An introduction to polynomial interpolation

Eric Gourgoulhon
Laboratoire de l'Univers et de ses Théories (LUTH)
CNRS / Observatoire de Paris F-92195 Meudon, France eric.gourgoulhon@obspm.fr

School on spectral methods:

Application to General Relativity and Field Theory
Meudon, 14-18 November 2005
http://www.lorene.obspm.fr/school/
(1) Introduction
(2) Interpolation on an arbitrary grid
(3) Expansions onto orthogonal polynomials
(4) Convergence of the spectral expansions
(5) References

Outline

(1) Introduction
(2) Interpolation on an arbitrary grid
(3) Expansions onto orthogonal polynomials

4 Convergence of the spectral expansions
(5) References

Introduction

Basic idea: approximate functions $\mathbb{R} \rightarrow \mathbb{R}$ by polynomials
Polynomials are the only functions that a computer can evaluate exactely.
Two types of numerical methods based on polynomial approximations:

- spectral methods: high order polynomials on a single domain (or a few domains)
- finite elements: low order polynomials on many domains

Introduction

Basic idea: approximate functions $\mathbb{R} \rightarrow \mathbb{R}$ by polynomials
Polynomials are the only functions that a computer can evaluate exactely.
Two types of numerical methods based on polynomial approximations:

- spectral methods: high order polynomials on a single domain (or a few domains)
- finite elements: low order polynomials on many domains

Framework of this lecture

We consider real-valued functions on the compact interval $[-1,1]$:

$$
f:[-1,1] \longrightarrow \mathbb{R}
$$

We denote

- by \mathbb{P} the set all real-valued polynomials on $[-1,1]$:

$$
\forall p \in \mathbb{P}, \forall x \in[-1,1], p(x)=\sum_{i=0}^{n} a_{i} x^{i}
$$

- by \mathbb{P}_{N} (where N is a positive integer), the subset of polynomials of degree at most N.

Is it a good idea to approximate functions by polynomials?

For continuous functions, the answer is yes:

Theorem (Weierstrass, 1885)

\mathbb{P} is a dense subspace of the space $C^{0}([-1,1])$ of all continuous functions on $[-1,1]$, equiped with the uniform norm $\|\cdot\|_{\infty}$. ${ }^{a}$
${ }^{a}$ This is a particular case of the Stone-Weierstrass theorem
The uniform norm or maximum norm is defined by $\|f\|_{\infty}=\max _{x \in[-1,1]}|f(x)|$ Other phrasings:

For any continuous function on $[-1,1], f$, and any $\epsilon>0$, there exists a polynomial $p \in \mathbb{P}$ such that $\|f-p\|_{\infty}<\epsilon$.

For any continuous function on $[-1,1], f$, there exists a sequence of polynomials $\left(p_{n}\right)_{n \in \mathbb{N}}$ which converges uniformly towards $f: \lim _{n \rightarrow \infty}\left\|f-p_{n}\right\|_{\infty}=0$.

Best approximation polynomial

For a given continuous function: $f \in C^{0}([-1,1])$, a best approximation polynomial of degree N is a polynomial $p_{N}^{*}(f) \in \mathbb{P}_{N}$ such that

$$
\left\|f-p_{N}^{*}(f)\right\|_{\infty}=\min \left\{\|f-p\|_{\infty}, p \in \mathbb{P}_{N}\right\}
$$

Chebyshev's alternant theorem (or equioscillation theorem)

For any $f \in C^{0}([-1,1])$ and $N \geq 0$, the best approximation polynomial $p_{N}^{*}(f)$ exists and is unique. Moreover, there exists $N+2$ points $x_{0}, x_{1}, \ldots x_{N+1}$ in $[-1,1]$ such that

$$
\begin{aligned}
f\left(x_{i}\right)-p_{N}^{*}(f)\left(x_{i}\right) & =(-1)^{i}\left\|f-p_{N}^{*}(f)\right\|_{\infty}, & 0 \leq i \leq N+1 \\
\text { or } f\left(x_{i}\right)-p_{N}^{*}(f)\left(x_{i}\right) & =(-1)^{i+1}\left\|f-p_{N}^{*}(f)\right\|_{\infty}, & 0 \leq i \leq N+1
\end{aligned}
$$

Corollary: $p_{N}^{*}(f)$ interpolates f in $N+1$ points.

Illustration of Chebyshev's alternant theorem

$$
N=1
$$

Illustration of Chebyshev's alternant theorem

$$
N=1
$$

Outline

(2) Interpolation on an arbitrary grid
(3) Expansions onto orthogonal polynomials

4 Convergence of the spectral expansions

5 References

Interpolation on an arbitrary grid

Definition: given an integer $N \geq 1$, a grid is a set of $N+1$ points $X=\left(x_{i}\right)_{0 \leq i \leq N}$ in $[-1,1]$ such that $-1 \leq x_{0}<x_{1}<\cdots<x_{N} \leq 1$. The $N+1$ points $\left(x_{i}\right)_{0 \leq i \leq N}$ are called the nodes of the grid.

