A new formulation for evolving

neutron star spacetimes

Éric Gourgoulhon
Laboratoire de l'Univers et de ses Théories (LUTH)
CNRS / Observatoire de Paris
F-92195 Meudon, France

based on a collaboration with
Michal Bejger, Silvano Bonazzola, Dorota Gondek-Rosińska, Philippe Grandclément, Pawel Haensel, José Luis Jaramillo, François Limousin, Lap-Ming Lin, Jérôme Novak, Loïc Villain \& J. Leszek Zdunik

Local context (i.e. within the Meudon - Warsaw group)

[Zdunik, Haensel, Gourgoulhon, A\&A 372, 535 (2001)]

Most previous computations: stationary models of compacts stars

- single rotating stars: determination of maximum mass, maximum rotation rate, ISCO frequency, accretion induced spin-up, for various models of dense matter
- binary stars : determination of last stable orbit (end of chirp phase in the GW signal) for neutron stars and strange quark stars

Exceptions: 1D gravitational collapse NS $\rightarrow \mathrm{BH}$ [in $\mathrm{GR}(1991,1993)$ and in tensor-scalar theories (1998)], 3D stellar core collapse [Newtonian (1993) and IWM approx. (2004)], inertial modes in rotating star [Newtonian (2002) and IWM approx. (2004)].

Computing time evolution of neutron stars

Astrophysical motivations:

- Oscillations and stability
* beyond the linear regime
* for rapidly rotating stars
- Direct computation of resulting gravitational wave emission
- Phase transitions
- Collapse of supramassive neutron stars to black hole
- Formation and stability of black hole - torus systems

Global context (i.e. studies from other groups)

Numerical studies of time evolution of rapidly rotating NS

2D (axisymmetric) codes:

- Nakamura et al. $(1981,1983)$: rotating collapse to a black hole, full GR, cylindrical coordinates (ϖ, z, φ)
- Stark \& Piran (1985) : rotating collapse to a black hole, extraction of GW, full GR, spherical coordinates (r, θ, φ)
- Dimmelmeier, Font \& Müller (2002) : stellar core collapse, IWM approx. to GR, spherical coordinates (r, θ, φ) [A\&A 388, 917 (2002)] [A\&A 393, 523 (2002)]
- Shibata (2003) : general purpose axisymmetric full GR code, Cartesian coordinates $(x, y, z)+$ "cartoon" method [Shibata, PRD 67, 024033 (2003)]
\rightarrow GW from axisymmetrically oscillating NS [Shibata \& Sekiguchi, PRD 68, 104020 (2003)]
\rightarrow GW from axisymmetric stellar core collapse to NS [Shibata \& Sekiguchi, PRD 69, 084024 (2004)]
\rightarrow collapse of rotating supramassive NS to BH [Shibata, ApJ 595, 992 (2003)]
\rightarrow collapse of rapidly rotating polytopes to BH [Sekiguchi \& Shibata, PRD 70, 084005 (2004)]
1st Astro-PF workshop, CAMK, Warsaw, 13-15 October 2004

Global context (i.e. studies from other groups)

Numerical studies of time evolution of rapidly rotating NS

3D codes:

- Shibata (1999) [Shibata, Prog. Theor. Phys. 101, 1199 (1999)] [Shibata, PRD 60, 104052 (1999)] : full GR, Cartesian coordinates (x, y, z)
\rightarrow 3D collapse of rotating NS $(\gamma=1)$ [Shibata, Baumgarte \& Shapiro, PRD 61, 044012 (2000)]
\rightarrow binary NS merger [Shibata \& Uryu, PRD 61, 064001 (2000)], [Shibata, Taniguchi \& Uryu, PRD 68, 084020 (2003)]
- GR_ASTRO/Cactus code (2000,2002) [Font et al., PRD 61, 040011 (2000)] [Font et al., PRD 64 , 084024 (2002)] : full GR, Cartesian coordinates (x, y, z)
- Whisky/Cactus code (2004) [Baiotti et al., gr-qc/0403029]: full GR, Cartesian coordinates (x, y, z)
- "Mariage des maillages" code (2004) [Dimmelmeier, Novak, Font, lbã̃ez \& Müller, gr-cc/0407174] : IWM approx. to GR, spherical coordinates (r, θ, φ)

