\mathbf{S}} \mathbf{P C}$
Université Sorbonne Paris Cité
work in collaboration with J. Baker (NASA GSFC), T. Dal Canton (NASA GSFC), S. Babak (APC), A. Toubiana (APC)
[Marsat\&Baker arXiv/I806. I0734]
[Marsat, Baker, Dal Canton arXiv/2003.00357]

Outline

- Introduction and motivation
- The duration of Black Hole Binary signals in LISA
- The LISA response in the Fourier domain
- Methods for Bayesian parameter estimation
- Parameter estimation for Massive Black Hole Binaries
- Parameter estimation for Stellar-mass Black Hole Binaries
- Conclusions and outlook

Outline

- Introduction and motivation
- The duration of Black Hole Binary signals in LISA
- The LISA response in the Fourier domain
- Methods for Bayesian parameter estimation
- Parameter estimation for Massive Black Hole Binaries
- Parameter estimation for Stellar-mass Black Hole Binaries
- Conclusions and outlook

LIGO/Virgo Ol-O2 detections

Gravitational-Wave Transient Catalog-1 rugo nomno arowidy

LISA mission - 2034

Orbits

Payload

LISA Pathfinder success!

LISA science - overview

Terminology:

- Massive black holes binaries (MBHBs)
- Stellar-mass black hole binaries (SBBHs): masses observable by ground-based detectors [Sesana 2016]

MBHB/SBHB SNR

Contrasting LIGO/Virgo and LISA responses: LIGO/Virgo

Pattern functions

Simple multiplicative response

$$
s=F_{+} h_{+}+F_{\times} h_{\times}
$$

Angular dependence:

$$
\begin{aligned}
& F_{+}=\frac{1}{2}\left(1+\cos ^{2} \theta\right) \cos (2 \phi), \\
& F_{\times}=\cos \theta \sin (2 \phi)
\end{aligned}
$$

Time-of-arrival triangulation

- Two detectors: ~ring on the sky
- Better localization for 3 or more detectors (even low SNR!)

GWTC-I sky localisation

Contrasting LIGO/Virgo and LISA responses: LISA

LISA-frame

SSB-frame: global view of the orbits

Low-f approximation: two LIGO-type detectors in motion [Cutler 1997]

High-f: three channels with complicated frequency-dependence

Sky localisation from the modulations induced by the orbits for long-lived signals

Main sky degeneracy for MBHBs: reflection by the LISA plane

Higher harmonics in the waveform

Higher harmonics
 $$
h_{+}-i h_{\times}=\sum_{\ell \geq 2} \sum_{m=-\ell}^{\ell}-2 Y_{\ell m}(\iota, \varphi) h_{\ell m}
$$

Example in time domain: $\quad\left(q=8, \chi_{1}=0.5, \chi_{2}=0, \iota=\pi / 2, \varphi_{0}=1.2\right)$

- Dominant harmonic h22
- Higher modes more important for high q and edge-on
— NR

MBHB with higher modes $\quad M=2 \cdot 10^{6} M_{\odot}, q=2$

Challenges of parameter estimation for LISA

MBHB features

Accurate waveforms needed to extract physical information without bias

- Large (>I000) SNR: accurate waveforms needed
- Large SNR for merger/ringdown and higher harmonics (HM)
- Wide range of mass ratios and spins
- Possible significant eccentricity in triplets
- Signal length: from days to months for IMBHs

This study:
Non-spinning, $q=3$
Inspiral-Merger-Ringdown
Higher Harmonics

- Observations not SNR-limited: edge-on common

SBHB features

- Small SNR (<20), long signals (years), at high frequencies
- Very deep inspiral; chirping signals and slowly-chirping signals
- Masses and spins: cf LIGO/Virgo!
- Possible significant eccentricity if formation in clusters

Instrument response

- Instrument response is time- and frequency-dependent, carrying information about the sky position

Data analysis challenges

- Signal superposition requiring global fit
- Non-stationarity, glitches, gaps...

