Black holes and tests of gravitation

Éric Gourgoulhon

Laboratoire Univers et Théories (LUTH) CNRS / Observatoire de Paris / Université Paris Diderot 92190 Meudon, France

eric.gourgoulhon@obspm.fr

http://luth.obspm.fr/~luthier/gourgoulhon/

École Polytechnique

Palaiseau, 27 January 2015

- Black holes in general relativity
- 2 Astrophysical black holes
- 3 The near-future observations of black holes
- 4 Tests of gravitation

Outline

1 Black holes in general relativity

- 2 Astrophysical black holes
- 3 The near-future observations of black holes
- 4 Tests of gravitation

Black holes in general relativity

What is a black hole?

... for the layman:

A **black hole** is a region of spacetime from which nothing, not even light, can escape.

The (immaterial) boundary between the black hole interior and the rest of the Universe is called the **event horizon**.

[Alain Riazuelo, 2007]

What is a black hole?

... for the mathematical physicist:

black hole: $\mathcal{B} := \mathscr{M} - J^{-}(\mathscr{I}^{+})$

i.e. the region of spacetime where light rays cannot escape to infinity

- $(\mathcal{M}, \boldsymbol{g}) = \text{asymptotically flat}$ manifold
- $\mathscr{I}^+ = future null infinity$

•
$$J^-(\mathscr{I}^+) = \text{causal past of } \mathscr{I}^+$$

event horizon: $\mathcal{H} := \partial J^{-}(\mathscr{I}^{+})$ (boundary of $J^{-}(\mathscr{I}^{+})$)

 $\mathcal H \text{ smooth} \Longrightarrow \mathcal H \text{ null hypersurface}$

イロト イ団ト イヨト イヨト

What is a black hole?

... for the mathematical physicist:

black hole: $\mathcal{B} := \mathcal{M} - J^{-}(\mathcal{I}^{+})$

i.e. the region of spacetime where light rays cannot escape to infinity

- $(\mathcal{M}, \boldsymbol{g}) = \text{asymptotically flat}$ manifold
- $\mathscr{I}^+ = future null infinity$

•
$$J^-(\mathscr{I}^+) = \mathsf{causal} \ \mathsf{past} \ \mathsf{of} \ \mathscr{I}^+$$

event horizon: $\mathcal{H} := \partial J^{-}(\mathscr{I}^{+})$ (boundary of $J^{-}(\mathscr{I}^{+})$)

 $\mathcal H \mbox{ smooth} \Longrightarrow \mathcal H \mbox{ null hypersurface}$

Black holes in general relativity

What is a black hole?

spacetime diagram depicting the formation of a black hole from the gravitational collapse of the core of a massive star (*supernova* phenomenon)

singularity: curvature $\longrightarrow \infty$

What is a black hole?

... for the astrophysicist: a very deep gravitational potential well

Release of potential gravitational energy by **accretion** on a black hole: up to 42% of the mass-energy mc^2 of accreted matter !

NB: thermonuclear reactions release less than 1% mc^2

Matter falling in a black hole forms an **accretion disk** [Lynden-Bell (1969), Shakura & Sunayev (1973)]

[J.-A. Marck (1996)]

Main properties of black holes (1/3)

• In general relativity, a black hole contains a region where the spacetime curvature diverges: the singularity (*NB: this is not the primary definition of a black hole*). The singularity is inaccessible to observations, being hidden by the event horizon.

Main properties of black holes (1/3)

- In general relativity, a black hole contains a region where the spacetime curvature diverges: the singularity (*NB: this is not the primary definition of a black hole*). The singularity is inaccessible to observations, being hidden by the event horizon.
- The singularity marks the limit of validity of general relativity: to describe it, a quantum theory of gravitation would be required.

Main properties of black holes (1/3)

- In general relativity, a black hole contains a region where the spacetime curvature diverges: the singularity (*NB: this is not the primary definition of a black hole*). The singularity is inaccessible to observations, being hidden by the event horizon.
- The singularity marks the limit of validity of general relativity: to describe it, a quantum theory of gravitation would be required.
- The event horizon \mathcal{H} is a global structure of spacetime: no physical experiment whatsoever can detect the crossing of \mathcal{H} .

