A new formulation for evolving neutron star spacetimes

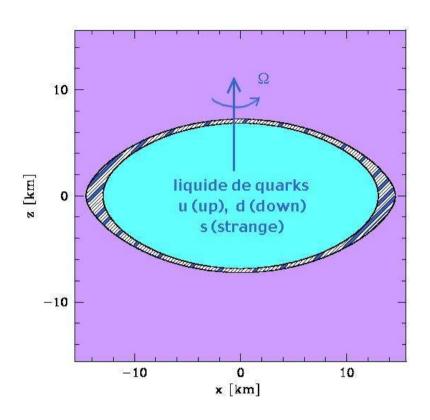
Éric Gourgoulhon
Laboratoire de l'Univers et de ses Théories (LUTH)
CNRS / Observatoire de Paris
F-92195 Meudon, France

based on a collaboration with

Michal Bejger, Silvano Bonazzola, Dorota Gondek-Rosińska, Philippe Grandclément, Pawel Haensel, José Luis Jaramillo, François Limousin, Lap-Ming Lin, Jérôme Novak, Loïc Villain & J. Leszek Zdunik

```
eric.gourgoulhon@obspm.fr
http://www.luth.obspm.fr
```

Local context (i.e. within the Meudon - Warsaw group)



Most previous computations: stationary models of compacts stars

- single rotating stars: determination of maximum mass, maximum rotation rate, ISCO frequency, accretion induced spin-up, for various models of dense matter
- binary stars: determination of last stable orbit (end of chirp phase in the GW signal) for neutron stars and strange quark stars

[Zdunik, Haensel, Gourgoulhon, A&A 372, 535 (2001)]

Exceptions: 1D gravitational collapse NS \rightarrow BH [in GR (1991,1993) and in tensor-scalar theories (1998)], 3D stellar core collapse [Newtonian (1993) and IWM approx. (2004)], inertial modes in rotating star [Newtonian (2002) and IWM approx. (2004)].

Computing time evolution of neutron stars

Astrophysical motivations:

- Oscillations and stability
 - ★ beyond the linear regime
 - ★ for rapidly rotating stars
- Direct computation of resulting gravitational wave emission
- Phase transitions
- Collapse of supramassive neutron stars to black hole
- Formation and stability of black hole torus systems

Global context (i.e. studies from other groups)

Numerical studies of time evolution of rapidly rotating NS

2D (axisymmetric) codes:

- Nakamura et al. (1981,1983): rotating collapse to a black hole, full GR, cylindrical coordinates (ϖ, z, φ)
- Stark & Piran (1985): rotating collapse to a black hole, extraction of GW, full GR, spherical coordinates (r, θ, φ)
- Dimmelmeier, Font & Müller (2002): stellar core collapse, IWM approx. to GR, spherical coordinates (r, θ, φ) [A&A 388, 917 (2002)] [A&A 393, 523 (2002)]
- Shibata (2003): general purpose axisymmetric full GR code, Cartesian coordinates (x, y, z) + "cartoon" method [Shibata, PRD 67, 024033 (2003)]
 - → GW from axisymmetrically oscillating NS [Shibata & Sekiguchi, PRD 68, 104020 (2003)]
 - \rightarrow GW from axisymmetric stellar core collapse to NS [Shibata & Sekiguchi, PRD **69**, 084024 (2004)]
 - → collapse of rotating supramassive NS to BH [Shibata, ApJ 595, 992 (2003)]
 - → collapse of rapidly rotating polytopes to BH [Sekiguchi & Shibata, PRD 70, 084005 (2004)]

Global context (i.e. studies from other groups)

Numerical studies of time evolution of rapidly rotating NS

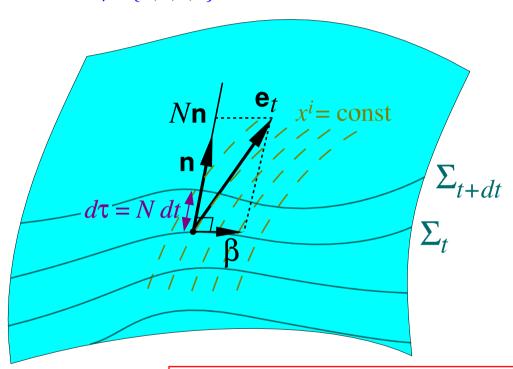
3D codes:

- Shibata (1999) [Shibata, Prog. Theor. Phys. 101, 1199 (1999)] [Shibata, PRD 60, 104052 (1999)] : full GR, Cartesian coordinates (x,y,z)
 - \rightarrow 3D collapse of rotating NS ($\gamma=1$) [Shibata, Baumgarte & Shapiro, PRD **61**, 044012 (2000)]
 - → binary NS merger [Shibata & Uryu, PRD **61**, 064001 (2000)], [Shibata, Taniguchi & Uryu, PRD **68**, 084020 (2003)]
- GR_ASTRO/Cactus code (2000,2002) [Font et al., PRD 61, 044011 (2000)] [Font et al., PRD 64, 084024 (2002)] : full GR, Cartesian coordinates (x,y,z)
- Whisky/Cactus code (2004) [Baiotti et al., gr-qc/0403029]: full GR, Cartesian coordinates (x,y,z)
- "Mariage des maillages" code (2004) [Dimmelmeier, Novak, Font, Ibañez & Müller, gr-qc/0407174] : IWM approx. to GR, spherical coordinates (r, θ, φ)

Time evolution in general relativity: the 3+1 formalism

Foliation of spacetime by a family of spacelike hypersurfaces $(\Sigma_t)_{t\in\mathbb{R}}$; on each hypersurface, pick a coordinate system $(x^i)_{i\in\{1,2,3\}}$

 $\implies (x^{\mu})_{\mu \in \{0,1,2,3\}} = (t,x^1,x^2,x^3) = \text{coordinate system on spacetime}$



 ${\bf n}$: future directed unit normal to Σ_t :

 $\mathbf{n} = -N \, \mathbf{d}t$, N: lapse function

 $\mathbf{e}_t = \partial/\partial t$: time vector of the natural basis associated with the coordinates (x^{μ})

 $\left. egin{aligned} N & ext{: lapse function} \ oldsymbol{eta} & ext{: shift vector} \end{aligned}
ight.
ight. egin{aligned} \mathbf{e}_t = N\mathbf{n} + oldsymbol{eta} \end{aligned}$

Geometry of the hypersurfaces Σ_t :

- induced metric $\gamma = \mathbf{g} + \mathbf{n} \otimes_{\mathbf{n}} \mathbf{n}$

– extrinsic curvature : $\mathbf{K} = -\frac{1}{2} \pounds_{\mathbf{n}} \boldsymbol{\gamma}$

$$g_{\mu\nu} dx^{\mu} dx^{\nu} = -N^2 dt^2 + \gamma_{ij} (dx^i + \beta^i dt) (dx^j + \beta^j dt)$$

3+1 decomposition of Einstein equation

Orthogonal projection of Einstein equation onto Σ_t and along the normal to Σ_t :

Hamiltonian constraint:

$$R + K^2 - K_{ij}K^{ij} = 16\pi E$$

Momentum constraint :

$$D_j K^{ij} - D^i K = 8\pi J^i$$

Dynamical equations :

$$\frac{\partial K_{ij}}{\partial t} - \pounds_{\beta} K_{ij} = -D_i D_j N + N \left[R_{ij} - 2K_{ik} K_j^k + K K_{ij} + 4\pi ((S - E)\gamma_{ij} - 2S_{ij}) \right]$$

$$E := \mathbf{T}(\mathbf{n}, \mathbf{n}) = T_{\mu\nu} \, n^{\mu} n^{\nu}, \qquad J_i := -\gamma_i^{\ \mu} \, T_{\mu\nu} \, n^{\nu}, \qquad S_{ij} := \gamma_i^{\ \mu} \, \gamma_j^{\ \nu} \, T_{\mu\nu}, \quad S := S_i^{\ i}$$

 D_i : covariant derivative associated with γ , R_{ij} : Ricci tensor of D_i , $R:=R_i^{\ i}$