Theorem

Given a function $f \in C^{0}([-1,1])$ and a grid of $N+1$ nodes, $X=\left(x_{i}\right)_{0 \leq i \leq N}$, there exist a unique polynomial of degree $N, I_{N}^{X} f$, such that

$$
I_{N}^{X} f\left(x_{i}\right)=f\left(x_{i}\right), \quad 0 \leq i \leq N
$$

$I_{N}^{X} f$ is called the interpolant (or the interpolating polynomial) of f through the grid X.

Lagrange form of the interpolant

The interpolant $I_{N}^{X} f$ can be expressed in the Lagrange form:

$$
I_{N}^{X} f(x)=\sum_{i=0}^{N} f\left(x_{i}\right) \ell_{i}^{X}(x),
$$

where $\ell_{i}^{X}(x)$ is the i-th Lagrange cardinal polynomial associated with the grid X :

$$
\ell_{i}^{X}(x):=\prod_{\substack{j=0 \\ j \neq i}}^{N} \frac{x-x_{j}}{x_{i}-x_{j}}, \quad 0 \leq i \leq N
$$

The Lagrange cardinal polynomials are such that

$$
\ell_{i}^{X}\left(x_{j}\right)=\delta_{i j}, \quad 0 \leq i, j \leq N
$$

Examples of Lagrange polynomials

$$
\text { Uniform grid } N=8 \quad \ell_{0}^{X}(x)
$$

Lagrange polynomials

Examples of Lagrange polynomials

$$
\text { Uniform grid } N=8 \quad \ell_{1}^{X}(x)
$$

Lagrange polynomials

Examples of Lagrange polynomials

$$
\text { Uniform grid } N=8 \quad \ell_{2}^{X}(x)
$$

Lagrange polynomials

Examples of Lagrange polynomials

$$
\text { Uniform grid } N=8 \quad \ell_{3}^{X}(x)
$$

Lagrange polynomials

Examples of Lagrange polynomials

$$
\text { Uniform grid } N=8 \quad \ell_{4}^{X}(x)
$$

Lagrange polynomials

Examples of Lagrange polynomials

$$
\text { Uniform grid } N=8 \quad \ell_{5}^{X}(x)
$$

Lagrange polynomials

Examples of Lagrange polynomials

$$
\text { Uniform grid } N=8 \quad \ell_{6}^{X}(x)
$$

Lagrange polynomials

Examples of Lagrange polynomials

$$
\text { Uniform grid } N=8 \quad \ell_{7}^{X}(x)
$$

Lagrange polynomials

Examples of Lagrange polynomials

$$
\text { Uniform grid } N=8 \quad \ell_{8}^{X}(x)
$$

Lagrange polynomials

Examples of Lagrange polynomials

Uniform grid $N=8$

Lagrange polynomials

Interpolation error with respect to the best approximation error

Let $N \in \mathbb{N}, X=\left(x_{i}\right)_{0 \leq i \leq N}$ a grid of $N+1$ nodes and $f \in C^{0}([-1,1])$.
Let us consider the interpolant $I_{N}^{X} f$ of f through the grid X.
The best approximation polynomial $p_{N}^{*}(f)$ is also an interpolant of f at $N+1$ nodes (in general different from X) ${ }^{\text {reminder }}$

How does the error $\left\|f-I_{N}^{X} f\right\|_{\infty}$ behave with respect to the smallest possible error $\left\|f-p_{N}^{*}(f)\right\|_{\infty}$?

The answer is given by the formula:

$$
\left\|f-I_{N}^{X} f\right\|_{\infty} \leq\left(1+\Lambda_{N}(X)\right)\left\|f-p_{N}^{*}(f)\right\|_{\infty}
$$

where $\Lambda_{N}(X)$ is the Lebesgue constant relative to the grid X :

$$
\Lambda_{N}(X):=\max _{x \in[-1,1]} \sum_{i=0}^{N}\left|\ell_{i}^{X}(x)\right|
$$

Lebesgue constant

The Lebesgue constant contains all the information on the effects of the choice of X on $\left\|f-I_{N}^{X} f\right\|_{\infty}$.

Theorem (Erdős, 1961)

For any choice of the grid X, there exists a constant $C>0$ such that

$$
\Lambda_{N}(X)>\frac{2}{\pi} \ln (N+1)-C
$$

Corollary: $\Lambda_{N}(X) \rightarrow \infty$ as $N \rightarrow \infty$
In particular, for a uniform grid, $\Lambda_{N}(X) \sim \frac{2^{N+1}}{\mathrm{e} N \ln N}$ as $N \rightarrow \infty$!
This means that for any choice of type of sampling of $[-1,1]$, there exists a continuous function $f \in C^{0}([-1,1])$ such that $I_{N}^{X} f$ does not convergence uniformly towards f.