This study:
This study:
Aligned spin Chirping signals No eccentricity

Full FD response

This study:
Idealized noise
IPNL — Lyon - 2019-I0-I0

Outline

- Introduction and motivation
- The duration of Black Hole Binary signals in LISA
- The LISA response in the Fourier domain
- Methods for Bayesian parameter estimation
- Parameter estimation for Massive Black Hole Binaries
- Parameter estimation for Stellar-mass Black Hole Binaries
- Conclusions and outlook

Accumulation of SNR with time for MBHB/IMBHB

Accumulation of SNR as time left before merger diminishes Shaded areas: thresholds $\mathrm{SNR}=\mathrm{I}$ and $\mathrm{SNR}=10$

$$
M=10^{6} M_{\odot}, q=5, z=2
$$

$$
M=10^{4} M_{\odot}, q=5, z=2
$$

Two different definitions of "signal duration":

- Looking back in time from merger, when is the signal negligible ? Here SNR=I
- Accumulating signal towards merger, when is the signal detected ? Here SNR=10

For MBHBs, SNR accumulates shortly before merger (days)

Length of MBHB LISA signals: for the observer

$t(S N R)$: time to merger left when the signals has accumulated a given SNR

- $\mathrm{SNR}=10$ as the time to merger left when we can claim detection

- SNR=I assuming everything before that point can be neglected in PE

Length of MBHB LISA signals: for waveform models

$t(S N R) / M$: same length of signal, but seen in geometric units for waveforms models (longest $N R$ simulation: $\mathrm{t} / \mathrm{M}=10^{\wedge} 5$)

- $\mathrm{SNR}=10$ as the time to merger left when we can claim detection

- SNR=I assuming everything before that point can be neglected in PE

LISA: simulated catalog for MBHB astrophysical models

[Barausse 2012] Astrophysical models:

- Heavy seeds - delay
- Light seeds - no delay
- Poplll seeds - delay

15

LISA: simulated catalog for MBHB astrophysical models

[Barausse 2012] Astrophysical models:

- Heavy seeds - delay
- Light seeds - no delay
- Poplll seeds - delay

[^0]

Outline

- Introduction and motivation
- The duration of Black Hole Binary signals in LISA
- The LISA response in the Fourier domain
- Methods for Bayesian parameter estimation
- Parameter estimation for Massive Black Hole Binaries
- Parameter estimation for Stellar-mass Black Hole Binaries
- Conclusions and outlook

LISA instrument response

One-arm frequency observables

From spacecraft s to spacecraft r through link s: $y=\Delta \nu / \nu$

$$
\begin{aligned}
y_{s l r} & =\frac{1}{2} \frac{1}{1-\hat{k} \cdot n_{l}} n_{l} \cdot\left(h\left(t_{s}\right)-h\left(t_{r}\right)\right) \cdot n_{l} \\
t_{s} & =t-L-\hat{k} \cdot p_{s}, \quad t_{r}=t-\hat{k} \cdot p_{r} \\
h & =h_{+} P_{+}(\hat{k})+h_{\times} P_{\times}(\hat{k}) \quad \mathrm{GW} \text { at SSB }
\end{aligned}
$$

Time-delay interferometry (TDI)

- Crucial to cancel laser noise

- Second generation: propagation and flexing
- Michelson X,Y,Z - Uncorrelated noises A,E,T

Equal-arm Michelson Unequal-arm Michelson

$-\underbrace{\left[\left(y_{31}^{\mathrm{GW}}+y_{13,2}^{\mathrm{GW}}\right)+\left(y_{21}^{\mathrm{GW}}+y_{12,3}^{\mathrm{GW}}\right)_{22}-\left(y_{21}^{\mathrm{GW}}+y_{12,3}^{\mathrm{GW}}\right)-\left(y_{31}^{\mathrm{GW}}+y_{13,2}^{\mathrm{GW}}\right)_{, 33}\right]_{, 2233}}_{X^{\mathrm{GW}}\left(t-2 L_{2-2}-2 L_{3}\right) \sim X^{\mathrm{GW}}(t-4 L)}$

Approximations

- Long-wavelength approximation: two moving LIGOs rotated by $\pi / 4+$ orbital delay
- Rigid approximation (order of the delays does not matter, delay=L simple in Fourier domain)

