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Astrophysical motivation: we are about to see black holes!

The black hole at the centre of our galaxy: Sgr A*

[ESO (2009)]

Measure of the mass of Sgr A* black hole by
stellar dynamics:

MBH = 4.3× 106M�

← Orbit of the star S2 around Sgr A*

P = 16 yr, rper = 120 UA = 1400RS,
Vper = 0.02 c
[Genzel, Eisenhauer & Gillessen, RMP 82, 3121 (2010)]
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Astrophysical motivation: we are about to see black holes!

Can we see a black hole from the Earth?

Image of a thin accretion disk around a Schwarzschild BH

[Vincent, Paumard, Gourgoulhon & Perrin, CQG 28, 225011 (2011)]

Angular diameter of the
event horizon of a
Schwarzschild BH of mass
M seen from a distance d:

Θ = 6
√

3
GM

c2d
' 2.60

2RS

d

Largest black holes in the
Earth’s sky:

Sgr A* : Θ = 53 µas
M87 : Θ = 21 µas
M31 : Θ = 20 µas

Remark: black holes in
X-ray binaries are ∼ 105

times smaller, for Θ ∝M/d
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Astrophysical motivation: we are about to see black holes!

The solution to reach the µas regime: interferometry !

Existing American VLBI network [Doeleman et al. 2011]

Very Large Baseline
Interferometry
(VLBI) in
(sub)millimeter
waves

The best result so
far: VLBI
observations at
1.3 mm have shown
that the size of the
emitting region in
Sgr A* is only
37 µas
[Doeleman et al., Nature

455, 78 (2008)]
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Astrophysical motivation: we are about to see black holes!

The near future: the Event Horizon Telescope

To go further:

shorten the wavelength: 1.3 mm → 0.8 mm

increase the number of stations; in particular add ALMA

Atacama Large Millimeter Array (ALMA)
part of the Event Horizon Telescope (EHT) to be completed by 2020
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Astrophysical motivation: we are about to see black holes!

Near-infrared optical interferometry: GRAVITY

[Gillessen et al. 2010]

GRAVITY instrument at
VLTI (2015)

Beam combiner (the
four 8 m telescopes +
four auxiliary telescopes)
=⇒ astrometric
precision of 10 µas
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Astrophysical motivation: we are about to see black holes!

Observing BH with gravitational waves: eLISA

Interferometric gravitational wave detector in space

[eLISA (ESA)]

Selected by ESA in November 2013 (L3 mission)

Launch ∼ 2030

LISA Pathfinder to be launched in 2015
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Astrophysical motivation: we are about to see black holes!

The “no-hair” theorem

Dorochkevich, Novikov & Zel’dovich (1965), Israel (1967), Carter (1971),
Hawking (1972)

Within 4-dimensional general relativity, a stationary black hole in an otherwise
empty universe is necessarily a Kerr-Newman black hole, which is a vacuum
solution of Einstein equation described by only three parameters:

the total mass M

the total angular momentum J

the total electric charge Q

=⇒ “a black hole has no hair” (John A. Wheeler)

Astrophysical black holes have to be electrically neutral:

Q = 0 : Kerr solution (1963)

Other special cases:

Q = 0 and a = 0 : Schwarzschild solution (1916)

a = 0: Reisnerr-Nordström solution (1916, 1918)
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Astrophysical motivation: we are about to see black holes!

Lowest order no-hair theorem: quadrupole moment

Asymptotic expansion (large r) of the metric in terms of multipole moments
(Mk,Jk)k∈N [Geroch (1970), Hansen (1974)]:

Mk: mass 2k-pole moment

Jk: angular momentum 2k-pole moment

=⇒ For the Kerr metric, all the multipole moments are determined by (M,a):

M0 = M

J1 = aM = J/c

M2 = −a2M = − J2

c2M
(∗) ← mass quadrupole moment

J3 = −a3M
M4 = a4M

· · ·

Measuring the three quantities M , J , M2 provides a compatibility test w.r.t. the
Kerr metric, by checking (∗)

Éric Gourgoulhon (LUTH) Exploring black hole spacetimes with computers IRMA, Strasbourg, 18 Sept. 2014 11 / 62



Astrophysical motivation: we are about to see black holes!