Example: uniform interpolation of a "gentle" function

$$
f(x)=\cos (2 \exp (x)) \text { uniform grid } N=4:\left\|f-I_{4}^{X} f\right\|_{\infty} \simeq 1.40
$$

Interpolation of $\cos (2 \exp (x))$

Example: uniform interpolation of a "gentle" function

$$
f(x)=\cos (2 \exp (x)) \text { uniform grid } N=6:\left\|f-I_{6}^{X} f\right\|_{\infty} \simeq 1.05
$$

Interpolation of $\cos (2 \exp (x))$

Example: uniform interpolation of a "gentle" function

$$
f(x)=\cos (2 \exp (x)) \text { uniform grid } N=8:\left\|f-I_{8}^{X} f\right\|_{\infty} \simeq 0.13
$$

Interpolation of $\cos (2 \exp (x))$

Example: uniform interpolation of a "gentle" function

$$
f(x)=\cos (2 \exp (x)) \text { uniform grid } N=12:\left\|f-I_{12}^{X} f\right\|_{\infty} \simeq 0.13
$$

Interpolation of $\cos (2 \exp (x))$

Example: uniform interpolation of a "gentle" function

$$
f(x)=\cos (2 \exp (x)) \text { uniform grid } N=16:\left\|f-I_{16}^{X} f\right\|_{\infty} \simeq 0.025
$$

Interpolation of $\cos (2 \exp (x))$

Example: uniform interpolation of a "gentle" function

$$
f(x)=\cos (2 \exp (x)) \text { uniform grid } N=24:\left\|f-I_{24}^{X} f\right\|_{\infty} \simeq 4.610^{-4}
$$

Interpolation of $\cos (2 \exp (x))$

Runge phenomenon

$$
f(x)=\frac{1}{1+16 x^{2}} \quad \text { uniform grid } N=4:\left\|f-I_{4}^{X} f\right\|_{\infty} \simeq 0.39
$$

Runge phenomenon

$$
f(x)=\frac{1}{1+16 x^{2}} \quad \text { uniform grid } N=6:\left\|f-I_{6}^{X} f\right\|_{\infty} \simeq 0.49
$$

Runge phenomenon

$$
f(x)=\frac{1}{1+16 x^{2}} \quad \text { uniform grid } N=8:\left\|f-I_{8}^{X} f\right\|_{\infty} \simeq 0.73
$$

Runge phenomenon

$$
f(x)=\frac{1}{1+16 x^{2}} \quad \text { uniform grid } N=12:\left\|f-I_{12}^{X} f\right\|_{\infty} \simeq 1.97
$$

Runge phenomenon

$$
f(x)=\frac{1}{1+16 x^{2}} \quad \text { uniform grid } N=16:\left\|f-I_{16}^{X} f\right\|_{\infty} \simeq 5.9
$$

Runge phenomenon

$$
f(x)=\frac{1}{1+16 x^{2}} \quad \text { uniform grid } N=24:\left\|f-I_{24}^{X} f\right\|_{\infty} \simeq 62
$$

Evaluation of the interpolation error

Let us assume that the function f is sufficiently smooth to have derivatives at least up to the order $N+1$, with $f^{(N+1)}$ continuous, i.e. $f \in C^{N+1}([-1,1])$.

Theorem (Cauchy)

If $f \in C^{N+1}([-1,1])$, then for any grid X of $N+1$ nodes, and for any $x \in[-1,1]$, the interpolation error at x is

$$
\begin{equation*}
f(x)-I_{N}^{X}(x)=\frac{f^{(N+1)}(\xi)}{(N+1)!} \omega_{N+1}^{X}(x) \tag{1}
\end{equation*}
$$

where $\xi=\xi(x) \in[-1,1]$ and $\omega_{N+1}^{X}(x)$ is the nodal polynomial associated with the grid X.

Definition: The nodal polynomial associated with the grid X is the unique polynomial of degree $N+1$ and leading coefficient 1 whose zeros are the $N+1$ nodes of X :

$$
\omega_{N+1}^{X}(x):=\prod_{i=0}^{N}\left(x-x_{i}\right)
$$

Interpolation on an arbitrary grid

Example of nodal polynomial

Uniform grid $\quad N=8$

Nodal polynomial

Minimizing the interpolation error by the choice of grid

In Eq. (1), we have no control on $f^{(N+1)}$, which can be large.
For example, for $f(x)=1 /\left(1+\alpha^{2} x^{2}\right),\left\|f^{(N+1)}\right\|_{\infty}=(N+1)!\alpha^{N+1}$.
Idea: choose the grid X so that $\omega_{N+1}^{X}(x)$ is small, i.e. $\left\|\omega_{N+1}^{X}\right\|_{\infty}$ is small.
Notice: $\omega_{N+1}^{X}(x)$ has leading coefficient 1: $\omega_{N+1}^{X}(x)=x^{N+1}+\sum_{i=0}^{N} a_{i} x^{i}$.