LISA FD response - motivation

$\overline{\text { Motivation }}$

- Aim: computationally intensive applications (PE)
- Take advantage of recent FD IMR waveform models
- Response directly in the Fourier domain
- Keep a compact representation (~1000 pts)
- Assess errors of FD processing

Terminology:

- Orbital: main motion around the Sun
- Constellation: other motion and inter-spacecrafts delays
$\overline{\text { Frequency observables } y=\Delta \nu / \nu}$

$$
y_{s l r}=\frac{1}{2} \frac{1}{1-\hat{k} \cdot n_{l}} n_{l} \cdot\left(h\left(t_{s}\right)-h\left(t_{r}\right)\right) \cdot n_{l}
$$

TDI: combination of delayed $y_{\text {slr }}$
Decomposition of the response:

- Orbital delay
- Time-varying orientation
- Inter-spacecrafts delays

Transfer function for modulated and delayed signal

$$
\operatorname{FT}[F(t) h(t+d(t))]=\mathcal{T}(f) \tilde{h}(f)
$$

The timescales in the problem

Instrumental timescales

- Motion (approximately) periodic $f_{0}=1 / \mathrm{yr} \simeq 3.10^{-8} \mathrm{~Hz}$
- Transfer frequencies for the delays: when the baseline is one wavelength

Orbital: $\quad f_{R}=3.2 \times 10^{-4} \mathrm{~Hz}$
Constellation: $\quad f_{L}=1.9 \times 10^{-2} \mathrm{~Hz}$

GW timescales

- Wave frequency $f \gg f_{0}$
- Radiation-reaction timescale $T_{\mathrm{RR}} \sim 1 / \sqrt{\dot{\omega}}$

Separation of timescales

- Conditioned by $T_{\mathrm{RR}} / T_{0} \ll 1$
- Also dimensionless factors $2 \pi f d$

Guessing...

Separation will be good for chirping binaries but breaks in the quasimonochromatic limit

Inspiral will be harder than mergerringdown - opposite of the SPA assumptions

Separation of timescales becomes a frequency-dependent statement due to the presence of delays

A local time-to-frequency map

Convolution with f-dependent kernel

Input: $\tilde{h}(f)=A(f) e^{-i \Psi(f)}$

$$
\begin{aligned}
s(t) & =F(t) h(t+d(t)) \\
\tilde{s}(f) & =\int d f^{\prime} \tilde{h}\left(f-f^{\prime}\right) \tilde{G}\left(f-f^{\prime}, f^{\prime}\right) \longrightarrow \\
G(f, t) & \equiv e^{-2 i \pi f d(t)} F(t)
\end{aligned}
$$

Separation of timescales: if F, d have only frequencies <<f, local convolution - expand $h\left(f-f^{\prime}\right)$ in f^{\prime}

Leading-order: time-of-frequency

Keeping linear term in the phase:

$$
\begin{array}{r}
t_{f} \equiv-\frac{1}{2 \pi} \frac{\mathrm{~d} \Psi}{\mathrm{~d} f} \\
\tilde{s}(f)=\mathcal{T}(f) \tilde{h}(f) \\
\mathcal{T}(f)=G\left(f, t_{f}\right)
\end{array}
$$ Close to the SPA - but extends through MRD

Leading-order one-arm transfer function:

$$
\begin{array}{r}
\mathcal{T}_{s l r}=\frac{i \pi f L}{2} \operatorname{sinc}\left[\pi f L\left(1-\hat{k} \cdot n_{l}\right)\right] \exp \left[i \pi f\left(L+\hat{k} \cdot\left(p_{1}+p_{2}\right)\right)\right] n_{l} \cdot P \cdot n_{l}\left(t_{f}\right) \\
21 \text { Beyond leading order: [Marsat\&Baker] }
\end{array}
$$

Outline

- Introduction and motivation
- The duration of Black Hole Binary signals in LISA
- The LISA response in the Fourier domain
- Methods for Bayesian parameter estimation
- Parameter estimation for Massive Black Hole Binaries
- Parameter estimation for Stellar-mass Black Hole Binaries
- Conclusions and outlook