Lowest order no-hair theorem: quadrupole moment

Asymptotic expansion (large r) of the metric in terms of multipole moments
(Mk,Jk)k∈N [Geroch (1970), Hansen (1974)]:

Mk: mass 2k-pole moment

Jk: angular momentum 2k-pole moment

=⇒ For the Kerr metric, all the multipole moments are determined by (M,a):

M0 = M

J1 = aM = J/c

M2 = −a2M = − J2

c2M
(∗) ← mass quadrupole moment

J3 = −a3M
M4 = a4M

· · ·

Measuring the three quantities M , J , M2 provides a compatibility test w.r.t. the
Kerr metric, by checking (∗)
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Astrophysical motivation: we are about to see black holes!

Theoretical alternatives to the Kerr black hole

Within general relativity

The compact object is not a black hole but

a boson star

a gravastar

a dark star

...

Beyond general relativity

The compact object is a black hole but in a theory that differs from GR:

Einstein-Gauss-Bonnet with dilaton

Chern-Simons gravity

Hǒrava-Lifshitz gravity

Einstein-Yang-Mills

...
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Exploring spacetimes via numerical computations: the geodesic code GYOTO
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Exploring spacetimes via numerical computations: the geodesic code GYOTO

How to test the alternatives to the Kerr black hole?

Search for

stellar orbits deviating from Kerr timelike geodesics (GRAVITY)

accretion disk spectra different from those arising in Kerr metric (X-ray
observatories)

images of the black hole shadow different from that of a Kerr black hole
(EHT)

Need for a good and versatile geodesic integrator
to compute timelike geodesics (orbits) and null geodesics (ray-tracing) in any kind

of metric
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Exploring spacetimes via numerical computations: the geodesic code GYOTO

Gyoto code

Main developers: T. Paumard & F. Vincent

Integration of geodesics in
Kerr metric

Integration of geodesics in
any numerically computed
3+1 metric

Radiative transfer included
in optically thin media

Very modular code (C++)

Yorick interface

Free software (GPL) :
http://gyoto.obspm.fr/

[Vincent, Paumard, Gourgoulhon & Perrin, CQG 28, 225011 (2011)]

[Vincent, Gourgoulhon & Novak, CQG 29, 245005 (2012)]
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Exploring spacetimes via numerical computations: the geodesic code GYOTO

3+1 decomposition of the geodesic equation (1/3)

Numerical spacetimes are generally computed within the 3+1 formalism

4-dimensional spacetime (M, g)
foliated by spacelike hypersurfaces
(Σt)t∈R
Unit timelike normal: n = −N∇t
Induced metric: γ = g + n⊗ n
Shift vector of adapted coordinates
(t, xi): vector β tangent to Σt such
that ∂/∂t = Nn+ β

gµν dxµ dxν = −N2dt2 + γij(dx
i + βidt)(dxj + βjdt)
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Exploring spacetimes via numerical computations: the geodesic code GYOTO

3+1 decomposition of the geodesic equation (2/3)

The geodesic equation

A particle P of 4-momentum vector p follows a geodesic iff

∇p p = 0

3+1 decomposition of p: p = E(n+ V ) , with

E : particle’s energy with respect to the Eulerian observer (4-velocity n)

V : vector tangent to Σt, representing the particle’s 3-velocity with respect
to the Eulerian observer
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Exploring spacetimes via numerical computations: the geodesic code GYOTO

3+1 decomposition of the geodesic equation (3/3)

Equation of P’s worldline in terms of the
3+1 coordinates : xi = Xi(t)
The physical 3-velocity V is related to
the coordinate velocity Ẋi := dxi/dt by

V i =
d`i

dτE
=

1

N

d`i

dt
=

1

N

βidt+ dXi

dt

=⇒ V i =
1

N

(
Ẋi + βi

)
Orth. projection of ∇p p = 0 along n:

dE

dt
= E

(
NKjkV

jV k − V j∂jN
)