Black holes in general relativity

Main properties of black holes (2/3)

The event horizon as a null cone

э

・ロト ・回ト ・ヨト ・ヨト

Main properties of black holes (3/3)

- Viewed by a distant observer, the horizon approach is perceived with an infinite redshift, or equivalently, by an infinite time dilation
- A black hole is not an infinitely dense object: on the contrary it is made of vacuum (except maybe at the singularity); if one defines its "mean density" by $\bar{\rho} = M/(4/3\pi R^3)$, then
 - for the Galatic center BH (Sgr A*): $\bar{\rho} \sim 10^6 \ {\rm kg \, m^{-3}} \sim 2 \ 10^{-4} \ \rho_{\rm white \ dwarf}$
 - for the BH at the center of M87: $\bar{\rho} \sim 2 \text{ kg m}^{-3} \sim 2 \text{ 10}^{-3} \rho_{\text{water}}$!
 - \implies a black hole is a compact object: $\frac{M}{R}$ large, not $\frac{M}{R^3}$!
- Due to the non-linearity of general relativity, black holes can form in spacetimes empty of any matter, by collapse of gravitational wave packets.

The "no-hair" theorem

Dorochkevitch, Novikov & Zeldovitch (1965), Israel (1967), Carter (1971), Hawking (1972)

Within 4-dimensional general relativity, a black hole in equilibrium in an otherwise empty universe is necessarily a Kerr-Newmann black hole, which is a vacuum solution of Einstein described by only three parameters:

- ullet the total mass M
- ullet the total angular momentum J
- the total electric charge Q

 \implies "a black hole has no hair" (John A. Wheeler)

Astrophysical black holes have to be electrically neutral:

• Q = 0 : Kerr solution (1963)

The Kerr solution

Roy Kerr (1963)

$$g_{\alpha\beta} \,\mathrm{d}x^{\alpha} \,\mathrm{d}x^{\beta} = -\left(1 - \frac{2GMr}{c^{2}\rho^{2}}\right) c^{2}\mathrm{d}t^{2} - \frac{4GMar\sin^{2}\theta}{c^{2}\rho^{2}} c\,\mathrm{d}t\,\mathrm{d}\varphi + \frac{\rho^{2}}{\Delta}\,\mathrm{d}r^{2}$$
$$+\rho^{2}\mathrm{d}\theta^{2} + \left(r^{2} + a^{2} + \frac{2GMa^{2}r\sin^{2}\theta}{c^{2}\rho^{2}}\right)\sin^{2}\theta\,\mathrm{d}\varphi^{2}$$

where

$$\rho^2 := r^2 + a^2 \cos^2 \theta, \qquad \Delta := r^2 - \frac{2GM}{c^2}r + a^2, \qquad a := \frac{J}{cM}$$

$$\exists$$
 event horizon (black hole) $\iff |a| \leq rac{GM}{c^2}$

Schwarzschild subcase (a = 0):

$$g_{\alpha\beta} \,\mathrm{d}x^{\alpha} \,\mathrm{d}x^{\beta} = -\left(1 - \frac{2GM}{c^2 r}\right) c^2 \mathrm{d}t^2 + \left(1 - \frac{2GM}{c^2 r}\right)^{-1} \mathrm{d}r^2 + r^2 \left(\mathrm{d}\theta^2 + \sin^2\theta \,\mathrm{d}\varphi^2\right)$$

2

• • • • • • • • • • • •

• The mass *M* is not some measure of the "amount of matter" inside the black hole, but rather a parameter characterizing the external gravitational field; it is measurable from the orbital period of a test particle in circular orbit around the black hole and far from it (*Kepler's third law*).