Time evolution in general relativity: the $3+1$ formalism

Foliation of spacetime by a family of spacelike hypersurfaces $\left(\Sigma_{t}\right)_{t \in \mathbb{R}}$; on each hypersurface, pick a coordinate system $\left(x^{i}\right)_{i \in\{1,2,3\}}$
$\Longrightarrow\left(x^{\mu}\right)_{\mu \in\{0,1,2,3\}}=\left(t, x^{1}, x^{2}, x^{3}\right)=$ coordinate system on spacetime

\mathbf{n} : future directed unit normal to Σ_{t} :
$\mathbf{n}=-N \mathbf{d} t, N$: lapse function
$\mathbf{e}_{t}=\partial / \partial t$: time vector of the natural basis associated with the coordinates $\left(x^{\mu}\right)$
$\left.\begin{array}{l}N: \text { lapse function } \\ \boldsymbol{\beta}: \text { shift vector }\end{array}\right\} \mathbf{e}_{t}=N \mathbf{n}+\boldsymbol{\beta}$

Geometry of the hypersurfaces Σ_{t} :

- induced metric $\gamma=\mathbf{g}+\mathbf{n} \otimes \mathbf{n}$
- extrinsic curvature: $\mathbf{K}=-\frac{1}{2} £ \mathbf{n} \gamma$

$$
g_{\mu \nu} d x^{\mu} d x^{\nu}=-N^{2} d t^{2}+\gamma_{i j}\left(d x^{i}+\beta^{i} d t\right)\left(d x^{j}+\beta^{j} d t\right)
$$

3+1 decomposition of Einstein equation

Orthogonal projection of Einstein equation onto Σ_{t} and along the normal to Σ_{t} :

- Hamiltonian constraint:

$$
\frac{R+K^{2}-K_{i j} K^{i j}=16 \pi E}{D_{j} K^{i j}-D^{i} K=8 \pi J^{i}}
$$

- Dynamical equations :

$$
\frac{\partial K_{i j}}{\partial t}-£_{\boldsymbol{\beta}} K_{i j}=-D_{i} D_{j} N+N\left[R_{i j}-2 K_{i k} K_{j}^{k}+K K_{i j}+4 \pi\left((S-E) \gamma_{i j}-2 S_{i j}\right)\right]
$$

$E:=\mathbf{T}(\mathbf{n}, \mathbf{n})=T_{\mu \nu} n^{\mu} n^{\nu}, \quad J_{i}:=-\gamma_{i}{ }^{\mu} T_{\mu \nu} n^{\nu}, \quad S_{i j}:=\gamma_{i}{ }^{\mu} \gamma_{j}{ }^{\nu} T_{\mu \nu}, \quad S:=S_{i}{ }^{i}$
D_{i} : covariant derivative associated with $\gamma, \quad R_{i j}:$ Ricci tensor of $D_{i}, \quad R:=R_{i}{ }^{i}$

Kinematical relation between γ and \mathbf{K} :

$$
\frac{\partial \gamma^{i j}}{\partial t}+D^{i} \beta^{j}+D^{j} \beta^{i}=2 N K^{i j}
$$

Free vs. constrained evolution in $3+1$ numerical relativity

Einstein equations split into $\begin{cases}\text { dynamical equations } & \frac{\partial}{\partial t} K_{i j}=\ldots \\ \text { Hamiltonian constraint } & R+K^{2}-K_{i j} K^{i j}=16 \pi E \\ \text { momentum constraint } & D_{j} K_{i}{ }^{j}-D_{i} K=8 \pi J_{i}\end{cases}$

- 2-D computations (80's and 90's): partially constrained schemes: Bardeen \& Piran (1983), Stark \& Piran (1985), Evans (1986)
fully constrained schemes: Evans (1989), Shapiro \& Teukolsky (1992), Abrahams et al. (1994)
- 3-D computations (from mid 90's): almost all based on free evolution schemes: BSSN, symmetric hyperbolic formulations, etc...
\Longrightarrow problem: exponential growth of constraint violating modes

$$
\begin{array}{ll}
\text { Standard issue 1: } & \text { the constraints usually involve elliptic equations } \\
& \text { and 3-D elliptic solvers are CPU-time expensive ! }
\end{array}
$$