Orth. projection of ∇p p = 0 onto Σt:
dXi

dt
= NV i − βi

dV i

dt
= NV j

[
V i
(
∂j lnN −KjkV

k
)

+ 2Ki
j − 3ΓijkV

k
]
− γij∂jN − V j∂jβi

[Vincent, Gourgoulhon & Novak, CQG 29, 245005 (2012)]
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Exploring spacetimes via numerical computations: the geodesic code GYOTO

3+1 geodesic integration in Gyoto code (1/2)

Numerical spacetime =⇒ (N, βi, γij ,Kij)

System to be integrated

dE

dt
= E

(
NKjkV

jV k − V j∂jN
)

dXi

dt
= NV i − βi

dV i

dt
= NV j

[
V i
(
∂j lnN −KjkV

k
)

+ 2Ki
j − 3ΓijkV

k
]
− γij∂jN − V j∂jβi

Integration (backward) in time: Runge–Kutta algorithms of fourth to eighth order

Problem: the 3+1 quantities (N, βi, γij ,Kij) and their spatial derivatives have to
be known at any point along the geodesic and not only at the grid points issued
from the numerical relativity computation
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Exploring spacetimes via numerical computations: the geodesic code GYOTO

3+1 geodesic integration in Gyoto code (2/2)

Solution within spectral methods: thanks to their spectral expansions, the fields
(N, βi, γij ,Kij) are actually known at any point !

For instance, a scalar field, like N , is expanded as

N(t, r, θ, ϕ) =
∑
i,`,m

N̂i`m(t)Ti(r)Y
m
` (θ, ϕ)

with

Ti: Chebyshev polynomial of degree i

Y m` : spherical harmonic of index (`,m)

Within spectral methods, the discretization does not occur on the values in the
physical space (no grid !) but on the finite number of coefficients N̂i`m

The data are (N̂i`m(tJ)) for a finite series of time steps (tJ)0≤J≤Jmax

=⇒ the values (N̂i`m(t)) at an arbitrary time t are obtained by a third order
interpolation from 4 neighbouring tJ ’s
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Exploring spacetimes via numerical computations: the geodesic code GYOTO

Gyoto code

Computed images of a thin accretion disk around a Schwarzschild black hole
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Exploring spacetimes via numerical computations: the geodesic code GYOTO

Measuring the spin from the black hole silhouette

Ray-tracing in the Kerr metric (spin parameter a)

Accretion structure around Sgr A* modelled as a ion torus, derived from the
polish doughnut class [Abramowicz, Jaroszynski & Sikora (1978)]

Radiative processes included:
thermal synchrotron,
bremsstrahlung, inverse
Compton

← Image of an ion torus
computed with Gyoto for the
inclination angle i = 80◦:

black: a = 0.5M

red: a = 0.9M

[Straub, Vincent, Abramowicz, Gourgoulhon & Paumard, A&A 543, A83 (2012)]

Éric Gourgoulhon (LUTH) Exploring black hole spacetimes with computers IRMA, Strasbourg, 18 Sept. 2014 22 / 62

http://dx.doi.org/10.1051/0004-6361/201219209


Exploring spacetimes via numerical computations: the geodesic code GYOTO

Orbits around a rotating boson star

Boson star = localized configurations of
a self-gravitating complex scalar field Φ
≡ “Klein-Gordon geons” [Bonazzola & Pacini

(1966), Kaup (1968)]

Boson stars may behave as black-hole
mimickers

Solutions of the
Einstein-Klein-Gordon system
computed by means of Kadath
[Grandclément, JCP 229, 3334 (2010)]

Timelike geodesics computed by
means of Gyoto
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Zero-angular-momentum orbit around a
rotating boson star based on a free scalar
field Φ = φ(r, θ)ei(ωt+2ϕ)

with ω = 0.75m/~.