Theorem (Chebyshev)

Among all the polynomials of degree $N+1$ and leading coefficient 1 , the unique polynomial which has the smallest uniform norm on $[-1,1]$ is the $(N+1)$-th Chebyshev polynomial divided by $2^{N}: T_{N+1}(x) / 2^{N}$.

Since $\left\|T_{N+1}\right\|_{\infty}=1$, we conclude that if we choose the grid nodes $\left(x_{i}\right)_{0 \leq i \leq N}$ to be the $N+1$ zeros of the Chebyshev polynomial T_{N+1}, we have

$$
\left\|\omega_{N+1}^{X}\right\|_{\infty}=\frac{1}{2^{N}}
$$

and this is the smallest possible value.

Chebyshev-Gauss grid

The grid $X=\left(x_{i}\right)_{0 \leq i \leq N}$ such that the x_{i} 's are the $N+1$ zeros of the Chebyshev polynomial of degree $N+1$ is called the Chebyshev-Gauss (CG) grid. It has much better interpolation properties than the uniform grid considered so far. In particular, from Eq. (1), for any function $f \in C^{N+1}([-1,1])$,

$$
\left\|f-I_{N}^{\mathrm{CG}} f\right\|_{\infty} \leq \frac{1}{2^{N}(N+1)!}\left\|f^{(N+1)}\right\|_{\infty}
$$

If $f^{(N+1)}$ is uniformly bounded, the convergence of the interpolant $I_{N}^{\mathrm{CG}} f$ towards f when $N \rightarrow \infty$ is then extremely fast.
Also the Lebesgue constant associated with the Chebyshev-Gauss grid is small:

$$
\Lambda_{N}(C G) \sim \frac{2}{\pi} \ln (N+1) \quad \text { as } \quad N \rightarrow \infty
$$

This is much better than uniform grids and close to the optimal value

Example: Chebyshev-Gauss interpolation of $f(x)=\frac{1}{1+16 x^{2}}$

$$
f(x)=\frac{1}{1+16 x^{2}} \quad \mathrm{CG} \text { grid } N=4:\left\|f-I_{4}^{\mathrm{CG}} f\right\|_{\infty} \simeq 0.31
$$

Example: Chebyshev-Gauss interpolation of $f(x)=\frac{1}{1+16 x^{2}}$

$$
f(x)=\frac{1}{1+16 x^{2}} \quad \mathrm{CG} \text { grid } N=6:\left\|f-I_{\sigma}^{\mathrm{CG}} f\right\|_{\infty} \simeq 0.18
$$

Example: Chebyshev-Gauss interpolation of $f(x)=\frac{1}{1+16 x^{2}}$

$$
f(x)=\frac{1}{1+16 x^{2}} \quad \mathrm{CG} \operatorname{grid} N=8:\left\|f-I_{8}^{\mathrm{CG}} f\right\|_{\infty} \simeq 0.10
$$

Example: Chebyshev-Gauss interpolation of $f(x)=\frac{1}{1+16 x^{2}}$

$$
f(x)=\frac{1}{1+16 x^{2}} \quad \mathrm{CG} \text { grid } N=12:\left\|f-I_{12}^{C G} f\right\|_{\infty} \simeq 3.810^{-2}
$$

Example: Chebyshev-Gauss interpolation of $f(x)=\frac{1}{1+16 x^{2}}$

$$
f(x)=\frac{1}{1+16 x^{2}} \quad \mathrm{CG} \text { grid } N=16:\left\|f-I_{16}^{C G} f\right\|_{\infty} \simeq 1.510^{-2}
$$

Interpolation on an arbitrary grid
 Example: Chebyshev-Gauss interpolation of $f(x)=\frac{1}{1+16 x^{2}}$

$$
\begin{array}{ll}
f(x)=\frac{1}{1+16 x^{2}} \quad \begin{array}{l}
\mathrm{CG} \text { grid } N=24:\left\|f-I_{24}^{\mathrm{CG}} f\right\|_{\infty} \simeq 2.010^{-3} \\
\text { no Runge phenomenon! }
\end{array}
\end{array}
$$

Interpolation on an arbitrary grid
 Example: Chebyshev-Gauss interpolation of $f(x)=\frac{1}{1+16 x^{2}}$

Variation of the interpolation error as N increases

Chebyshev polynomials $=$ orthogonal polynomials

The Chebyshev polynomials, the zeros of which provide the Chebyshev-Gauss nodes, constitute a family of orthogonal polynomials, and the Chebyshev-Gauss nodes are associated to Gauss quadratures.
(2) Interpolation on an arbitrary grid
(3) Expansions onto orthogonal polynomials