Bayesian analysis

Bayesian formalism

- Matched-filtering overlap: $\quad\left(h_{1} \mid h_{2}\right)=4 \operatorname{Re} \int d f \frac{\tilde{h}_{1}(f) \tilde{h}_{2}^{*}(f)}{S_{n}(f)}$
- For Gaussian, stationary noise, for independent channels:

$$
\begin{aligned}
\ln \mathcal{L}(d \mid \theta) & =-\sum_{\text {channels }} \frac{1}{2}(h(\theta)-d \mid h(\theta)-d) \\
d & =s\left(\theta_{0}\right)+n
\end{aligned}
$$

h template
θ parameters
d data
s signal
θ_{0} signal params.
n noise
S_{n} noise PSD

- Bayes theorem defines the posterior: $\quad p(\theta \mid d)=\frac{\mathcal{L}(d \mid \theta) p_{0}(\theta)}{p(d)} \quad \begin{gathered}p_{0}(\theta) \text { prior } \\ p(d) \text { evidence }\end{gathered}$

Fisher matrix analysis

- Quadratic expansion of log-likelihood around injection

$$
\begin{aligned}
\ln \mathcal{L} & =-\frac{1}{2} \Delta \theta_{i} F_{i j} \Delta \theta_{j}+\mathcal{O}\left(\Delta \theta^{3}\right) \\
F_{i j} & =\left(\partial_{i} h \mid \partial_{j} h\right)
\end{aligned}
$$

- Matrix inversion to get to the covariance of the Gaussian

$$
C=F^{-1}
$$

- Valid at high SNR, and misses degeneracies

Fast likelihoods and implementation

Accelerated zero-noise overlaps

- Sparse grids: amplitude/phase and response
- Cubic spline representation 300-800 pts
- Mode-by-mode overlaps: significant cost increase with higher modes
- Much simpler than Reduced Order Quadratures, but cannot handle noise

Overlaps: oscillatory integrands

$$
\left(h_{1} \mid h_{2}\right)=4 \operatorname{Re} \int d f \frac{\tilde{h}_{1}(f) \tilde{h}_{2}^{*}(f)}{S_{n}(f)} \longrightarrow \int_{f_{i}}^{f_{i+1}} P(f) e^{i\left[a f+b f^{2}\right]} \longrightarrow \int_{f_{i}}^{f_{i+1}} e^{i\left[a f+b f^{2}\right]}
$$

Waveforms

MBHB: EOBNRv2HM waveforms

- Non-spinning model, includes modes (22, 2 I, 33, 44, 55)

Likelihood cost Single mode h22: I-3ms 5 modes hlm: 15 ms
[Katz\&al]: PhenomHM waveforms, fast GPU computation of likelihoods with noise

- Aligned spins, 22 mode
- Analytic ansatz, sub-millisecond sparse waveform

Bayesian samplers

MultiNest [Feroz\&al 2009]

- Implements Nested Sampling [Skilling 2006]
- Evolves a population of live points by replacements from within isolikelihood contours
- Evaluates the evidence
- Drawing from within a set of ellipsoids, clustering
- Available as off-the-shelf sampler
- Less flexible than MCMC (jumps, ...)

PTMCMC

- Custom code
- Parallel tempering [Swendsen\&al I986]
- Differential evolution [Braak\&al 2008]
- Can be informed with proposal jumps
- Can be used as brute-force method to resolve all degeneracies

Outline

- Introduction and motivation
- The duration of Black Hole Binary signals in LISA
- The LISA response in the Fourier domain
- Methods for Bayesian parameter estimation
- Parameter estimation for Massive Black Hole Binaries
- Parameter estimation for Stellar-mass Black Hole Binaries
- Conclusions and outlook

SMBH analysis setting

Sources

- Plausible SMBH sources at $\mathrm{z}=4$
- Masses $M=2 \cdot 10^{6} M_{\odot}, q=2$
- Vary orientation