[Granclément, Somé & Gourgoulhon, PRD 90, 024068 (2014)]
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Exploring spacetimes via symbolic computations: the SageManifolds project
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Exploring spacetimes via symbolic computations: the SageManifolds project

Software for differential geometry

Packages for general purpose computer algebra systems:

xAct free package for Mathematica [J.-M. Martin-Garcia]

Ricci free package for Mathematica [J. L. Lee]

MathTensor package for Mathematica [S. M. Christensen & L. Parker]

DifferentialGeometry included in Maple [I. M. Anderson & E. S. Cheb-Terrab]

Atlas 2 for Maple and Mathematica

· · ·

Standalone applications:

SHEEP, Classi, STensor, based on Lisp, developed in 1970’s and 1980’s (free)
[R. d’Inverno, I. Frick, J. Åman, J. Skea, et al.]

Cadabra field theory (free) [K. Peeters]

SnapPy topology and geometry of 3-manifolds, based on Python (free) [M.

Culler, N. M. Dunfield & J. R. Weeks]

· · ·

cf. the complete list on http://www.xact.es/links.html
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Exploring spacetimes via symbolic computations: the SageManifolds project

Sage in a few words

Sage is a free open-source mathematics software system

it is based on the Python programming language

it makes use of many pre-existing open-sources packages, among which

Maxima (symbolic calculations, since 1968!)
GAP (group theory)
PARI/GP (number theory)
Singular (polynomial computations)
matplotlib (high quality 2D figures)

and provides a uniform interface to them

William Stein (Univ. of Washington) created Sage in 2005; since then, ∼100
developers (mostly mathematicians) have joined the Sage team

The mission

Create a viable free open source alternative to Magma, Maple, Mathematica and
Matlab.
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Exploring spacetimes via symbolic computations: the SageManifolds project

Some advantages of Sage

Sage is free

Freedom means

1 everybody can use it, by downloading the software from
http://sagemath.org

2 everybody can examine the source code and improve it

Sage is based on Python

no need to learn any specific syntax to use it

easy access for students

Python is a very powerful object oriented language, with a neat syntax

Sage is developing and spreading fast

...sustained by an important community of developers
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Exploring spacetimes via symbolic computations: the SageManifolds project

Sage approach to computer mathematics

Sage relies on a Parent / Element scheme: each object x on which some
calculus is performed has a “parent”, which is another Sage object X representing
the set to which x belongs.
The calculus rules on x are determined by the algebraic structure of X.
Conversion rules prior to an operation, e.g. x+ y with x and y having different
parents, are defined at the level of the parents

Example

sage: x = 4 ; x.parent()

Integer Ring

sage: y = 4/3 ; y.parent()

Rational Field

sage: s = x + y ; s.parent()

Rational Field

sage: y.parent().has_coerce_map_from(x.parent())

True

This approach is similar to that of Magma and different from that of
Mathematica, in which everything is a tree of symbols
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Exploring spacetimes via symbolic computations: the SageManifolds project

The Sage book

by Paul Zimmermann et al. (2013)

Released under Creative Commons license:

freely downloadable from
http://sagebook.gforge.inria.fr/

printed copies can be ordered at moderate
price (10 e)

English translation in progress...
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Exploring spacetimes via symbolic computations: the SageManifolds project

Differential geometry in Sage

Sage is well developed in many domains of mathematics:
number theory, group theory, linear algebra, combinatorics, etc.

...but not too much in the area of differential geometry:

Already in Sage

differential forms on an open subset of Euclidean space (with a fixed set of
coordinates) (J. Vankerschaver)

parametrized 2-surfaces in 3-dim. Euclidean space (M. Malakhaltsev, J.
Vankerschaver, V. Delecroix)

Proposed extensions (Sage Trac)

2-D hyperbolic geometry (V. Delecroix, M. Raum, G. Laun, trac ticket
#9439)
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Exploring spacetimes via symbolic computations: the SageManifolds project

The SageManifolds project

http://sagemanifolds.obspm.fr/

Aim

Implement the concept of real smooth manifolds of arbitrary dimension in Sage
and tensor calculus on them, in a coordinate/frame-independent manner

In practice, this amounts to introducing new Python classes in Sage, basically one
class per mathematical concept, for instance:

Manifold: differentiable manifolds over R, of arbitrary dimension

Chart: coordinate charts

Point: points on a manifold

DiffMapping: differential mappings between manifolds

ScalarField, VectorField, TensorField: tensor fields on a manifold

DiffForm: p-forms

AffConnection, LeviCivitaConnection: affine connections

Metric: pseudo-Riemannian metrics
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Exploring spacetimes via symbolic computations: the SageManifolds project

Implementing coordinate charts

Given a manifold M of dimension n, a coordinate chart on an open subset
U ⊂M is implemented in SageManifolds via the class Chart, whose main data is
a n-uple of Sage symbolic variables x, y, ..., each of them representing a
coordinate

In general, more than one (regular) chart may be required to cover the entire
manifold:

Examples:

at least 2 charts are necessary to cover the circle S1, the sphere S2, and more
generally the n-dimensional sphere Sn

at least 3 charts are necessary to cover the real projective plane RP2

In SageManifolds, an arbitrary number of charts can be introduced

To fully specify the manifold, one shall also provide the transition maps on
overlapping chart domains (SageManifolds class CoordChange)
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Exploring spacetimes via symbolic computations: the SageManifolds project
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Implementing scalar fields

A scalar field on manifold M is a smooth mapping

f : U ⊂M −→ R
p 7−→ f(p)

where U is an open subset of M

A scalar field maps points, not coordinates, to real numbers
=⇒ an object f in the ScalarField class has different coordinate
representations in different charts defined on U .

The various coordinate representations F , F̂ , ... of f are stored as a Python
dictionary whose keys are the charts C, Ĉ, ...:

f. express =
{
C : F, Ĉ : F̂ , . . .

}
with f( p︸︷︷︸

point

) = F ( x1, . . . , xn︸ ︷︷ ︸
coord. of p
in chart C

) = F̂ ( x̂1, . . . , x̂n︸ ︷︷ ︸
coord. of p
in chart Ĉ

) = . . .
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C : F, Ĉ : F̂ , . . .

}
with f( p︸︷︷︸

point

) = F ( x1, . . . , xn︸ ︷︷ ︸
coord. of p
in chart C

) = F̂ ( x̂1, . . . , x̂n︸ ︷︷ ︸
coord. of p
in chart Ĉ
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The scalar field algebra

Given an open subset U ⊂M, the set C∞(U) of scalar fields defined on U has
naturally the structure of a commutative algebra over R: it is clearly a vector
space over R and it is endowed with a commutative ring structure by pointwise
multiplication:

∀f, g ∈ C∞(U), ∀p ∈ U, (f.g)(p) := f(p)g(p)

The algebra C∞(U) is implemented in SageManifolds via the class
ScalarFieldAlgebra.
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Classes for scalar fields

      Parent      UniqueRepresentation

ScalarFieldAlgebra

Element: ScalarField

category: CommutativeAlgebras

SageManifolds class
(differential part) 

SageManifolds class
(algebraic part) 

native Sage class

ring: SR

CommutativeAlgebraElement

ScalarField

Parent: ScalarFieldAlgebra

ZeroScalarField

Parent: ScalarFieldAlgebra
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Vector fields

Given an open subset U ⊂M, the set X (U) of smooth vector fields defined on U
has naturally the structure of a module over the scalar field algebra C∞(U).

Modules vs. vector spaces

A module is ∼ vector space, except that it is based on a ring (here C∞(U))
instead of a field (usually R or C in physics)

An importance difference: a vector space always has a basis, while a module does
not necessarily have any

→ A module with a basis is called a free module

When X (U) is a free module, a basis is a vector frame (ea)1≤a≤n on U :

∀v ∈ X (U), v = vaea, with va ∈ C∞(U)

At a point p ∈ U , the above translates into an identity in the tangent vector
space TpM:

v(p) = va(p) ea(p), with va(p) ∈ R
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Vector fields

A manifold M that admits a global vector frame (or equivalently, such that
X (M) is a free module) is called a parallelizable manifold

Examples of parallelizable manifolds

Rn (global coordinate charts ⇒ global vector frames)

the circle S1 (NB: no global coordinate chart)

the torus T2 = S1 × S1

the 3-sphere S3 ' SU(2), as any Lie group

the 7-sphere S7

Examples of non-parallelizable manifolds

the sphere S2 (hairy ball theorem!) and any n-sphere Sn with n 6∈ {1, 3, 7}
the real projective plane RP2

most manifolds...
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Implementing vector fields

Ultimately, in SageManifolds, vector fields are to be described by their
components w.r.t. various vector frames.