4 Convergence of the spectral expansions
(5) References

Hilbert space $L_{w}^{2}(-1,1)$

Framework: Let us consider the functional space

$$
L_{w}^{2}(-1,1)=\left\{f:(-1,1) \rightarrow \mathbb{R}, \int_{-1}^{1} f(x)^{2} w(x) d x<\infty\right\}
$$

where $w:(-1,1) \rightarrow(0, \infty)$ is an integrable function, called the weight function.
$L_{w}^{2}(-1,1)$ is a Hilbert space for the scalar product

$$
(f \mid g)_{w}:=\int_{-1}^{1} f(x) g(x) w(x) d x
$$

with the associated norm

$$
\|f\|_{w}:=(f \mid f)_{w}^{1 / 2}
$$

Orthogonal polynomials

The set \mathbb{P} of polynomials on $[-1,1]$ is a subspace of $L_{w}^{2}(-1,1)$.
A family of orthogonal polynomials is a set $\left(p_{i}\right)_{i \in \mathbb{N}}$ such that

- $p_{i} \in \mathbb{P}$
- $\operatorname{deg} p_{i}=i$
- $i \neq j \Rightarrow\left(p_{i} \mid p_{j}\right)_{w}=0$
$\left(p_{i}\right)_{i \in \mathbb{N}}$ is then a basis of the vector space $\mathbb{P}: \mathbb{P}=\operatorname{span}\left\{p_{i}, i \in \mathbb{N}\right\}$

Theorem

A family of orthogonal polynomial $\left(p_{i}\right)_{i \in \mathbb{N}}$ is a Hilbert basis of $L_{w}^{2}(-1,1)$:
$\forall f \in L_{w}^{2}(-1,1), \quad f=\sum_{i=0}^{\infty} \tilde{f}_{i} p_{i} \quad$ with $\tilde{f}_{i}:=\frac{\left(f \mid p_{i}\right)_{w}}{\left\|p_{i}\right\|_{w}^{2}}$.
The above infinite sum means $\lim _{N \rightarrow \infty}\left\|f-\sum_{i=0}^{N} \tilde{f}_{i} p_{i}\right\|_{w}=0$

Jacobi polynomials

Jacobi polynomials are orthogonal polynomials with respect to the weight

$$
w(x)=(1-x)^{\alpha}(1+x)^{\beta}
$$

Subcases:

- Legendre polynomials $P_{n}(x): \alpha=\beta=0$, i.e. $w(x)=1$
- Chebyshev polynomials $T_{n}(x): \alpha=\beta=-\frac{1}{2}$, i.e. $w(x)=\frac{1}{\sqrt{1-x^{2}}}$

Jacobi polynomials are eigenfunctions of the singular ${ }^{1}$ Sturm-Liouville problem

$$
-\frac{d}{d x}\left[\left(1-x^{2}\right) w(x) \frac{d u}{d x}\right]=\lambda w(x) u, \quad x \in(-1,1)
$$

[^0]
Legendre polynomials

$$
w(x)=1: \quad \int_{-1}^{1} P_{i}(x) P_{j}(x) d x=\frac{2}{2 i+1} \delta_{i j}
$$

Legendre polynomials up to $\mathrm{N}=8$

$$
\begin{aligned}
& P_{0}(x)=1 \\
& P_{1}(x)=x \\
& P_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right) \\
& P_{3}(x)=\frac{1}{2}\left(5 x^{3}-3 x\right) \\
& P_{4}(x)= \\
& \frac{1}{8}\left(35 x^{4}-30 x^{2}+3\right) \\
& P_{i+1}(x)= \\
& \frac{2 i+1}{i+1} x P_{i}(x)-\frac{i}{i+1} P_{i-1}(x)
\end{aligned}
$$

Chebyshev polynomials

$$
w(x)=\frac{1}{\sqrt{1-x^{2}}}: \quad \int_{-1}^{1} T_{i}(x) T_{j}(x) \frac{d x}{\sqrt{1-x^{2}}}=\frac{\pi}{2}\left(1+\delta_{0 i}\right) \delta_{i j}
$$

Chebyshev polynomials up to $\mathrm{N}=8$
$T_{0}(x)=1$
$T_{1}(x)=x$
$T_{2}(x)=2 x^{2}-1$
$T_{3}(x)=4 x^{3}-3 x$
$T_{4}(x)=8 x^{4}-8 x^{2}+1$
$\cos (n \theta)=T_{n}(\cos \theta)$
$T_{i+1}(x)=2 x T_{i}(x)-T_{i-1}(x) i_{i}$

Legendre and Chebyshev compared

[from Fornberg (1998)]

Orthogonal projection on \mathbb{P}_{N}

Let us consider $f \in L_{w}^{2}(-1,1)$ and a family $\left(p_{i}\right)_{i \in \mathbb{N}}$ of orthogonal polynomials with respect to the weight w.
Since $\left(p_{i}\right)_{i \in \mathbb{N}}$ is a Hilbert basis of $L_{w}^{2}(-1,1)$
we have $f(x)=\sum_{i=0}^{\infty} \tilde{f}_{i} p_{i}(x)$ with $\tilde{f}_{i}:=\frac{\left(f \mid p_{i}\right)_{w}}{\left\|p_{i}\right\|_{w}^{2}}$.
The truncated sum

$$
\Pi_{N}^{w} f(x):=\sum_{i=0}^{N} \tilde{f}_{i} p_{i}(x)
$$

is a polynomial of degree N : it is the orthogonal projection of f onto the finite dimensional subspace \mathbb{P}_{N} with respect to the scalar product $(. \mid .)_{w}$.
We have

$$
\lim _{N \rightarrow \infty}\left\|f-\Pi_{N}^{w} f\right\|_{w}=0
$$

Hence $\Pi_{N}^{w} f$ can be considered as a polynomial approximation of the function f.