Cartesian vs. spherical coordinates in $3+1$ numerical relativity

- 1-D and 2-D computations: massive usage of spherical coordinates (r, θ, φ)
- 3-D computations: almost all based on Cartesian coordinates (x, y, z), although spherical coordinates are better suited to study objects with spherical topology (black holes, neutron stars). Two exceptions:
- Nakamura et al. (1987): evolution of pure gravitational wave spacetimes in spherical coordinates (but with Cartesian components of tensor fields)
- Stark (1989): attempt to compute 3D stellar collapse in spherical coordinates

Standard issue 2: spherical coordinates are singular at $r=0$ and $\theta=0$ or π !

Standard issues 1 and 2 can be overcome

Standard issues 1 and 2 are neither mathematical nor physical, but technical ones \Longrightarrow they can be overcome with appropriate techniques

Spectral methods allow for

- an automatic treatment of the singularities of spherical coordinates (issue 2)
- fast 3-D elliptic solvers in spherical coordinates: 3-D Poisson equation reduced to a system of 1-D algebraic equations with banded matrices [Grandclément, Bonazzola, Gourgoulhon \& Marck, J. Comp. Phys. 170, 231 (2001)] (issue 1)

Conformal metric and dynamics of the gravitational field

York (1972) : Dynamical degrees of freedom of the gravitational field carried by the conformal "metric"

$$
\begin{aligned}
& \hat{\gamma}_{i j}:=\gamma^{-1 / 3} \gamma_{i j} \quad \text { with } \gamma:=\operatorname{det} \gamma_{i j} \\
& \hat{\gamma}_{i j}=\text { tensor density of weight }-2 / 3
\end{aligned}
$$

To work with tensor fields only, introduce an extra structure on Σ_{t} : a flat metric \mathbf{f} such that $\frac{\partial f_{i j}}{\partial t}=0$ and $\gamma_{i j} \sim f_{i j}$ at spatial infinity (asymptotic flatness)

Define $\tilde{\gamma}_{i j}:=\Psi^{-4} \gamma_{i j}$ or $\gamma_{i j}=: \Psi^{4} \tilde{\gamma}_{i j}$ with $\Psi:=\left(\frac{\gamma}{f}\right)^{1 / 12}$, $f:=\operatorname{det} f_{i j}$
$\tilde{\gamma}_{i j}$ is invariant under any conformal transformation of $\gamma_{i j}$ and verifies $\operatorname{det} \tilde{\gamma}_{i j}=f$
Notations: $\quad \tilde{\gamma}^{i j}$: inverse conformal metric: $\tilde{\gamma}_{i k} \tilde{\gamma}^{k j}=\delta_{i}{ }^{j}$
$\tilde{D}_{i}:$ covariant derivative associated with $\tilde{\gamma}_{i j}, \tilde{D}^{i}:=\tilde{\gamma}^{i j} \tilde{D}_{j}$
\mathcal{D}_{i} : covariant derivative associated with $f_{i j}, \mathcal{D}^{i}:=f^{i j} \mathcal{D}_{j}$

Dirac gauge

Conformal decomposition of the metric $\gamma_{i j}$ of the spacelike hypersurfaces Σ_{t} :

$$
\gamma_{i j}=: \Psi^{4} \tilde{\gamma}_{i j} \quad \text { with } \quad \tilde{\gamma}^{i j}=: f^{i j}+h^{i j}
$$

where $f_{i j}$ is a flat metric on $\Sigma_{t}, h^{i j}$ a symmetric tensor and Ψ a scalar field defined by $\Psi:=\left(\frac{\operatorname{det} \gamma_{i j}}{\operatorname{det} f_{i j}}\right)^{1 / 12}$

Dirac gauge (Dirac, 1959) $=$ divergence-free condition on $\tilde{\gamma}^{i j}: \mathcal{D}_{j} \tilde{\gamma}^{i j}=\mathcal{D}_{j} h^{i j}=0$ where \mathcal{D}_{j} denotes the covariant derivative with respect to the flat metric $f_{i j}$.