- The mass *M* is not some measure of the "amount of matter" inside the black hole, but rather a parameter characterizing the external gravitational field; it is measurable from the orbital period of a test particle in circular orbit around the black hole and far from it (*Kepler's third law*).
- Similarly, the angular momentum J = caM is a parameter characterizing the gravito-magnetic part of the external gravitational field. It is measurable from the precession of a gyroscope orbiting the black hole (Lense-Thirring effect).

- The mass *M* is not some measure of the "amount of matter" inside the black hole, but rather a parameter characterizing the external gravitational field; it is measurable from the orbital period of a test particle in circular orbit around the black hole and far from it (*Kepler's third law*).
- Similarly, the angular momentum J = caM is a parameter characterizing the gravito-magnetic part of the external gravitational field. It is measurable from the precession of a gyroscope orbiting the black hole (Lense-Thirring effect).

- The mass *M* is not some measure of the "amount of matter" inside the black hole, but rather a parameter characterizing the external gravitational field; it is measurable from the orbital period of a test particle in circular orbit around the black hole and far from it (*Kepler's third law*).
- Similarly, the angular momentum J = caM is a parameter characterizing the gravito-magnetic part of the external gravitational field. It is measurable from the precession of a gyroscope orbiting the black hole (Lense-Thirring effect).

Remark: the radius of a black hole is not a well defined concept: it *does not* correspond to some distance between the black hole "centre" (the singularity) and the event horizon. A well defined quantity is the area of the event horizon, *A*. The radius can be then defined from it: for a Schwarzschild black hole:

$$R := \sqrt{rac{A}{4\pi}} = rac{2GM}{c^2} \simeq 3\left(rac{M}{M_\odot}
ight) \ {
m km}$$

• • • • • • • • • • • • •

Why is the Kerr metric special?

Spherically symmetric (non-rotating) case:

Birkhoff theorem

Within 4-dimensional general relativity, the spacetime outside any spherically symmetric body is described by Schwarzschild metric

 \implies No possibility to distinguish a non-rotating black hole from a non-rotating dark star by monitoring orbital motion or fitting accretion disk spectra

Why is the Kerr metric special?

Spherically symmetric (non-rotating) case:

Birkhoff theorem

Within 4-dimensional general relativity, the spacetime outside any spherically symmetric body is described by Schwarzschild metric

 \implies No possibility to distinguish a non-rotating black hole from a non-rotating dark star by monitoring orbital motion or fitting accretion disk spectra

Rotating axisymmetric case:

No Birkhoff theorem

Moreover, no "reasonable" matter source has ever been found for the Kerr metric (the only known source consists of two counter-rotating thin disks of collisionless particles [Bicak & Ledvinka, PRL 71, 1669 (1993)])

 \implies The Kerr metric is specific to rotating black holes (in 4-dimensional general relativity)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Black holes in general relativity

Lowest order no-hair theorem: quadrupole moment

Asymptotic expansion (large r) of the metric in terms of multipole moments $(\mathcal{M}_k, \mathcal{J}_k)_{k \in \mathbb{N}}$ [Geroch (1970), Hansen (1974)]:

- \mathcal{M}_k : mass 2^k -pole moment
- \mathcal{J}_k : angular momentum 2^k -pole moment
- \implies For the Kerr metric, all the multipole moments are determined by (M,a):
 - $\mathcal{M}_0 = M$
 - $\mathcal{J}_1 = aM = J/c$

•
$$\mathcal{M}_2 = -a^2 M = -\frac{J^2}{c^2 M}$$
 (*)

 $\leftarrow \text{ mass quadrupole moment}$

- $\mathcal{J}_3 = -a^3 M$
- $\mathcal{M}_4 = a^4 M$
- • •

Black holes in general relativity

Lowest order no-hair theorem: quadrupole moment

Asymptotic expansion (large r) of the metric in terms of multipole moments $(\mathcal{M}_k, \mathcal{J}_k)_{k \in \mathbb{N}}$ [Geroch (1970), Hansen (1974)]:

- \mathcal{M}_k : mass 2^k -pole moment
- \mathcal{J}_k : angular momentum 2^k -pole moment
- \implies For the Kerr metric, all the multipole moments are determined by (M,a):
 - $\mathcal{M}_0 = M$
 - $\mathcal{J}_1 = aM = J/c$ • $\mathcal{M}_2 = -a^2M = -\frac{J^2}{c^2M}$ (*) \leftarrow mass quadrupole moment • $\mathcal{J}_3 = -a^3M$ • $\mathcal{M}_4 = a^4M$
 - **•** • •

Measuring the three quantities M, J, M_2 provides a compatibility test w.r.t. the Kerr metric, by checking (*)

Other theoretical aspects

- The four laws of black hole dynamics
- Quantum properties (Bekenstein entropy, Hawking radiation)
- Black holes in higher dimensions

Outline

Black holes in general relativity

2 Astrophysical black holes

3 The near-future observations of black holes

4 Tests of gravitation

- ∢ ≣ ▶

Known black holes

Three kinds of black holes are known in the Universe:

• Stellar black holes: supernova remnants: $M \sim 10 - 30 \ M_{\odot}$ and $R \sim 30 - 90 \ \text{km}$ example: Cyg X-1 : $M = 15 \ M_{\odot}$ and $R = 45 \ \text{km}$

Image: A math a math

Known black holes

Three kinds of black holes are known in the Universe:

- Stellar black holes: supernova remnants: $M \sim 10 - 30 \ M_{\odot}$ and $R \sim 30 - 90 \ \text{km}$ example: Cyg X-1 : $M = 15 \ M_{\odot}$ and $R = 45 \ \text{km}$
- Supermassive black holes, in galactic nuclei: $M \sim 10^5 - 10^{10} M_{\odot}$ and $R \sim 3 \times 10^5 \text{ km} - 200 \text{ UA}$ example: Sgr A* : $M = 4.3 \times 10^6 M_{\odot}$ and $R = 13 \times 10^6 \text{ km} = 18 R_{\odot} = 0.09 \text{ UA} = \frac{1}{4} \times \text{radius of Mercury's orbit}$

18 / 52

Known black holes

Three kinds of black holes are known in the Universe:

- Stellar black holes: supernova remnants: $M \sim 10 - 30 \ M_{\odot}$ and $R \sim 30 - 90 \ \text{km}$ example: Cyg X-1 : $M = 15 \ M_{\odot}$ and $R = 45 \ \text{km}$
- Supermassive black holes, in galactic nuclei: $M \sim 10^5 - 10^{10} M_{\odot}$ and $R \sim 3 \times 10^5 \text{ km} - 200 \text{ UA}$ example: Sgr A* : $M = 4.3 \times 10^6 M_{\odot}$ and $R = 13 \times 10^6 \text{ km} = 18 R_{\odot} = 0.09 \text{ UA} = \frac{1}{4} \times \text{radius of Mercury's orbit}$
- Intermediate mass black holes, as ultra-luminous X-ray sources (?): $M \sim 10^2 10^4 M_{\odot}$ and $R \sim 300 \text{ km} 3 \times 10^4 \text{ km}$

example: ESO 243-49 HLX-1 : $M > 500~M_{\odot}$ and $R > 1500~{\rm km}$

Stellar black holes in X-ray binaries

\sim 20 identified stellar black holes in our galaxy

Stellar black holes in X-ray binaries

Supermassive black holes in active galactic nuclei (AGN)

Jet emitted by the nucleus of the giant elliptic galaxy M87, at the centre of Virgo cluster [HST] $M_{\rm BH}=3 imes10^9~M_\odot$ $V_{
m jet}\simeq 0.99~c$

Éric Gourgoulhon (LUTH)

The black hole at the centre of our galaxy: Sgr A*

[ESO (2009)]

Measure of the mass of Sgr A* black hole by stellar dynamics:

 $M_{\rm BH} = 4.3 \times 10^6 \, M_{\odot}$

 $\leftarrow \text{ Orbit of the star S2 around Sgr A*}$ $P = 16 \text{ yr}, \quad r_{\text{per}} = 120 \text{ UA} = 1400 R_{\text{S}},$ $V_{\text{per}} = 0.02 c$ [Genzel, Eisenhauer & Gillessen, RMP 82, 3121 (2010)]

Éric Gourgoulhon (LUTH)

Outline

Black holes in general relativity

- 2 Astrophysical black holes
- 3 The near-future observations of black holes

4 Tests of gravitation

The near-future observations of black holes

Can we see a black hole from the Earth?