SNR

	I	11
22	857	645
HM	945	666

Evaluations
Multinest: $120 \cdot 10^{6}$
PTMCMC: $400 \cdot 10^{6}$

Understanding degeneracies in the likelihood

The frozen LISA approximation

- Neglect all LISA motion for the duration of the signal, take low-frequency response
- Neglect weak correlations between intrinsic and extrinsic parameters - fix masses, time, and vary extrinsic parameters only

Two independent channels A and E :

$$
\ln \mathcal{L}=-\frac{1}{2} \Lambda\left(\left|s_{a}-s_{a}^{\mathrm{inj}}\right|^{2}+\left|s_{e}-s_{e}^{\mathrm{inj}}\right|^{2}\right)
$$

Λ normalisation constant

Explicit pattern functions

$$
\begin{aligned}
& F_{a}^{+}=\frac{1}{2}\left(1+\sin ^{2} \beta_{L}\right) \sin \left(2 \lambda_{L}+\frac{\pi}{6}\right), \\
& F_{a}^{\times}=-\sin \beta_{L} \cos \left(2 \lambda_{L}+\frac{\pi}{6}\right) \\
& F_{e}^{+}=\frac{1}{2}\left(1+\sin ^{2} \beta_{L}\right) \cos \left(2 \lambda_{L}+\frac{\pi}{6}\right), \\
& F_{e}^{\times}=\sin \beta_{L} \sin \left(2 \lambda_{L}+\frac{\pi}{6}\right)
\end{aligned}
$$

Single-channel response for A :

$$
\begin{aligned}
s_{a} & =\frac{3 i}{4 D_{L}} \sqrt{\frac{5}{\pi}} \cos ^{4} \frac{\iota}{2} e^{2 i\left(-\varphi-\psi_{L}\right)}\left(D_{a}^{+}+i D_{a}^{\times}\right) \\
& +\frac{3 i}{4 D_{L}} \sqrt{\frac{5}{\pi}} \sin ^{4} \frac{\iota}{2} e^{2 i\left(-\varphi+\psi_{L}\right)}\left(D_{a}^{+}-i D_{a}^{\times}\right) .
\end{aligned}
$$

and similarly for E .
Analogous roles of $\left(\lambda_{L}, \beta_{L}\right) \leftrightarrow\left(\varphi_{L}, \iota\right)$

Understanding degeneracies in the likelihood

The face-on / face-off limit

- Two branches: close to face-on or face-off
- Effective amplitude and phase degenerate in distance/inclination and in phase/polarization

$$
\begin{aligned}
\mathcal{A}\left(D_{L}, \iota\right) & \sim \cos ^{4}(\iota / 2) / D_{L} \\
\xi\left(\varphi_{L}, \psi_{L}\right) & =-\varphi_{L}-\psi_{L}
\end{aligned}
$$

$$
\text { For example for } \sin ^{4} \frac{\iota}{2} \ll 1
$$

$$
\begin{aligned}
s_{a} & \simeq i \mathcal{A} e^{2 i \xi}\left(F_{a}^{+}+i F_{a}^{\times}\right), \\
s_{e} & \simeq i \mathcal{A} e^{2 i \xi}\left(F_{e}^{+}+i F_{e}^{\times}\right),
\end{aligned}
$$

Explicit solution for the degeneracy

Reproduce s_{a}, s_{e} of injection if condition on sky position is met:

$$
r=\frac{s_{a}^{\mathrm{inj}}}{s_{e}^{\mathrm{inj}}}=\frac{F_{a}^{+}+i F_{a}^{\times}}{F_{e}^{+}+i F_{e}^{\times}}\left(\lambda_{L}, \beta_{L}\right)
$$

Then line degeneracy for both
$\left(\varphi_{L}, \psi_{L}\right)$ and $\left(D_{L}, \iota\right)$

$$
\begin{aligned}
\text { Solution : } \begin{aligned}
\rho & =\sqrt{\left|\frac{1+i r}{1-i r}\right|} \\
\sin \beta_{L}^{*} & =\frac{\rho-1}{\rho+1} \\
\lambda_{L}^{*} & =-\frac{\pi}{12}+\frac{1}{4} \operatorname{Arg} \frac{1+i r}{1-i r}+\frac{k \pi}{2} .
\end{aligned} . . \begin{array}{l}
\\
\hline
\end{array} \\
\end{aligned}
$$