Example: Chebyshev projection of $f(x)=\cos (2 \exp (x))$

$$
f(x)=\cos (2 \exp (x)) \quad w(x)=\left(1-x^{2}\right)^{-1 / 2} \quad N=4:\left\|f-\Pi_{4}^{w} f\right\|_{\infty} \simeq 0.66
$$

Example: Chebyshev projection of $f(x)=\cos (2 \exp (x))$

$$
f(x)=\cos (2 \exp (x)) \quad w(x)=\left(1-x^{2}\right)^{-1 / 2} \quad N=6:\left\|f-\Pi_{6}^{w} f\right\|_{\infty} \simeq 0.30
$$

Example: Chebyshev projection of $f(x)=\cos (2 \exp (x))$

$$
f(x)=\cos (2 \exp (x)) \quad w(x)=\left(1-x^{2}\right)^{-1 / 2} \quad N=8:\left\|f-\Pi_{8}^{w} f\right\|_{\infty} \simeq 4.910^{-2}
$$

Example: Chebyshev projection of $f(x)=\cos (2 \exp (x))$

$$
f(x)=\cos (2 \exp (x)) w(x)=\left(1-x^{2}\right)^{-1 / 2} \quad N=12:\left\|f-\Pi_{12}^{w} f\right\|_{\infty} \simeq 6.110^{-3}
$$

Example: Chebyshev projection of $f(x)=\cos (2 \exp (x))$

Variation of the projection error $\left\|f-\Pi_{N}^{w} f\right\|_{\infty}$ as N increases

Evaluation of the coefficients

The coefficients \tilde{f}_{i} of the orthogonal projection of f are given by

$$
\begin{equation*}
\tilde{f}_{i}:=\frac{\left(f \mid p_{i}\right)_{w}}{\left\|p_{i}\right\|_{w}^{2}}=\frac{1}{\left\|p_{i}\right\|_{w}^{2}} \int_{-1}^{1} f(x) p_{i}(x) w(x) d x \tag{2}
\end{equation*}
$$

Problem: the above integral cannot be computed exactly; we must seek a numerical approximation.

Solution: Gaussian quadrature

Gaussian quadrature

Theorem (Gauss, Jacobi)

Let $\left(p_{i}\right)_{i \in \mathbb{N}}$ be a family of orthogonal polynomials with respect to some weight w. For $N>0$, let $X=\left(x_{i}\right)_{0 \leq i \leq N}$ be the grid formed by the $N+1$ zeros of the polynomial p_{N+1} and

$$
w_{i}:=\int_{-1}^{1} \ell_{i}^{X}(x) w(x) d x
$$

where ℓ_{i}^{X} is the i-th Lagrange cardinal polynomial of the grid X Then

$$
\forall f \in \mathbb{P}_{2 N+1}, \int_{-1}^{1} f(x) w(x) d x=\sum_{i=0}^{N} w_{i} f\left(x_{i}\right)
$$

If $f \notin \mathbb{P}_{2 N+1}$, the above formula provides a good approximation of the integral.

Gauss-Lobatto quadrature

The nodes of the Gauss quadrature, being the zeros of p_{N+1}, do not encompass the boundaries -1 and 1 of the interval $[-1,1]$. For numerical purpose, it is desirable to include these points in the boundaries.

This possible at the price of reducing by 2 units the degree of exactness of the Gauss quadrature

Gauss-Lobatto quadrature

Theorem (Gauss-Lobatto quadrature)

Let $\left(p_{i}\right)_{i \in \mathbb{N}}$ be a family of orthogonal polynomials with respect to some weight w. For $N>0$, let $X=\left(x_{i}\right)_{0 \leq i \leq N}$ be the grid formed by the $N+1$ zeros of the polynomial

$$
q_{N+1}=p_{N+1}+\alpha p_{N}+\beta p_{N-1}
$$

where the coefficients α and β are such that $x_{0}=-1$ and $x_{N}=1$. Let

$$
w_{i}:=\int_{-1}^{1} \ell_{i}^{X}(x) w(x) d x
$$

where ℓ_{i}^{X} is the i-th Lagrange cardinal polynomial of the grid X. Then

$$
\forall f \in \mathbb{P}_{2 N-1}, \int_{-1}^{1} f(x) w(x) d x=\sum_{i=0}^{N} w_{i} f\left(x_{i}\right)
$$

Notice: $f \in \mathbb{P}_{2 N-1}$ instead of $f \in \mathbb{P}_{2 N+1}$ for Gauss quadrature.