Compare

- minimal distortion (Smarr \& York 1978) : $D_{j}\left(\partial \tilde{\gamma}^{i j} / \partial t\right)=0$
- pseudo-minimal distortion (Nakamura 1994) : $\mathcal{D}^{j}\left(\partial \tilde{\gamma}^{i j} / \partial t\right)=0$

Notice: Dirac gauge \Longleftrightarrow BSSN connection functions vanish: $\tilde{\Gamma}^{i}=0$

Dirac gauge: discussion

- introduced by Dirac (1959) in order to fix the coordinates in some Hamiltonian formulation of general relativity; originally defined for Cartesian coordinates only: $\frac{\partial}{\partial x^{j}}\left(\gamma^{1 / 3} \gamma^{i j}\right)=0$ but trivially extended by us to more general type of coordinates (e.g. spherical) thanks to the introduction of the flat metric $f_{i j}: \mathcal{D}_{j}\left((\gamma / f)^{1 / 3} \gamma^{i j}\right)=0$
- fully specifies (up to some boundary conditions) the coordinates in each hypersurface Σ_{t}, including the initial one \Rightarrow allows for the search for stationary solutions
- leads asymptotically to transverse-traceless (TT) coordinates (same as minimal distortion gauge). Both gauges are analogous to Coulomb gauge in electrodynamics
- turns the Ricci tensor of conformal metric $\tilde{\gamma}_{i j}$ into an elliptic operator for $h^{i j} \Longrightarrow$ the dynamical Einstein equations become a wave equation for $h^{i j}$
- results in a vector elliptic equation for the shift vector β^{i}

1st Astro-PF workshop, CAMK, Warsaw, 13-15 October 2004

3+1 Einstein equations in maximal slicing + Dirac gauge

[Bonazzola, Gourgoulhon, Grandclément \& Novak, PRD in press, gr-qc/0307082 v4]

- 5 elliptic equations (4 constraints $+K=0$ condition) $\left(\Delta:=\mathcal{D}_{k} \mathcal{D}^{k}=\right.$ flat Laplacian):

$$
\begin{gathered}
\Delta N=\Psi^{4} N\left[4 \pi(E+S)+A_{k l} A^{k l}\right]-h^{k l} \mathcal{D}_{k} \mathcal{D}_{l} N-2 \tilde{D}_{k} \ln \Psi \tilde{D}^{k} N \quad \text { (} N=\text { lapse function) } \\
\begin{array}{c}
\Delta\left(\Psi^{2} N\right)= \\
\Psi^{6} N\left(4 \pi S+\frac{3}{4} A_{k l} A^{k l}\right)-h^{k l} \mathcal{D}_{k} \mathcal{D}_{l}\left(\Psi^{2} N\right)+\Psi^{2}\left[N \left(\frac{1}{16} \tilde{\gamma}^{k l} \mathcal{D}_{k} h^{i j} \mathcal{D}_{l} \tilde{\gamma}_{i j}\right.\right. \\
\left.\left.-\frac{1}{8} \tilde{\gamma}^{k l} \mathcal{D}_{k} h^{i j} \mathcal{D}_{j} \tilde{\gamma}_{i l}+2 \tilde{D}_{k} \ln \Psi \tilde{D}^{k} \ln \Psi\right)+2 \tilde{D}_{k} \ln \Psi \tilde{D}^{k} N\right] . \\
\begin{array}{c}
\Delta \beta^{i}+\frac{1}{3} \mathcal{D}^{i}\left(\mathcal{D}_{j} \beta^{j}\right)= \\
\\
-h^{k l} A^{i j} \mathcal{D}_{j} N+16 \pi N \Psi^{4} \beta^{i}-\frac{1}{3} h^{i k} \mathcal{D}_{k} \mathcal{D}_{l} \beta^{l}
\end{array}
\end{array} . \begin{array}{l}
12 N A^{i j} \mathcal{D}_{j} \ln \Psi-2 \Delta^{i}{ }_{k l} N A^{k l}
\end{array}
\end{gathered}
$$