+ approximate symmetry

$$
\left(\lambda_{L}, \beta_{L}\right) \leftrightarrow\left(\varphi_{L}, \iota\right)
$$

Exploring the analytic simplified extrinsic likelihood

Understanding degeneracies

A projection effect for the marginal posterior

Sky, full likelihood 22-mode

The role of higher harmonics

$$
\begin{aligned}
h_{+}-i h_{\times} & =\sum_{-2} Y_{\ell m}(\iota, \varphi) h_{\ell m} \\
{ }_{-2} Y_{\ell m}(\iota, \varphi) & \propto e^{i m \varphi}
\end{aligned}
$$

Different modes have different inclination and phase dependence

Sky, simple likelihood

- Measuring relative amplitude of two modes gives the inclination
- Distance is then fixed by the amplitude
- Phase affects modes differently, not degenerate with polarization anymore

SMBH PE: accumulation of information with time

Method

- Represent a cut in time-tomerger by a cut in frequency, becomes inaccurate at merger
- Use Multinest and PTMCMC with and without higher harmonics

8-maxima sky degeneracy only broken shortly before merger 2-maxima sky degeneracy survives after merger

SNR-based time cuts:

SNR	DeltaT
10	40 h
42	2.5 h
167	7 min
666	-

MBHB PE: accumulation of information with time

Decomposing the response

$$
\mathcal{T}_{s l r}=\frac{i \pi f L}{2} \operatorname{sinc}\left[\pi f L\left(1-k \cdot n_{l}\right)\right] \exp \left[i \pi f\left(L+k \cdot\left(p_{r}+p_{s}\right)\right)\right] n_{l} \cdot P \cdot n_{l}\left(t_{f}\right)
$$

Time and frequency-dependency in transfer functions Time: motion of LISA on its orbit Frequency: departure from long-wavelength approx.

- 'Full': keep all terms
- ‘Frozen’: ignore LISA motion
- 'Low-f’: ignore f-dependency
- 'Frozen Low-f': ignore both

Degeneracy breaking for 8 sky maxima

Log-likelihood values when frequency increases:

Outline

- Introduction and motivation
- The duration of Black Hole Binary signals in LISA
- The LISA response in the Fourier domain
- Methods for Bayesian parameter estimation
- Parameter estimation for Massive Black Hole Binaries
- Parameter estimation for Stellar-mass Black Hole Binaries
- Conclusions and outlook

SBHB analysis setting

$m_{1}\left(\mathrm{M}_{\odot}\right)$	40
$m_{2}\left(\mathrm{M}_{\odot}\right)$	30
$t_{c}(\mathrm{yrs})$	8
$f_{0}(\mathrm{mHz})$	12.7215835397
χ_{1}	0.6
χ_{2}	0.4
$\lambda(\mathrm{rad})$	1.9
$\beta(\mathrm{rad})$	$\pi / 3$
$\psi(\mathrm{rad})$	1.2
$\varphi(\mathrm{rad})$	0.7
$\iota(\mathrm{rad})$	$\pi / 6$
$D_{L}(\mathrm{Mpc})$	250
$T_{\text {obs }}(\mathrm{yrs})$	4
SNR	13.5

From a fiducial system, vary:

- Initial frequency (earlier/later)
- Mass (heavy light)
- Mass ratio ($q=3, q=8$)
- Spin configuration
- Sky position (polar/equatorial)
- Inclination and distance

Time to coalescence:Tc = 8yrs Tobs=4years: slowly chirping Tobs=10yrs: merger during observations

NR	$T_{\text {obs }}=4$ years	$T_{\text {obs }}=10$ years
Fiducial	13.5	21.1
Earlier	10.3	17.2
Later	11.8	1
Heavy	12.8	20.9
Light	14.1	21.1
q3	13.5	21.1
$q 8$	13.5	21.1
Spinup	13.5	21.1
Spindown	13.5	21.1
Spinop12	13.5	21.1
Spinop21	13.5	21.1
Polar	12.8	20.1
Equatorial	14.9	23.1
Edgeon	1	14.7
Close	17.8	1
Far	1	15.1
Very Far	1	10.6

Note: SNR with 'Proposal' noise curve, not 'Requirement' (50\% margin)

Detection might be a challenge [Moore\&al]

Work led by Alexandre Toubiana at APC, in preparation

SBHB parameter estimation results

SBHB parameter estimation results: masses and spin

Determining intrinsic parameters can depend strongly on the duration of observations (chirp/no chirp)

Leading spin-orbit combination in the phase at I.5PN:

$$
\chi_{P N}=\frac{1}{113}\left(94 \chi_{+}+19 \frac{q-1}{q+1} \chi_{-}\right)
$$

The relevant spin combination observed is $\chi_{P N}$

SBHB parameter estimation results: sky position

As a consequence of the length of the signal and of the LISA motion:

The sky localization is generally very good and very Gaussian

Signals near the ecliptic plane can show degeneracies in their localization

Example:

- Fiducial (SNR=13.5) $\beta=\pi / 3$
- Polar (SNR=12.8) $\beta=\pi / 2-0.09$
- Equatorial (SNR=14.9) $\beta=0.09$

Offset spherical angles, centered on injected signal: eliminate coordinate effects near the pole

SBHB parameter estimation results: SNR and high-f

Determination of intrinsic parameters differs strongly for Tobs=4yrs and Tobs=10yrs

Is it due to the SNR increase, or to the signal reaching higher frequencies (more affected by subdominant PN terms) ?

Example:

- Fiducial Tobs=4yrs (SNR=13.5)

$$
f=12.1-16.5 \mathrm{mHz}
$$

- Fiducial Tobs=10yrs (SNR=2I.I)

$$
f=12.1 \mathrm{mHz} \rightarrow \text { merger }
$$

- 'Later'Tc=2yrs (SNR=11.8)

$$
f=21.4 \mathrm{mHz} \rightarrow \text { merger }
$$

Observing high frequencies matters in measuring intrinsic parameters

Conclusions and outlook

Highlights

- Developed a generic approach to the Fourier domain response of LISA
- Developed fast likelihood enabling zero-noise Bayesian explorations of high-SNR or long signals
- Explored the LISA parameter recovery of MBHB signals
- Analytic understanding of degeneracies in the MBHB likelihood when including only the dominant quadrupolar harmonic
- Shown the crucial role of higher modes in breaking degeneracies for MBHBs
- Shown that high-frequency effects in the response are crucial in breaking degeneracies when accumulating signal with time
- Explored the LISA parameter recovery of SBHB signals with aligned spins

Outlook

- Inclusion of spins and precession
- Optimize samplers for known degeneracies (MCMC jump proposals)
- Explore the parameter space (from most massive MBHB to IMBHB)
- Explore the effect of eccentricity
- Make the link to instrumental requirements
- Explore joint LISA/LIGO observations
- Assess waveform model requirements: how accurate need the waveforms to be ?
- Are these methods applicable to EMRIs ?

Higher-order corrections

Expansion of f-dependent convolution
Quadratic phase term: $\mathcal{T}(f)=\sum \frac{1}{p!}\left(\frac{i}{8 \pi^{2}} \frac{\mathrm{~d}^{2} \Psi}{\mathrm{~d} f^{2}}\right)^{p} \partial_{t}^{2 p} G\left(f, t_{f}\right) \rightarrow \begin{aligned} & \text { Evaluation on a stencil } \\ & \text { cf SUA [Klein\&al 201 } 4 \text {] }\end{aligned}$
Amplitude: $\quad \mathcal{T}(f)=\sum \frac{1}{(2 i \pi)^{p} p!} \frac{1}{A} \frac{\mathrm{~d}^{p} A}{\mathrm{~d} f^{p}} \partial_{t}^{p} G\left(f, t_{f}\right)$

$$
\text { Delays: } \mathcal{T}(f)=\sum \frac{1}{(2 i \pi)^{p} p!} \partial_{t}^{p} \partial_{f}^{p} G\left(f, t_{f}\right) \longrightarrow \begin{aligned}
& \text { Evaluation through a } \\
& \text { change of time variable }
\end{aligned}
$$