Kinematical relation between γ and K:

$$\frac{\partial \gamma^{ij}}{\partial t} + D^i \beta^j + D^j \beta^i = 2NK^{ij}$$

Resolution of Einstein equation Cauchy problem

Free vs. constrained evolution in 3+1 numerical relativity

Einstein equations split into $\begin{cases} \text{dynamical equations} & \frac{\partial}{\partial t}K_{ij} = \dots \\ \text{Hamiltonian constraint} & R+K^2-K_{ij}K^{ij} = 16\pi E \\ \text{momentum constraint} & D_jK_i^{\ j}-D_iK = 8\pi J_i \end{cases}$

- 2-D computations (80's and 90's):
 partially constrained schemes: Bardeen & Piran (1983), Stark & Piran (1985), Evans (1986)
 fully constrained schemes: Evans (1989), Shapiro & Teukolsky (1992), Abrahams et al. (1994)
- 3-D computations (from mid 90's): almost all based on free evolution schemes: BSSN, symmetric hyperbolic formulations, etc...
 - ⇒ problem: exponential growth of constraint violating modes

Standard issue 1: the constraints usually involve elliptic equations and 3-D elliptic solvers are CPU-time expensive!

Cartesian vs. spherical coordinates in 3+1 numerical relativity

- 1-D and 2-D computations: massive usage of spherical coordinates (r, θ, φ)
- 3-D computations: almost all based on Cartesian coordinates (x, y, z), although spherical coordinates are better suited to study objects with spherical topology (black holes, neutron stars). Two exceptions:
 - Nakamura et al. (1987): evolution of pure gravitational wave spacetimes in spherical coordinates (but with Cartesian components of tensor fields)
 - Stark (1989): attempt to compute 3D stellar collapse in spherical coordinates

Standard issue 2: spherical coordinates are singular at r=0 and $\theta=0$ or π !

Standard issues 1 and 2 can be overcome

Standard issues 1 and 2 are neither *mathematical* nor *physical*, but *technical* ones \implies they can be overcome with appropriate techniques

Spectral methods allow for

- an automatic treatment of the singularities of spherical coordinates (issue 2)
- fast 3-D elliptic solvers in spherical coordinates: 3-D Poisson equation reduced to a system of 1-D algebraic equations with banded matrices [Grandclément, Bonazzola, Gourgoulhon & Marck, J. Comp. Phys. 170, 231 (2001)] (issue 1)

Conformal metric and dynamics of the gravitational field

York (1972): Dynamical degrees of freedom of the gravitational field carried by the conformal "metric"

$$\hat{\gamma}_{ij} := \gamma^{-1/3} \gamma_{ij}$$
 with $\gamma := \det \gamma_{ij}$

$$\hat{\gamma}_{ij} = \text{tensor density of weight } -2/3$$

To work with tensor fields only, introduce an extra structure on Σ_t : a flat metric \mathbf{f} such that $\frac{\partial f_{ij}}{\partial t} = 0$ and $\gamma_{ij} \sim f_{ij}$ at spatial infinity (asymptotic flatness)

Define
$$\tilde{\gamma}_{ij} := \Psi^{-4} \gamma_{ij}$$
 or $\gamma_{ij} =: \Psi^{4} \tilde{\gamma}_{ij}$ with $\Psi := \left(\frac{\gamma}{f}\right)^{1/12}$, $f := \det f_{ij}$

 $ilde{\gamma}_{ij}$ is invariant under any conformal transformation of γ_{ij} and verifies $\det ilde{\gamma}_{ij} = f$

Notations: $\tilde{\gamma}^{ij}$: inverse conformal metric : $\tilde{\gamma}_{ik} \, \tilde{\gamma}^{kj} = \delta_i^{\ j}$ \tilde{D}_i : covariant derivative associated with $\tilde{\gamma}_{ij}$, $\tilde{D}^i := \tilde{\gamma}^{ij} \tilde{D}_j$ \mathcal{D}_i : covariant derivative associated with f_{ij} , $\mathcal{D}^i := f^{ij} \mathcal{D}_j$