Gauss-Lobatto quadrature

Remark: if the $\left(p_{i}\right)$ are Jacobi polynomials, i.e. if $w(x)=(1-x)^{\alpha}(1+x)^{\beta}$, then the Gauss-Lobatto nodes which are strictly inside $(-1,1)$, i.e. x_{1}, \ldots, x_{N-1}, are the $N-1$ zeros of the polynomial p_{N}^{\prime}, or equivalently the points where the polynomial p_{N} is extremal.

This of course holds for Legendre and Chebyshev polynomials. For Chebyshev polynomials, the Gauss-Lobatto nodes and weights have simple expressions:

$$
\begin{gathered}
x_{i}=-\cos \frac{\pi i}{N}, \quad 0 \leq i \leq N \\
w_{0}=w_{N}=\frac{\pi}{2 N}, \quad w_{i}=\frac{\pi}{N}, \quad 1 \leq i \leq N-1
\end{gathered}
$$

Note: in the following, we consider only Gauss-Lobatto quadratures

Discrete scalar product

The Gauss-Lobatto quadrature motivates the introduction of the following scalar product:

$$
\langle f \mid g\rangle_{N}=\sum_{i=0}^{N} w_{i} f\left(x_{i}\right) g\left(x_{i}\right)
$$

It is called the discrete scalar product associated with the Gauss-Lobatto nodes $X=\left(x_{i}\right)_{0 \leq i \leq N}$
Setting $\gamma_{i}:=\left\langle p_{i} \mid p_{i}\right\rangle_{N}$, the discrete coefficients associated with a function f are given by

$$
\hat{f}_{i}:=\frac{1}{\gamma_{i}}\left\langle f \mid p_{i}\right\rangle_{N}, \quad 0 \leq i \leq N
$$

which can be seen as approximate values of the coefficients \tilde{f}_{i} provided by the Gauss-Lobatto quadrature [cf. Eq. (2)]

Discrete coefficients and interpolating polynomial

Let $I_{N}^{\mathrm{GL}} f$ be the interpolant of f at the Gauss-Lobatto nodes $X=\left(x_{i}\right)_{0 \leq i \leq N}$.
Being a polynomial of degree N, it is expandable as

$$
I_{N}^{\mathrm{GL}} f(x)=\sum_{i=0}^{N} a_{i} p_{i}(x)
$$

Then, since $I_{N}^{\mathrm{GL}} f\left(x_{j}\right)=f\left(x_{j}\right)$,

$$
\hat{f}_{i}=\frac{1}{\gamma_{i}}\left\langle f \mid p_{i}\right\rangle_{N}=\frac{1}{\gamma_{i}}\left\langle I_{N}^{\mathrm{GL}} f \mid p_{i}\right\rangle_{N}=\frac{1}{\gamma_{i}} \sum_{j=0}^{N} a_{j}\left\langle p_{j} \mid p_{i}\right\rangle_{N}
$$

Now, if $j=i,\left\langle p_{j} \mid p_{i}\right\rangle_{N}=\gamma_{i}$ by definition. If $j \neq i, p_{j} p_{i} \in \mathbb{P}_{2 N-1}$ so that the Gauss-Lobatto formula holds and gives $\left\langle p_{j} \mid p_{i}\right\rangle_{N}=\left(p_{j} \mid p_{i}\right)_{w}=0$. Thus we conclude that $\left\langle p_{j} \mid p_{i}\right\rangle_{N}=\gamma_{i} \delta_{i j}$ so that the above equation yields $\hat{f}_{i}=a_{i}$, i.e. the discrete coefficients are nothing but the coefficients of the expansion of the interpolant at the Gauss-Lobato nodes

Spectral representation of a function

In a spectral method, the numerical representation of a function f is through its interpolant at the Gauss-Lobatto nodes:

$$
I_{N}^{\mathrm{GL}} f(x)=\sum_{i=0}^{N} \hat{f}_{i} p_{i}(x)
$$

The discrete coefficients \hat{f}_{i} are computed as

$$
\hat{f}_{i}=\frac{1}{\gamma_{i}} \sum_{j=0}^{N} w_{j} f\left(x_{j}\right) p_{i}\left(x_{j}\right)
$$

$I_{N}^{\mathrm{GL}} f(x)$ is an approximation of the truncated series $\Pi_{N}^{w} f(x)=\sum_{i=0}^{N} \tilde{f}_{i} p_{i}(x)$, which is the orthogonal projection of f onto the polynomial space \mathbb{P}_{N}. $\Pi_{N}^{w} f$ should be the true spectral representation of f, but in general it is not computable exactly.
The difference between $I_{N}^{G L} f$ and $\Pi_{N}^{w} f$ is called the aliasing error

Example: aliasing error for $f(x)=\cos (2 \exp (x))$

$$
f(x)=\cos (2 \exp (x)) \quad w(x)=\left(1-x^{2}\right)^{-1 / 2} \quad N=4
$$

red: $f ;$ blue: $\Pi_{N}^{w} f ;$ green: $I_{N}^{G L} f$

Example: aliasing error for $f(x)=\cos (2 \exp (x))$

$$
f(x)=\cos (2 \exp (x)) \quad w(x)=\left(1-x^{2}\right)^{-1 / 2} \quad N=6
$$

red: $f ;$ blue: $\Pi_{N}^{w} f ;$ green: $I_{N}^{\mathrm{GL}} f$

Example: aliasing error for $f(x)=\cos (2 \exp (x))$

$$
f(x)=\cos (2 \exp (x)) \quad w(x)=\left(1-x^{2}\right)^{-1 / 2} \quad N=8
$$

red: f; blue: $\Pi_{N}^{w} f ;$ green: $I_{N}^{\mathrm{GL}} f$

Example: aliasing error for $f(x)=\cos (2 \exp (x))$

$$
f(x)=\cos (2 \exp (x)) \quad w(x)=\left(1-x^{2}\right)^{-1 / 2} \quad N=12
$$

red: $f ;$ blue: $\Pi_{N}^{w} f ;$ green: $I_{N}^{\mathrm{GL}} f$

Aliasing error $=$ contamination by high frequencies

Aliasing of a $\sin (x)$ wave by a $\sin (5 x)$ wave on a 4 -points grid

Outline

(2) Interpolation on an arbitrary grid
(3) Expansions onto orthogonal polynomials

4 Convergence of the spectral expansions

Sobolev norm

Let us consider a function $f \in C^{m}([-1,1])$, with $m \geq 0$.
The Sobolev norm of f with respect to some weight function w is

$$
\|f\|_{H_{w}^{m}}:=\left(\sum_{k=0}^{m}\left\|f^{(k)}\right\|_{w}^{2}\right)^{1 / 2}
$$

Convergence rates for $f \in C^{m}([-1,1])$

Chebyshev expansions:

- truncation error :

$$
\left\|f-\Pi_{N}^{w} f\right\|_{w} \leq \frac{C_{1}}{N^{m}}\|f\|_{H_{w}^{m}} \text { and }\left\|f-\Pi_{N}^{w} f\right\|_{\infty} \leq \frac{C_{2}(1+\ln N)}{N^{m}} \sum_{k=0}^{m}\left\|f^{(k)}\right\|_{\infty}
$$

- interpolation error :

$$
\left\|f-I_{N}^{\mathrm{GL}} f\right\|_{w} \leq \frac{\dot{C}_{3}}{N^{m}}\|f\|_{H_{w}^{m}} \text { and }\left\|f-I_{N}^{\mathrm{GL}} f\right\|_{\infty} \leq \frac{C_{4}}{N^{m-1 / 2}}\|f\|_{H_{w}^{m}}
$$

Legendre expansions:

- truncation error :

$$
\left\|f-\Pi_{N}^{w} f\right\|_{w} \leq \frac{C_{1}}{N^{m}}\|f\|_{H_{w}^{m}} \text { and }\left\|f-\Pi_{N}^{w} f\right\|_{\infty} \leq \frac{C_{2}}{N^{m-1 / 2}} V\left(f^{(m)}\right)
$$

- interpolation error :

$$
\left\|f-I_{N}^{\mathrm{GL}} f\right\|_{w} \leq \frac{C_{3}}{N^{m-1 / 2}}\|f\|_{H_{w}^{m}}
$$

Evanescent error for smooth functions

If $f \in C^{\infty}([-1,1])$, the error of the spectral expansions $\Pi_{N}^{w} f$ or $I_{N}^{\mathrm{GL}} f$ decays more rapidly than any power of N.

In practice: exponential decay
This error is called evanescent.

Convergence of the spectral expansions

For non-smooth functions: Gibbs phenomenon

Extreme case: f discontinuous

Outline

(2) Interpolation on an arbitrary grid
(3) Expansions onto orthogonal polynomials

4 Convergence of the spectral expansions
(5) References

References

- C. Bernardi, Y. Maday \& F. Rapetti : Discrétisations variationnelles de problèmes aux limites elliptiques, Springer (Paris, 2004)
- J.P. Boyd : Chebyshev and Fourier spectral methods, Dover (New York, 2001)
- C. Canuto, M.Y. Hussaini, A. Quarteroni \& T.A. Zang : Spectral methods in fluid dynamics, Springer-Verlag (Berlin, 1988)
- B. Fornberg : A practical guide to pseudospectral methods, Cambridge Univ. Press (Cambridge, 1998)
- A. Quarteroni, R. Sacco \& F. Saleri : Méthodes numériques pour le calcul scientifique, Springer (Paris, 2000)
- M.A. Snyder: Chebyshev methods in numerical approximation, Prentice-Hall (Englewood Cliffs, N.J., USA, 1966)
- http://en.wikipedia.org/wiki/Polynomial_interpolation
- http://en.wikipedia.org/wiki/Orthogonal_polynomials

[^0]: ${ }^{1}$ singular means that the coefficient in front of $d u / d x$ vanishes at the extremities of the interval $[-1,1]$