Timescales and error estimates

IMR 'radiation reaction' timescale:

$$
T_{f}^{2}=-\frac{1}{4 \pi^{2}} \frac{\mathrm{~d}^{2} \Psi}{\mathrm{~d} f^{2}}
$$

When SPA applicable to h :

$$
T_{f}=T_{\mathrm{RR}}^{\mathrm{SPA}}=1 / \sqrt{2 \dot{\omega}}
$$

Amplitude timescales: $\quad T_{A 1}=\frac{1}{2 \pi A} \frac{\mathrm{~d} A}{\mathrm{~d} f}$

$$
\begin{aligned}
\epsilon_{\Psi 2} & \equiv \frac{1}{2} T_{f}^{2}\left|\frac{1}{G} \partial_{t t} G\right| \sim\left(T_{\mathrm{RR}} / T_{0}\right)^{2}(\times 2 \pi f d ?) \\
\epsilon_{A 1} & \equiv T_{A 1}\left|\frac{1}{G} \partial_{t} G\right| \\
\epsilon_{d} & \equiv \frac{1}{2 \pi}\left|\frac{1}{G} \partial_{t f} G\right|
\end{aligned}
$$

Error measures: estimates for the magnitude of corrections

FD response error estimates - chirping

Error estimates: magnitude of the first term neglected in the perturbative series (averaged)

10 years signal

FD response errors - Mle7/MIe2 orbital

Errors: FDResponse[h] vs FFT[TDResponse[IFFT[h]]

FD response errors - Mle7/Mle2 const.

Errors: FDResponse[h] vs FFT[TDResponse[IFFT[h]]

SOBH - slowly chirping systems

Slowly-chirping systems

- Some SOBHs will be >100-I000 years away from merger
- Quasi-monochromatic limit: breaks separation of timescale, in this limit analogous to galactic binaries

Handling the response

- Heterodyning (narrow frequency band)
- Response is periodic: convolution with a small frequency-dependent Fourier comb

$$
\begin{aligned}
c_{n}(f) & =\frac{\Omega_{0}}{2 \pi} \int_{0}^{\frac{2 \pi}{\Omega_{0}}} \mathrm{~d} t e^{i n \Omega_{0} t} G(f, t) \\
\tilde{s}(f) & =\sum_{n \in \mathbb{Z}} c_{n}\left(f-n f_{0}\right) \tilde{h}\left(f-n f_{0}\right)
\end{aligned}
$$

FD response errors - SOBH orb.

Errors: FDResponse[h] vs FFT[TDResponse[IFFT[h]]

FD response errors - SOBH const.

Errors: FDResponse[h] vs FFT[TDResponse[IFFT[h]]

$M=15 M_{\odot}, \Delta t=1500 \mathrm{yr}, \epsilon_{\Psi 2}^{0} \sim 0.1$

LISA source properties: mass ratio

- Wide range of possible mass ratios

LISA source properties: spin

SMBH: spin magnitude

Light seed

- Wide range of spin magnitude possible

[Barausse 2012]

SMBH: spin alignment

- High-z, gas-rich environment, massive circumbinary discs: tendency to align spins
- Low-z, gas-poor environment, small discs: generic spin orientation

LISA source properties: eccentricity

SMBH: triple systems

- Triple interactions could be common in hierarchical merging of SMBHs (up to 30\%)
- Triplets can merge faster and have enhanced eccentricity

[Bonetti\&al 20I7]

SOBH: field vs cluster formation

- SOBHs seen by LIGO could have measurable eccentricity in the LISA band

Figure 1. Eccentricity distributions predicted by the field (orange), cluster (turquoise) and $M B H$ (purple) scenarios. The top panel show the distribution at the reference frequency $f_{*}=$ 10 Hz , while the bottom panel is the observable distribution $p\left(e_{0}\right)$ evolved "back in time" to $f_{0}=0.01 \mathrm{~Hz}$.
[Nishizawa\&al 2016]

[^0]: Sylvain Marsat — GdR Ondes Gravitationnelles