$3+1$ equations in maximal slicing + Dirac gauge (cont'd)

- 2 scalar wave equations for two scalar potentials χ and μ :

$$
\begin{aligned}
& -\frac{\partial^{2} \chi}{\partial t^{2}}+\Delta \chi=S_{\chi} \\
& -\frac{\partial^{2} \mu}{\partial t^{2}}+\Delta \mu=S_{\mu}
\end{aligned}
$$

(for expression of S_{χ} and S_{μ} see [Bonazzola, Gourgoulhon, Grandclément \& Novak, PRD in press, gr-qc/0307082 v4])

The remaining 3 degrees of freedom are fixed by the Dirac gauge:
(i) From the two potentials χ and μ, construct a TT tensor $\bar{h}^{i j}$ according to the formulas (components with respect to a spherical f-orthonormal frame)
$\bar{h}^{r r}=\frac{\chi}{r^{2}}, \quad \bar{h}^{r \theta}=\frac{1}{r}\left(\frac{\partial \eta}{\partial \theta}-\frac{1}{\sin \theta} \frac{\partial \mu}{\partial \varphi}\right), \quad \bar{h}^{r \varphi}=\frac{1}{r}\left(\frac{1}{\sin \theta} \frac{\partial \eta}{\partial \varphi}+\frac{\partial \mu}{\partial \theta}\right)$, etc \ldots
with $\Delta_{\theta \varphi} \eta=-\partial \chi / \partial r-\chi / r$
1st Astro-PF workshop, CAMK, Warsaw, 13-15 October 2004

Recovering the conformal metric $\tilde{\gamma}_{i j}$ from the TT tensor $\bar{h}^{i j}$

(ii) $h^{i j}$ is uniquely determined by the TT tensor $\bar{h}^{i j}$ as the following divergence-free (Dirac gauge) tensor :

$$
\begin{equation*}
h^{i j}=\bar{h}^{i j}+\frac{1}{2}\left(h f^{i j}-\mathcal{D}^{i} \mathcal{D}^{j} \phi\right) \tag{1}
\end{equation*}
$$

where $h:=f_{i j} h^{i j}$ is the trace of $h^{i j}$ with respect to the flat metric and ϕ is the solution of the Poisson equation $\Delta \phi=h$. The trace h is determined in order to enforce the condition $\operatorname{det} \tilde{\gamma}_{i j}=\operatorname{det} f_{i j}$ (definition of Ψ) by

$$
\begin{align*}
h= & -h^{r r} h^{\theta \theta}-h^{r r} h^{\varphi \varphi}-h^{\theta \theta} h^{\varphi \varphi}+\left(h^{r \theta}\right)^{2}+\left(h^{r \varphi}\right)^{2}+\left(h^{\theta \varphi}\right)^{2}-h^{r r} h^{\theta \theta} h^{\varphi \varphi} \\
& -2 h^{r \theta} h^{r \varphi} h^{\theta \varphi}+h^{r r}\left(h^{\theta \varphi}\right)^{2}+h^{\theta \theta}\left(h^{r \varphi}\right)^{2}+h^{\varphi \varphi}\left(h^{r \theta}\right)^{2} \tag{2}
\end{align*}
$$

Equations (1) and (2) constitute a coupled system which can be solved by iterations (starting from $h^{i j}=\bar{h}^{i j}$), at the price of solving the Poisson equation $\Delta \phi=h$ at each step. In practise a few iterations are sufficient to reach machine accuracy.
(iii) Finally $\tilde{\gamma}^{i j}=f^{i j}+h^{i j}$.