Angular diameter of the event horizon of a Schwarzschild BH of mass M seen from a distance d:

$$\Theta = 6\sqrt{3}\,\frac{GM}{c^2d} \simeq 2.60\frac{2R_{\rm S}}{d}$$

Image of a thin accretion disk around a Schwarzschild BH

[Vincent, Paumard, Gourgoulhon & Perrin, CQG 28, 225011 (2011)]

The near-future observations of black holes

Can we see a black hole from the Earth?

Image of a thin accretion disk around a Schwarzschild BH [Vincent, Paumard, Gourgoulhon & Perrin, CQG 28, 225011 (2011)] Angular diameter of the event horizon of a Schwarzschild BH of mass M seen from a distance d:

$$\Theta = 6\sqrt{3}\,\frac{GM}{c^2d} \simeq 2.60\frac{2R_{\rm S}}{d}$$

Largest black holes in the Earth's sky:

Sgr A* : $\Theta = 53 \ \mu as$ M87 : $\Theta = 21 \ \mu as$ M31 : $\Theta = 20 \ \mu as$

Remark: black holes in X-ray binaries are $\sim 10^5$ times smaller, for $\Theta \propto M/d$

The near-future observations of black holes

The solution to reach the μas regime: interferometry !

Existing American VLBI network [Doeleman et al. 2011]

Very Large Baseline Interferometry (VLBI) in (sub)millimeter waves

Éric Gourgoulhon (LUTH)
The solution to reach the μas regime: interferometry !

Existing American VLBI network [Doeleman et al. 2011]

Very Large Baseline Interferometry (VLBI) in (sub)millimeter waves

The best result so far: VLBI observations at 1.3 mm have shown that the size of the emitting region in Sgr A* is only $37 \ \mu as$ [Doeleman et al., Nature

455, 78 (2008)]

The near future: the Event Horizon Telescope

To go further:

- \bullet shorten the wavelength: $1.3\;mm \rightarrow 0.8\;mm$
- increase the number of stations; in particular add ALMA

Atacama Large Millimeter Array (ALMA) part of the Event Horizon Telescope (EHT) to be completed by 2020

26 / 52

Near-infrared optical interferometry: GRAVITY

[Gillessen et al. 2010]

GRAVITY instrument at VLTI (late 2015)

Beam combiner (the four 8 m telescopes + four auxiliary telescopes) \implies astrometric precision of 10 μ as

X-ray observations (Athena)

The accretion disk as a spacetime probe

 $\mathbf{K}\alpha$ line: X fluorescence line of Fe atoms in the accretion disk (the Fe atoms are excited by the X-ray emitted from the plasma corona surrounding the disk)

 $\mathsf{Redshift} \Rightarrow \mathsf{time\ dilatation}$

Athena X-ray observatory selected in 2014 for ESA L2 mission \implies launch \sim 2028

 $K\alpha$ line in the nucleus of the galaxy MCG-6-30-15 observed by XMM-Newton (red) and Suzaku (black) (adapted from [Miller (2007)])

Another way to "see" BHs: gravitational waves

Link between black holes and gravitational waves: Black holes and gravitational waves are both spacetime distortions:

- extreme distortions (black holes)
- small distortions (gravitational waves)

In particular, black holes and gravitational waves are both vacuum solutions of general relativity equations (Einstein equations)

VIRGO: a giant Michelson interferometer...