If the manifold M is not parallelizable, one has to decompose it in parallelizable
open subsets Ui (1 ≤ i ≤ N) and consider restrictions of vector fields to these
domains.

For each i, X (Ui) is a free module of rank n = dimM and is implemented in
SageManifolds as an instance of VectorFieldFreeModule, which is a subclass of
FiniteRankFreeModule.

Each vector field v ∈ X (Ui) has different set of components (va)1≤a≤n in
different vector frames (ea)1≤a≤n introduced on Ui. They are stored as a Python
dictionary whose keys are the vector frames:

v. components = {(e) : (va), (ê) : (v̂a), . . .}
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Module classes in SageManifolds

VectorFieldFreeModule

Element: VectorFieldFreeParal
ring: ScalarFieldAlgebra

TensorFieldFreeModule

Element: TensorFieldParal
ring: ScalarFieldAlgebra

TensorFreeModule

Element: FreeModuleTensor

FiniteRankFreeModule

Element: FiniteRankFreeModuleElement
ring: CommutativeRing

category: Modules

      Parent      UniqueRepresentation

TensorFieldModule

Element: TensorField
ring: ScalarFieldAlgebra

VectorFieldModule

Element: VectorField
ring: ScalarFieldAlgebra

SageManifolds class
(differential part) 

SageManifolds class
(algebraic part) 

native Sage class

category:
Modules

category: Modules

TangentSpace

Element: TangentVector
ring: SR
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Tensor field classes in SageManifolds

VectorField

Parent: VectorFieldModule

FreeModuleTensorTensorField

Parent: TensorFieldModule

TensorFieldParal

Parent: TensorFieldFreeModule

VectorFieldParal
Parent: VectorFieldFreeModule

FiniteRankFreeModuleElement

Parent: FiniteRankFreeModule

Parent: TensorFreeModule

      Element

ModuleElement

Parent: Module

SageManifolds class
(differential part) 

SageManifolds class
(algebraic part) 

native Sage class

TangentVector
Parent: TangentSpace
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Exploring spacetimes via symbolic computations: the SageManifolds project

Tensor field storage

dictionary TensorField._restrictions

...

dictionary ScalarField._express

...

dictionary Components._comp

...

dictionary TensorFieldParal._components

...

...

Expression

Components
frame 1:

FunctionChart
chart 1:

ScalarField

(1,1) :

Components
frame 2:

ScalarField

(1,2) :

FunctionChart
chart 2:

Expression

TensorFieldParal

U1

U1

domain 1: TensorFieldParal

U2
U2

domain 2:

TensorField
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SageManifolds at work: the Mars-Simon tensor example

Definition [M. Mars, CQG 16, 2507 (1999)]

Given a 4-dimensional spacetime (M, g) endowed with a Killing vector field ξ, the
Mars-Simon tensor w.r.t. ξ is the type-(0,3) tensor S defined by

Sαβγ := 4Cµαν[β ξµξν σγ] + γα[β Cγ]ρµν ξρ Fµν

where

γαβ := λ gαβ + ξαξβ , with λ := −ξµξµ

Cαβµν := Cαβµν +
i

2
ερσµν Cαβρσ, with Cαβµν being the Weyl tensor and

εαβµν the Levi-Civita volume form

Fαβ := Fαβ + i ∗Fαβ , with Fαβ := ∇αξβ (Killing 2-form) and

∗Fαβ :=
1

2
εµναβFµν (Hodge dual of Fαβ)

σα := 2Fµαξµ (Ernst 1-form)
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Mars-Simon tensor

The Mars-Simon tensor provides a nice characterization of Kerr spacetime:

Theorem (Mars, 1999)

If g satisfies the vacuum Einstein equation and (M, g) contains a stationary
asymptotically flat end M∞ such that ξ tends to a time translation at infinity in
M∞ and the Komar mass of ξ in M∞ is non-zero, then

S = 0 ⇐⇒ (M, g) is locally isometric to a Kerr spacetime

Let us use SageManifolds...