Numerical implementation

Numerical code based on the C++ library Lorene (http://www.lorene.obspm.fr) with the following main features:

- multidomain spectral methods based on spherical coordinates (r, θ, φ), with compactified external domain (\Longrightarrow spatial infinity included in the computational domain for elliptic equations)
- very efficient outgoing-wave boundary conditions, ensuring that all modes with spherical harmonics indices $\ell=0, \ell=1$ and $\ell=2$ are perfectly outgoing
[Novak \& Bonazzola, J. Comp. Phys. 197, 186 (2004)]
(recall: Sommerfeld boundary condition works only for $\ell=0$, which is too low for gravitational waves)

Results on a pure gravitational wave spacetime

Initial data: similar to [Baumgarte \& Shapiro, PRD 59, 024007 (1998)], namely a momentarily static $\left(\partial \tilde{\gamma}^{i j} / \partial t=0\right)$ Teukolsky wave $\ell=2, m=2$:

$$
\left\{\begin{array}{l}
\chi(t=0)=\frac{\chi_{0}}{2} r^{2} \exp \left(-\frac{r^{2}}{r_{0}^{2}}\right) \sin ^{2} \theta \sin 2 \varphi \quad \text { with } \quad \chi_{0}=10^{-3} \\
\mu(t=0)=0
\end{array}\right.
$$

Preparation of the initial data by means of the conformal thin sandwich procedure

Evolution of $h^{\varphi \varphi}$ in the plane $\theta=\frac{\pi}{2}$

1st Astro-PF workshop, CAMK, Warsaw, 13-15 October 2004

Test: conservation of the ADM mass

Number of coefficients in each domain: $N_{r}=17, N_{\theta}=9, N_{\varphi}=8$ For $d t=510^{-3} r_{0}$, the ADM mass is conserved within a relative error lower than 10^{-4}

Late time evolution of the ADM mass

At $t>10 r_{0}$, the wave has completely left the computation domain \Longrightarrow Minkowski spacetime

Long term stability

Nothing happens until the run is switched off at $t=400 r_{0}$!

Another test: check of the $\frac{\partial \Psi}{\partial t}$ relation

The relation $\frac{\partial}{\partial t} \ln \Psi-\beta^{k} \mathcal{D}_{k} \ln \Psi=\frac{1}{6} \mathcal{D}_{k} \beta^{k}$ (trace of the definition of the extrinsic curvature as the time derivative of the spatial metric) is not enforced in our scheme. \Longrightarrow This provides an additional test:

1st Astro-PF workshop, CAMK, Warsaw, 13-15 October 2004

Summary

- Dirac gauge + maximal slicing reduces the Einstein equations into a system of - two scalar elliptic equations (including the Hamiltonian constraint)
- one vector elliptic equations (the momentum constraint)
- two scalar wave equations (evolving the two dynamical degrees of freedom of the gravitational field)
- The usage of spherical coordinates and spherical components of tensor fields is crucial in reducing the dynamical Einstein equations to two scalar wave equations
- The unimodular character of the conformal metric $\left(\operatorname{det} \tilde{\gamma}_{i j}=\operatorname{det} f_{i j}\right)$ is ensured in our scheme
- First numerical results show that Dirac gauge + maximal slicing seems a promising choice for stable evolutions of $3+1$ Einstein equations and gravitational wave extraction
- It remains to be tested on black hole spacetimes !

1st Astro-PF workshop, CAMK, Warsaw, 13-15 October 2004

Advantages for NS spacetimes

- Spherical coordinates (inherent to the new formulation) are well adapted to the description of stellar objects (axisymmetry limit is immediate)
- Far from the central star, the time evolved quantities $\left(h^{i j}\right)$ are nothing but the gravitational wave components in the TT gauge \Longrightarrow easy extraction of gravitational radiation
- Isenberg-Wilson-Mathews approximation (widely used for equilibrium configurations of binary NS) is easily recovered in our scheme, by setting $h^{i j}=0$
- Dirac gauge fully fixes the spatial coordinates \Longrightarrow along with the resolution of constraints within the scheme, this allows for getting stationary solutions within the very same scheme, simply setting $\partial / \partial t=0$ in the equations

A drawback: the quasi-isotropic coordinates usually used to compute stationary configurations of rotating NS do not belong to Dirac gauge, except for spherical symmetry

Future prospects

- Evolution of the gravitational field part (Einstein equations) is already implemented in LORENE (classes Evolution and Tsclice_dirac_max)
- Implementation of the hydrodynamic equations (L. Villain)
- A first step: computation of stationary configurations of rotating stars within Dirac gauge (L.-M. Lin)
- Dynamical evolution of unstable rotating stars
- Gravitational collapse
- etc...