Gravitational wave detector VIRGO in Cascina, near Pisa (Italy) [CNRS/INFN]

Optical scheme of the VIRGO interferometer

Éric	Gourgou	hon i	ίU	TH'
	Courgou			

VIRGO sensitivity curve

Advanced VIRGO

Advanced VIRGO: dual recycled (power + signal) interferometer with laser power \sim 125 W

[CNRS/INFN/NIKHEF]

- VIRGO+ decommissioned in Nov. 2011
- Construction of Advanced VIRGO underway
- First lock in 2015

< □ > < ^[] >

- Sensitivity \sim 10 \times VIRGO
- \implies explored Universe volume 10^3 times larger !

International Pulsar Timing Array (IPTA)

[Hobbs et al., CQG 27, 084013 (2010)]

eLISA

Gravitational wave detector in space \implies low frequency range: $[10^{-3}, 10^{-1}]$ Hz

[http://www.elisascience.org/]

- eLISA scientific theme selected in Nov. 2013 for ESA L3 mission ⇒ launch in 2028
- LISA Pathfinder: launch in Sept.-Nov. 2015

Outline

4 Tests of gravitation

- T →

Theoretical alternatives to the Kerr black hole

Within general relativity

The compact object is not a black hole but

- a boson star
- a gravastar
- a dark star
- ...

Beyond general relativity

The compact object is a black hole but in a theory that differs from GR:

- Einstein-Gauss-Bonnet with dilaton
- Chern-Simons gravity
- Hořava-Lifshitz gravity
- Einstein-Yang-Mills

• ...

How to test the alternatives to the Kerr black hole?

Search for

- stellar orbits deviating from Kerr timelike geodesics (GRAVITY)
- accretion disk spectra different from those arising in Kerr metric (X-ray observatories)
- images of the black hole shadow different from that of a Kerr black hole (EHT)

How to test the alternatives to the Kerr black hole?

Search for

- stellar orbits deviating from Kerr timelike geodesics (GRAVITY)
- accretion disk spectra different from those arising in Kerr metric (X-ray observatories)
- images of the black hole shadow different from that of a Kerr black hole (EHT)

Need for a good and versatile geodesic integrator

to compute timelike geodesics (orbits) and null geodesics (ray-tracing) in any kind of metric

Black hole images from null geodesics

Simulated image of a thin accretion disk around a Schwarzschild black hole

[Vincent, Paumard, Gourgoulhon & Perrin, CQG 28, 225011 (2011)]

Light ray trajectories http://luth.obspm. fr/~luminet/

Images computed by J.-A. Marck [Marck, CQG 13, 393 (1996)]

Images computed by J.-A. Marck [Marck, CQG 13, 393 (1996)]

Images computed by J.-A. Marck [Marck, CQG 13, 393 (1996)]

Isolated black hole in front of a stellar background

Image computed by A. Riazuello (IAP) [Riazuelo, 2007]

Isolated black hole in front of a stellar background

Image computed by A. Riazuello (IAP) [Riazuelo, 2007]

Isolated black hole in front of a stellar background

Image computed by A. Riazuello (IAP) [Riazuelo, 2007]

Gyoto code

Main developers: T. Paumard & F. Vincent

- Integration of geodesics in Kerr metric
- Integration of geodesics in any numerically computed 3+1 metric
- Radiative transfer included in optically thin media
- Very modular code (C++)
- Yorick interface
- Free software (GPL) : http://gyoto.obspm.fr/

[Vincent, Paumard, Gourgoulhon & Perrin, CQG 28, 225011 (2011)]
[Vincent, Gourgoulhon & Novak, CQG 29, 245005 (2012)]

Gyoto code

Computed images of a thin accretion disk around a Schwarzschild black hole

A I > A = A A

Measuring the spin from the black hole silhouette

Ray-tracing in the Kerr metric (spin parameter a)

Accretion structure around Sgr A* modelled as a ion torus, derived from the *polish doughnut* class [Abramowicz, Jaroszynski & Sikora (1978)]

Radiative processes included: thermal synchrotron, bremsstrahlung, inverse Compton