...to check the ⇐ part of the theorem, namely that the Mars-Simon tensor is
identically zero in Kerr spacetime.

NB: what follows illustrates only certain features of SageManifolds; other ones,
like the multi-chart and multi-frame capabilities on non-parallelizable manifolds,
are not considered in this example. =⇒ More examples are provided at
http://sagemanifolds.obspm.fr/examples.html
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Object-oriented notation

To understand what follows, be aware that

as an object-oriented language, Python (and hence Sage) makes use of the
following postfix notation:

result = object.function(arguments)

In a functional language, this would be written as

result = function(object,arguments)

Examples

riem = g.riemann()

lie t v = t.lie der(v)

Éric Gourgoulhon (LUTH) Exploring black hole spacetimes with computers IRMA, Strasbourg, 18 Sept. 2014 44 / 62



Exploring spacetimes via symbolic computations: the SageManifolds project

Object-oriented notation

To understand what follows, be aware that

as an object-oriented language, Python (and hence Sage) makes use of the
following postfix notation:

result = object.function(arguments)

In a functional language, this would be written as

result = function(object,arguments)

Examples

riem = g.riemann()

lie t v = t.lie der(v)
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Another feature of SageManifolds: display of chart grids

Function Chart.plot()

Stereographic coordinates on the
2-sphere

Two charts:

X1: S2 \ {N} → R2

X2: S2 \ {S} → R2
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Another feature of SageManifolds: display of chart grids

Three charts X1, X2, X3

covering the real projective plane
RP2, displayed via the Apéry
immersion of RP2 into R3 (Boy
surface)

Identifying RP2 with the set of
lines ∆ through the origin of R3,
we have

X1: ∆ 7→ (x1, y1) such
that ∆ ∩Πz=1 = (x1, y1, 1)

X2: ∆ 7→ (x2, y2) such
that ∆ ∩Πx=1 = (1, x2, y2)

X3: ∆ 7→ (x3, y3) such
that ∆ ∩Πy=1 = (y3, 1, x3)
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Another feature of SageManifolds: display of chart grids

Carter-Penrose diagram of Schwarzschild spacetime

Plot of the standard Schwarzschild-Droste coordinates (t, r) in terms of the
conformal Kruskal-Szekeres coordinates (T̃ , X̃).
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Conclusion and perspectives

SageManifolds is a work in progress
∼ 34,000 lines of Python code up to now (including comments and doctests)

A preliminary version (v0.5) is freely available (GPL) at
http://sagemanifolds.obspm.fr/

and the development version (to become v0.6 soon) is available from the Git
repository https://github.com/sagemanifolds/sage

Already present:

maps between manifolds, pullback operator
submanifolds, pushforward operator
standard tensor calculus (tensor product, contraction, symmetrization, etc.),
even on non-parallelizable manifolds
all monoterm tensor symmetries
exterior calculus, Hodge duality
Lie derivatives
affine connections, curvature, torsion
pseudo-Riemannian metrics, Weyl tensor
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Not implemented yet (but should be soon):

extrinsic geometry of pseudo-Riemannian submanifolds
computation of geodesics (numerical integration via Sage/GSL or Gyoto)
integrals on submanifolds

To do:

add more graphical outputs
add more functionalities: symplectic forms, fibre bundles, spinors, variational
calculus, etc.
connection with Lorene, CoCoNuT, ...

Want to join the project or simply to stay tuned?

visit http://sagemanifolds.obspm.fr/
(download page, documentation, example worksheets, mailing list)
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