Dirac gauge

Conformal decomposition of the metric γ_{ij} of the spacelike hypersurfaces Σ_t :

$$\gamma_{ij} =: \Psi^4 \, \tilde{\gamma}_{ij} \qquad \text{with} \qquad \tilde{\gamma}^{ij} =: f^{ij} + h^{ij}$$

where f_{ij} is a flat metric on Σ_t , h^{ij} a symmetric tensor and Ψ a scalar field defined by $\Psi := \left(\frac{\det \gamma_{ij}}{\det f_{ij}}\right)^{1/12}$

Dirac gauge (Dirac, 1959) = divergence-free condition on $\tilde{\gamma}^{ij}$: $\mathcal{D}_j \tilde{\gamma}^{ij} = \mathcal{D}_j h^{ij} = 0$ where \mathcal{D}_j denotes the covariant derivative with respect to the flat metric f_{ij} .

Compare

- minimal distortion (Smarr & York 1978) : $D_j \left(\partial \tilde{\gamma}^{ij} / \partial t \right) = 0$
- ullet pseudo-minimal distortion (Nakamura 1994) : $\mathcal{D}^{j}\left(\partial ilde{\gamma}^{ij}/\partial t\right)=0$

Notice: Dirac gauge \iff BSSN connection functions vanish: $\tilde{\Gamma}^i = 0$

Dirac gauge: discussion

• introduced by Dirac (1959) in order to fix the coordinates in some Hamiltonian formulation of general relativity; originally defined for Cartesian coordinates only: $\frac{\partial}{\partial x^j} \left(\gamma^{1/3} \, \gamma^{ij} \right) = 0$

but trivially extended by us to more general type of coordinates (e.g. spherical) thanks to the introduction of the flat metric f_{ij} : $\mathcal{D}_j\left((\gamma/f)^{1/3}\gamma^{ij}\right)=0$

- fully specifies (up to some boundary conditions) the coordinates in each hypersurface Σ_t , including the initial one \Rightarrow allows for the search for stationary solutions
- leads asymptotically to transverse-traceless (TT) coordinates (same as minimal distortion gauge). Both gauges are analogous to Coulomb gauge in electrodynamics
- turns the Ricci tensor of conformal metric $\tilde{\gamma}_{ij}$ into an elliptic operator for $h^{ij} \Longrightarrow$ the dynamical Einstein equations become a wave equation for h^{ij}
- ullet results in a vector elliptic equation for the shift vector eta^i

3+1 Einstein equations in maximal slicing + Dirac gauge

[Bonazzola, Gourgoulhon, Grandclément & Novak, PRD in press, gr-qc/0307082 v4]

• 5 elliptic equations (4 constraints +K=0 condition) ($\Delta := \mathcal{D}_k \mathcal{D}^k = \text{flat Laplacian}$):

$$\Delta N = \Psi^4 N \left[4\pi (E+S) + A_{kl} A^{kl} \right] - h^{kl} \mathcal{D}_k \mathcal{D}_l N - 2\tilde{D}_k \ln \Psi \, \tilde{D}^k N \quad \text{($N = $lapse function)}$$

$$\Delta(\Psi^{2}N) = \Psi^{6}N\left(4\pi S + \frac{3}{4}A_{kl}A^{kl}\right) - h^{kl}\mathcal{D}_{k}\mathcal{D}_{l}(\Psi^{2}N) + \Psi^{2}\left[N\left(\frac{1}{16}\tilde{\gamma}^{kl}\mathcal{D}_{k}h^{ij}\mathcal{D}_{l}\tilde{\gamma}_{ij}\right) - \frac{1}{8}\tilde{\gamma}^{kl}\mathcal{D}_{k}h^{ij}\mathcal{D}_{j}\tilde{\gamma}_{il} + 2\tilde{D}_{k}\ln\Psi\,\tilde{D}^{k}\ln\Psi\right) + 2\tilde{D}_{k}\ln\Psi\,\tilde{D}^{k}N\right].$$

$$\Delta \beta^{i} + \frac{1}{3} \mathcal{D}^{i} \left(\mathcal{D}_{j} \beta^{j} \right) = 2A^{ij} \mathcal{D}_{j} N + 16\pi N \Psi^{4} J^{i} - 12N A^{ij} \mathcal{D}_{j} \ln \Psi - 2\Delta^{i}_{kl} N A^{kl}$$
$$-h^{kl} \mathcal{D}_{k} \mathcal{D}_{l} \beta^{i} - \frac{1}{3} h^{ik} \mathcal{D}_{k} \mathcal{D}_{l} \beta^{l}$$

3+1 equations in maximal slicing + Dirac gauge (cont'd)

• 2 scalar wave equations for two scalar potentials χ and μ :

$$-\frac{\partial^2 \chi}{\partial t^2} + \Delta \chi = S_{\chi}$$
$$-\frac{\partial^2 \mu}{\partial t^2} + \Delta \mu = S_{\mu}$$

(for expression of S_χ and S_μ see [Bonazzola, Gourgoulhon, Grandclément & Novak, PRD in press, gr-qc/0307082 v4])

The remaining 3 degrees of freedom are fixed by the Dirac gauge:

(i) From the two potentials χ and μ , construct a TT tensor \bar{h}^{ij} according to the formulas (components with respect to a spherical **f**-orthonormal frame)

$$\bar{h}^{rr} = \frac{\chi}{r^2}, \quad \bar{h}^{r\theta} = \frac{1}{r} \left(\frac{\partial \eta}{\partial \theta} - \frac{1}{\sin \theta} \frac{\partial \mu}{\partial \varphi} \right), \quad \bar{h}^{r\varphi} = \frac{1}{r} \left(\frac{1}{\sin \theta} \frac{\partial \eta}{\partial \varphi} + \frac{\partial \mu}{\partial \theta} \right), \quad \text{etc...}$$
 with $\Delta_{\theta \varphi} \eta = -\partial \chi / \partial r - \chi / r$

1st Astro-PF workshop, CAMK, Warsaw, 13-15 October 2004

Recovering the conformal metric $\tilde{\gamma}_{ij}$ from the TT tensor \bar{h}^{ij}

(ii) h^{ij} is uniquely determined by the TT tensor \bar{h}^{ij} as the following divergence-free (Dirac gauge) tensor :

$$h^{ij} = \bar{h}^{ij} + \frac{1}{2} \left(h f^{ij} - \mathcal{D}^i \mathcal{D}^j \phi \right) \tag{1}$$

where $h := f_{ij}h^{ij}$ is the trace of h^{ij} with respect to the flat metric and ϕ is the solution of the Poisson equation $\Delta \phi = h$. The trace h is determined in order to enforce the condition $\det \tilde{\gamma}_{ij} = \det f_{ij}$ (definition of Ψ) by

$$h = -h^{rr}h^{\theta\theta} - h^{rr}h^{\varphi\varphi} - h^{\theta\theta}h^{\varphi\varphi} + (h^{r\theta})^2 + (h^{r\varphi})^2 + (h^{\theta\varphi})^2 - h^{rr}h^{\theta\theta}h^{\varphi\varphi}$$
$$-2h^{r\theta}h^{r\varphi}h^{\theta\varphi} + h^{rr}(h^{\theta\varphi})^2 + h^{\theta\theta}(h^{r\varphi})^2 + h^{\varphi\varphi}(h^{r\theta})^2$$
(2)

Equations (1) and (2) constitute a coupled system which can be solved by iterations (starting from $h^{ij} = \bar{h}^{ij}$), at the price of solving the Poisson equation $\Delta \phi = h$ at each step. In practise a few iterations are sufficient to reach machine accuracy.

(iii) Finally $\tilde{\gamma}^{ij} = f^{ij} + h^{ij}$.

Numerical implementation

Numerical code based on the C++ library LORENE (http://www.lorene.obspm.fr) with the following main features:

- multidomain spectral methods based on spherical coordinates (r, θ, φ) , with compactified external domain (\Longrightarrow spatial infinity included in the computational domain for elliptic equations)
- very efficient outgoing-wave boundary conditions, ensuring that all modes with spherical harmonics indices $\ell=0$, $\ell=1$ and $\ell=2$ are perfectly outgoing [Novak & Bonazzola, J. Comp. Phys. 197, 186 (2004)]

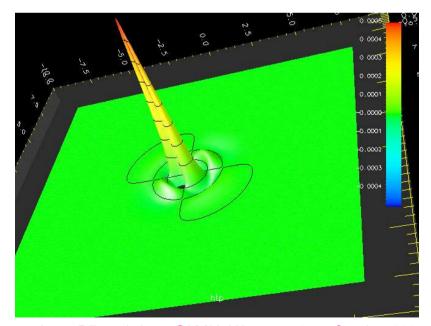
(recall: Sommerfeld boundary condition works only for $\ell=0$, which is too low for gravitational waves)

Results on a pure gravitational wave spacetime

Initial data: similar to [Baumgarte & Shapiro, PRD 59, 024007 (1998)], namely a momentarily static $(\partial \tilde{\gamma}^{ij}/\partial t = 0)$ Teukolsky wave $\ell=2,\ m=2$:

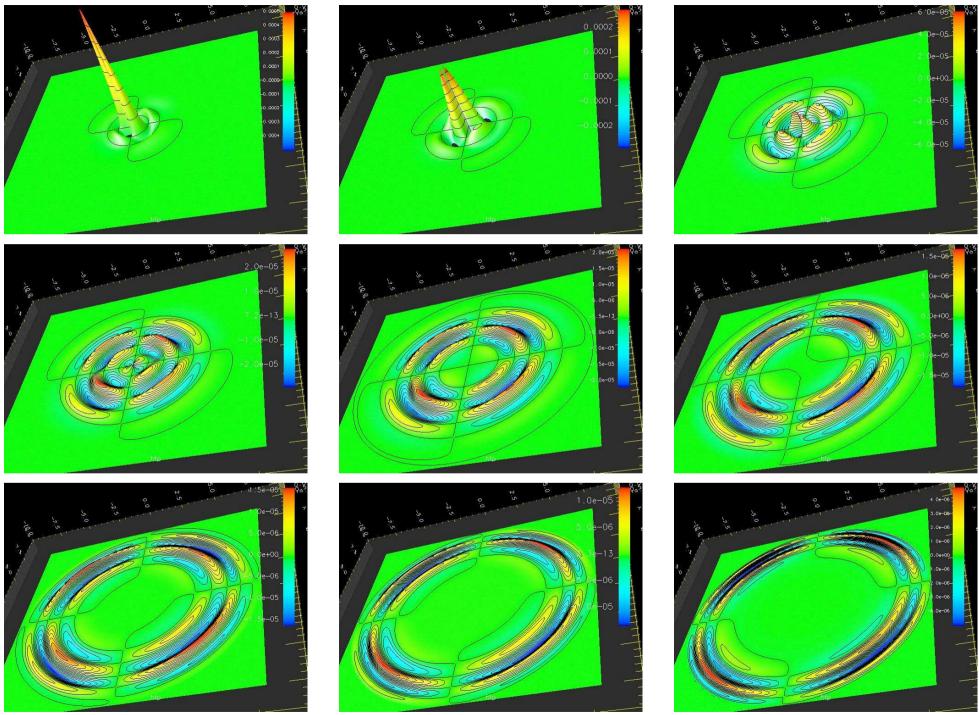
$$\begin{cases} \chi(t=0) &= \frac{\chi_0}{2} r^2 \exp\left(-\frac{r^2}{r_0^2}\right) \sin^2 \theta \sin 2\varphi \\ \mu(t=0) &= 0 \end{cases}$$
 with $\chi_0 = 10^{-3}$

Preparation of the initial data by means of the conformal thin sandwich procedure



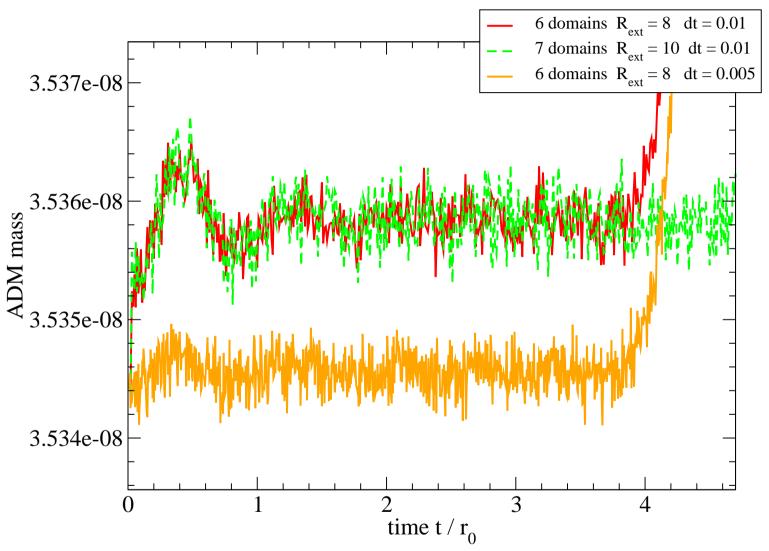
1st Astro-PF workshop, CAMK, Warsaw, 13-15 October 2004

Evolution of $h^{\varphi\varphi}$ in the plane $\theta=\frac{\pi}{2}$



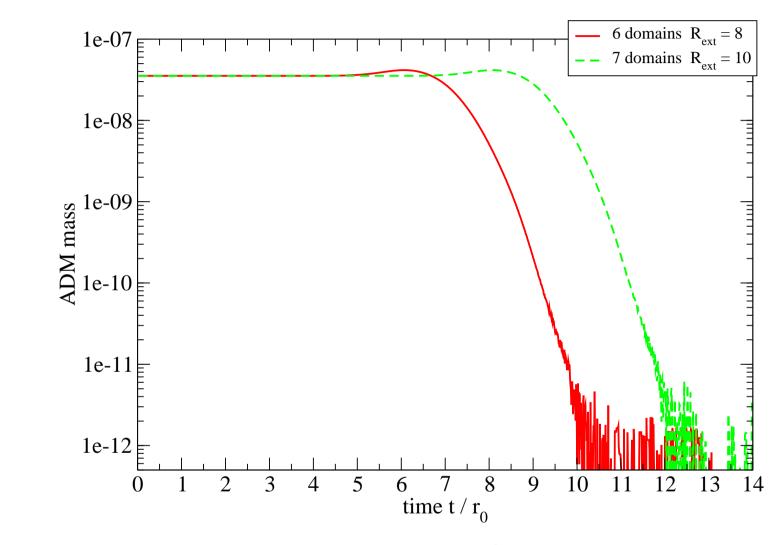
1st Astro-PF workshop, CAMK, Warsaw, 13-15 October 2004

Test: conservation of the ADM mass



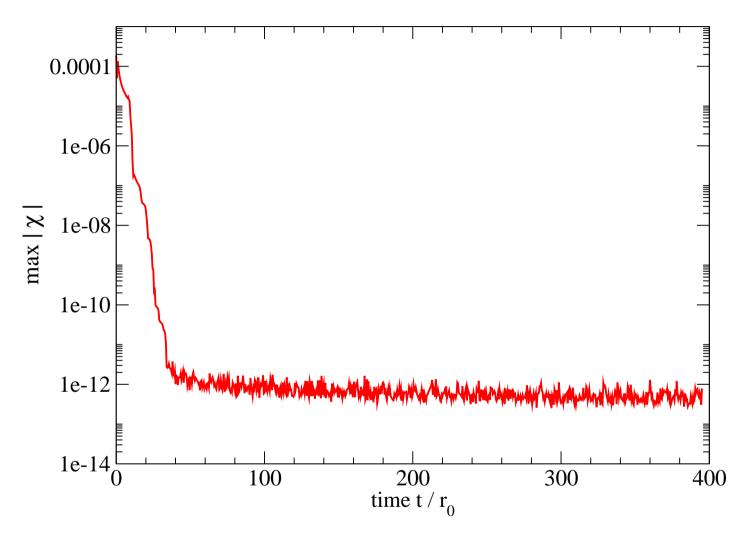
Number of coefficients in each domain: $N_r=17$, $N_\theta=9$, $N_\varphi=8$ For $dt=5\,10^{-3}r_0$, the ADM mass is conserved within a relative error lower than 10^{-4}

Late time evolution of the ADM mass



At $t>10\,r_0$, the wave has completely left the computation domain \Longrightarrow Minkowski spacetime

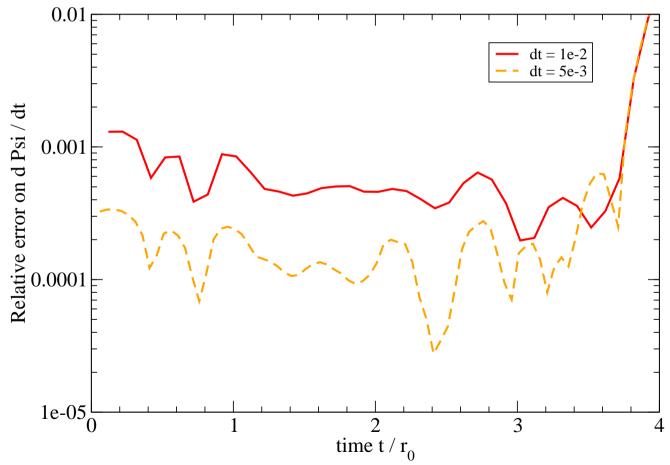
Long term stability



Nothing happens until the run is switched off at $t=400\,r_0$!

Another test: check of the $\frac{\partial \Psi}{\partial t}$ relation

The relation $\frac{\partial}{\partial t} \ln \Psi - \beta^k \mathcal{D}_k \ln \Psi = \frac{1}{6} \mathcal{D}_k \beta^k$ (trace of the definition of the extrinsic curvature as the time derivative of the spatial metric) is not enforced in our scheme. \Longrightarrow This provides an additional test:



1st Astro-PF workshop, CAMK, Warsaw, 13-15 October 2004

Summary

- Dirac gauge + maximal slicing reduces the Einstein equations into a system of
 - two scalar elliptic equations (including the Hamiltonian constraint)
 - one vector elliptic equations (the momentum constraint)
 - two scalar wave equations (evolving the two dynamical degrees of freedom of the gravitational field)
- The usage of spherical coordinates and spherical components of tensor fields is crucial
 in reducing the dynamical Einstein equations to two scalar wave equations
- The unimodular character of the conformal metric $(\det \tilde{\gamma}_{ij} = \det f_{ij})$ is ensured in our scheme
- First numerical results show that Dirac gauge + maximal slicing seems a promising choice for stable evolutions of 3+1 Einstein equations and gravitational wave extraction
- It remains to be tested on black hole spacetimes!

Advantages for NS spacetimes

- Spherical coordinates (inherent to the new formulation) are well adapted to the description of stellar objects (axisymmetry limit is immediate)
- Far from the central star, the time evolved quantities (h^{ij}) are nothing but the gravitational wave components in the TT gauge \Longrightarrow easy extraction of gravitational radiation
- Isenberg-Wilson-Mathews approximation (widely used for equilibrium configurations of binary NS) is easily recovered in our scheme, by setting $h^{ij}=0$
- Dirac gauge fully fixes the spatial coordinates \Longrightarrow along with the resolution of constraints within the scheme, this allows for getting stationary solutions within the very same scheme, simply setting $\partial/\partial t=0$ in the equations

A drawback: the quasi-isotropic coordinates usually used to compute stationary configurations of rotating NS do not belong to Dirac gauge, except for spherical symmetry

Future prospects

- Evolution of the gravitational field part (Einstein equations) is already implemented in LORENE (classes Evolution and Tsclice_dirac_max)
- Implementation of the hydrodynamic equations (L. Villain)
- A first step: computation of stationary configurations of rotating stars within Dirac gauge (L.-M. Lin)
- Dynamical evolution of unstable rotating stars
- Gravitational collapse
- etc...