- $\leftarrow \text{ Image of an ion torus} \\ \text{computed with Gyoto for the} \\ \text{inclination angle } i = 80^{\circ}: \\ \end{cases}$
 - black: a = 0.5M
 - red: a = 0.9M

[Straub, Vincent, Abramowicz, Gourgoulhon & Paumard, A&A 543, A83 (2012)]

Orbits around a rotating boson star

Boson star = localized configurations of a self-gravitating complex scalar field Φ \equiv "*Klein-Gordon geons*" [Bonazzola & Pacini (1966), Kaup (1968)]

Boson stars may behave as black-hole mimickers

- Solutions of the *Einstein-Klein-Gordon* system computed by means of Kadath [Grandclément, JCP 229, 3334 (2010)]
- Timelike geodesics computed by means of Gyoto

Zero-angular-momentum orbit around a rotating boson star based on a free scalar field $\Phi = \phi(r, \theta) e^{i(\omega t + 2\varphi)}$ with $\omega = 0.75 m/\hbar$.

[Granclément, Somé & Gourgoulhon, PRD 90, 024068 (2014)]

Another tool to explore black hole spacetimes: SageManifolds

Symbolic differential geometry based on the modern **free open-source** mathematics software system **Sage**

- Sage is based on the Python programming language
- it makes use of many pre-existing open-sources packages, among which
 - Maxima (symbolic calculations, since 1968!)
 - GAP (group theory)
 - PARI/GP (number theory)
 - Singular (polynomial computations)
 - matplotlib (high quality 2D figures)

and provides a uniform interface to them

• William Stein (Univ. of Washington) created Sage in 2005; since then, ${\sim}100$ developers (mostly mathematicians) have joined the Sage team

The mission

Create a viable free open source alternative to Magma, Maple, Mathematica and Matlab.

46 /

The SageManifolds project

http://sagemanifolds.obspm.fr/

Aim

Implement the concept of real smooth manifolds of arbitrary dimension in Sage and tensor calculus on them, in a coordinate/frame-independent manner
The SageManifolds project

http://sagemanifolds.obspm.fr/

Aim

Implement the concept of real smooth manifolds of arbitrary dimension in Sage and tensor calculus on them, in a coordinate/frame-independent manner

In practice, this amounts to introducing new Python classes in Sage, basically one class per mathematical concept, for instance:

- Manifold: differentiable manifolds over \mathbb{R} , of arbitrary dimension
- Chart: coordinate charts
- Point: points on a manifold
- DiffMapping: differential mappings between manifolds
- ScalarField, VectorField, TensorField: tensor fields on a manifold
- **DiffForm**: *p*-forms
- AffConnection, LeviCivitaConnection: affine connections
- Metric: pseudo-Riemannian metrics

イロト イポト イラト イラ

We introduce the standard Boyer-Lindquist coordinates as follows:

```
X.<t,r,th,ph> = M.chart(r't r:(0,+oo) th:(0,pi):\theta ph:(0,2*pi):\phi')
print X ; X
   chart (M, (t, r, th, ph))
   (\mathcal{M}, (t, r, \theta, \phi))
```

Metric tensor

The 2 parameters m and a of the Kerr spacetime are declared as symbolic variables:

var('m, a') (m, a)

Let us introduce the spacetime metric q and set its components in the coordinate frame associated with Bover-Lindquist coordinates, which is the current manifold's default frame:

q = M.lorentz metric('q') $rho2 = r^{2} + (a*cos(th))^{2}$ $Delta = r^2 - 2*m*r + a^2$ q[0,0] = -(1-2*m*r/rho2)g[0,3] = -2*a*m*r*sin(th)^2/rho2 g[1,1], g[2,2] = rho2/Delta. rho2 g[3,3] = (r^2+a^2+2*m*r*(a*sin(th))^2/rho2)*sin(th)^2 q.view() $g = \left(-\frac{a^2 \cos\left(\theta\right)^2 - 2mr + r^2}{a^2 \cos\left(\theta\right)^2 + r^2}\right) \mathrm{d}t \otimes \mathrm{d}t + \left(-\frac{2 \operatorname{amr}\sin\left(\theta\right)^2}{a^2 \cos\left(\theta\right)^2 + r^2}\right) \mathrm{d}t \otimes \mathrm{d}\phi + \left(\frac{a^2 \cos\left(\theta\right)^2 + r^2}{a^2 - 2mr + r^2}\right) \mathrm{d}r \otimes \mathrm{d}r + \left(a^2 \cos\left(\theta\right)^2 + r^2\right) \mathrm{d}\theta \otimes \mathrm{d}\theta + \left(-\frac{2 \operatorname{amr}\sin\left(\theta\right)^2}{a^2 \cos\left(\theta\right)^2 + r^2}\right) \mathrm{d}r \otimes \mathrm{d}r + \left(a^2 \cos\left(\theta\right)^2 + r^2\right) \mathrm{d}\theta \otimes \mathrm{d}\theta + \left(-\frac{2 \operatorname{amr}\sin\left(\theta\right)^2}{a^2 \cos\left(\theta\right)^2 + r^2}\right) \mathrm{d}r \otimes \mathrm{d}r + \left(a^2 \cos\left(\theta\right)^2 + r^2\right) \mathrm{d}\theta \otimes \mathrm{d}\theta + \left(-\frac{2 \operatorname{amr}\sin\left(\theta\right)^2}{a^2 \cos\left(\theta\right)^2 + r^2}\right) \mathrm{d}r \otimes \mathrm{d}r + \left(a^2 \cos\left(\theta\right)^2 + r^2\right) \mathrm{d}\theta \otimes \mathrm{d}\theta + \left(-\frac{2 \operatorname{amr}\sin\left(\theta\right)^2}{a^2 \cos\left(\theta\right)^2 + r^2}\right) \mathrm{d}r \otimes \mathrm{d}r + \left(a^2 \cos\left(\theta\right)^2 + r^2\right) \mathrm{d}r \otimes \mathrm{d}r \otimes \mathrm{d}r + \left(a^2 \cos\left(\theta\right)^2 + r^2\right) \mathrm{d}r \otimes \mathrm{d}r + \left(a^2 \cos\left(\theta\right)^2 + r^2\right) \mathrm{d}r \otimes \mathrm{d}r +$ 48 / 52

The Levi-Civita connection ∇ associated with g:

nab = g.connection() ; print nab

```
Levi-Civita connection 'nabla g' associated with the Lorentzian metric 'g' on the 4-dimensional manifold 'M' \,
```

As a check, we verify that the covariant derivative of g with respect to ∇ vanishes identically:

 $\frac{nab(g).view()}{\nabla_g g = 0}$

Killing vector

The default vector frame on the spacetime manifold is the coordinate basis associated with Boyer-Lindquist coordinates:

Tests of gravitation

 SageMainFolds: examples

 SageMainFolds: examples

 SageMainFolds: examples

 SageMainFolds: examples

 Let us consider the first vector field of this frame:

 XI = X.frame()[0] ; Xi

$$\vec{x}$$
 \vec{x} .frame()[0] ; Xi

 \vec{y}
 \vec{y}

 print xi

 vector field 'd/dt' on the 4-dimensional manifold 'M'

 The I-form associated to thy metric duality is

 XI.form = xi.down(0)

 xi.form = xi.down(0)

 xi.form = xi.form view()

 Drint xi.form = xi.form view()

 Inform = associated to it hy metric duality is

 Inform = xi.form view()

 Inform = xi.form view()

 Inform = xi.form view()

 Inform = associated to it hy metric duality is

 Inform on the 4-dimensional manifold 'M'

Thank to Killing equation, $\nabla_g \underline{\xi}$ is antisymmetric. We may therefore define a 2-form by $F := -\nabla_g \xi$. Here we enforce the antisymmetry by calling the function antisymmetrize () on nab_xi:

