Time evolution of $3+1$ Einstein equations via a constrained scheme

Éric Gourgoulhon
Laboratoire de l'Univers et de ses Théories (LUTH)
CNRS / Observatoire de Paris
F-92195 Meudon, France
based on a collaboration with
Silvano Bonazzola, Philippe Grandclément \& Jérôme Novak

eric.gourgoulhon@obspm.fr
http://www.luth.obspm.fr

Free vs. constrained evolution in $3+1$ numerical relativity

Einstein equations split into $\begin{cases}\text { dynamical equations } & \frac{\partial}{\partial t} K_{i j}=\ldots \\ \text { Hamiltonian constraint } & R+K^{2}-K_{i j} K^{i j}=16 \pi E \\ \text { momentum constraint } & D_{j} K_{i}{ }^{j}-D_{i} K=8 \pi J_{i}\end{cases}$

- 2-D computations (80 's and 90 's):
partially constrained schemes: Bardeen \& Piran (1983), Stark \& Piran (1985), Evans (1986)
fully constrained schemes: Evans (1989), Shapiro \& Teukolsky (1992), Abrahams et al. (1994)
- 3-D computations (from mid 90's): almost all based on free evolution schemes: BSSN, symmetric hyperbolic formulations, etc...
\Longrightarrow problem: exponential growth of constraint violating modes
[see talks by C. Gundlach (constraint-preserving BC), A.P. Gentle (constraints as evolution equations) and H. Pfeiffer (constraint projection)]

Standard issue 1: the constraints usually involve elliptic equations and 3-D elliptic solvers are CPU-time expensive!

Cartesian vs. spherical coordinates in 3+1 numerical relativity

- 1-D and 2-D computations: massive usage of spherical coordinates (r, θ, φ)
- 3-D computations: almost all based on Cartesian coordinates (x, y, z), although spherical coordinates are better suited to study objects with spherical topology (black holes, neutron stars). Two exceptions:
- Nakamura et al. (1987): evolution of pure gravitational wave spacetimes in spherical coordinates (but with Cartesian components of tensor fields)
- Stark (1989): attempt to compute 3D stellar collapse in spherical coordinates

Standard issue 2: spherical coordinates are singular at $r=0$ and $\theta=0$ or π !

Standard issues 1 and 2 can be overcome

Standard issues 1 and 2 are neither mathematical nor physical, but technical ones \Longrightarrow they can be overcome with appropriate techniques

Spectral methods allow for

- an automatic treatment of the singularities of spherical coordinates (issue 2)
- fast 3-D elliptic solvers in spherical coordinates: 3-D Poisson equation reduced to a system of 1-D algebraic equations with banded matrices [Grandclément, Bonazzola, Gourgoulhon \& Marck, J. Comp. Phys. 170, 231 (2001)] (issue 1)
[see talks by H. Dimmelmeier, R. Meinel, J. Novak, and H. Pfeiffer for various examples of usage of spectral methods in numerical relativity]

Dirac gauge

As in BSSN formalism, perform a conformal decomposition of the metric $\gamma_{i j}$ of the spacelike hypersurfaces Σ_{t} :

$$
\gamma_{i j}=: \Psi^{4} \tilde{\gamma}_{i j} \quad \text { with } \quad \tilde{\gamma}^{i j}=: f^{i j}+h^{i j}
$$

where $f_{i j}$ is a flat metric on $\Sigma_{t}, h^{i j}$ a symmetric tensor and Ψ a scalar field defined by $\Psi:=\left(\frac{\operatorname{det} \gamma_{i j}}{\operatorname{det} f_{i j}}\right)^{1 / 12}$

Dirac gauge (Dirac, 1959) = divergence-free condition on $\tilde{\gamma}^{i j}: \mathcal{D}_{j} \tilde{\gamma}^{i j}=\mathcal{D}_{j} h^{i j}=0$ where \mathcal{D}_{j} denotes the covariant derivative with respect to the flat metric $f_{i j}$.

Compare

- minimal distortion (Smarr \& York 1978) : $D_{j}\left(\partial \tilde{\gamma}^{i j} / \partial t\right)=0$
- pseudo-minimal distortion (Nakamura 1994) : $\mathcal{D}^{j}\left(\partial \tilde{\gamma}^{i j} / \partial t\right)=0$

Notice: Dirac gauge \Longleftrightarrow BSSN connection functions vanish: $\tilde{\Gamma}^{i}=0$

Dirac gauge: discussion

- introduced by Dirac (1959) in order to fix the coordinates in some Hamiltonian formulation of general relativity; originally defined for Cartesian coordinates only: $\frac{\partial}{\partial x^{j}}\left(\gamma^{1 / 3} \gamma^{i j}\right)=0$
but trivially extended by us to more general type of coordinates (e.g. spherical) thanks to the introduction of the flat metric $f_{i j}: \mathcal{D}_{j}\left((\gamma / f)^{1 / 3} \gamma^{i j}\right)=0$
- fully specifies (up to some boundary conditions) the coordinates in each hypersurface Σ_{t}, including the initial one \Rightarrow allows for the search for stationary solutions
- leads asymptotically to transverse-traceless (TT) coordinates (same as minimal distortion gauge). Both gauges are analogous to Coulomb gauge in electrodynamics
- turns the Ricci tensor of conformal metric $\tilde{\gamma}_{i j}$ into an elliptic operator for $h^{i j} \Longrightarrow$ the dynamical Einstein equations become a wave equation for $h^{i j}$
- results in a vector elliptic equation for the shift vector β^{i}

3+1 Einstein equations in maximal slicing + Dirac gauge

[Bonazzola, Gourgoulhon, Grandclément \& Novak, gr-qc/0307082 v2]

- 5 elliptic equations (4 constraints $+K=0$ condition) $\left(\Delta:=\mathcal{D}_{k} \mathcal{D}^{k}=\right.$ flat Laplacian $)$:

$$
\begin{gathered}
\Delta N=\Psi^{4} N\left[4 \pi(E+S)+A_{k l} A^{k l}\right]-h^{k l} \mathcal{D}_{k} \mathcal{D}_{l} N-2 \tilde{D}_{k} \ln \Psi \tilde{D}^{k} N \quad(N=\text { lapse function) } \\
\begin{array}{r}
\Delta\left(\Psi^{2} N\right)=\Psi^{6} N\left(4 \pi S+\frac{3}{4} A_{k l} A^{k l}\right)-h^{k l} \mathcal{D}_{k} \mathcal{D}_{l}\left(\Psi^{2} N\right)+\Psi^{2}\left[N \left(\frac{1}{16} \tilde{\gamma}^{k l} \mathcal{D}_{k} h^{i j} \mathcal{D}_{l} \tilde{\gamma}_{i j}\right.\right. \\
\left.\left.-\frac{1}{8} \tilde{\gamma}^{k l} \mathcal{D}_{k} h^{i j} \mathcal{D}_{j} \tilde{\gamma}_{i l}+2 \tilde{D}_{k} \ln \Psi \tilde{D}^{k} \ln \Psi\right)+2 \tilde{D}_{k} \ln \Psi \tilde{D}^{k} N\right] \\
\Delta \beta^{i}+\frac{1}{3} \mathcal{D}^{i}\left(\mathcal{D}_{j} \beta^{j}\right)=2 A^{i j} \mathcal{D}_{j} N+16 \pi N \Psi^{4} J^{i}-12 N A^{i j} \mathcal{D}_{j} \ln \Psi-2 \Delta^{i}{ }_{k l} N A^{k l} \\
-h^{k l} \mathcal{D}_{k} \mathcal{D}_{l} \beta^{i}-\frac{1}{3} h^{i k} \mathcal{D}_{k} \mathcal{D}_{l} \beta^{l}
\end{array}
\end{gathered}
$$

$3+1$ equations in maximal slicing + Dirac gauge (cont'd)

- 2 scalar wave equations for two scalar potentials χ and μ :

$$
\begin{aligned}
& -\frac{\partial^{2} \chi}{\partial t^{2}}+\Delta \chi=S_{\chi} \\
& -\frac{\partial^{2} \mu}{\partial t^{2}}+\Delta \mu=S_{\mu}
\end{aligned}
$$

(for expression of S_{χ} and S_{μ} see [Bonazzola, Gourgoulhon, Grandclément \& Novak, gr-qc/0307082 v2])

The remaining 3 degrees of freedom are fixed by the Dirac gauge:

(i) From the two potentials χ and μ, construct a TT tensor $\bar{h}^{i j}$ according to the formulas (components with respect to a spherical f-orthonormal frame)
$\bar{h}^{r r}=\frac{\chi}{r^{2}}, \quad \bar{h}^{r \theta}=\frac{1}{r}\left(\frac{\partial \eta}{\partial \theta}-\frac{1}{\sin \theta} \frac{\partial \mu}{\partial \varphi}\right), \quad \bar{h}^{r \varphi}=\frac{1}{r}\left(\frac{1}{\sin \theta} \frac{\partial \eta}{\partial \varphi}+\frac{\partial \mu}{\partial \theta}\right)$, etc \ldots
with $\Delta_{\theta \varphi} \eta=-\partial \chi / \partial r-\chi / r$

Recovering the conformal metric $\tilde{\gamma}_{i j}$ from the TT tensor $\bar{h}^{i j}$

(ii) $h^{i j}$ is uniquely determined by the TT tensor $\bar{h}^{i j}$ as the following divergence-free (Dirac gauge) tensor :

$$
\begin{equation*}
h^{i j}=\bar{h}^{i j}+\frac{1}{2}\left(h f^{i j}-\mathcal{D}^{i} \mathcal{D}^{j} \phi\right) \tag{1}
\end{equation*}
$$

where $h:=f_{i j} h^{i j}$ is the trace of $h^{i j}$ with respect to the flat metric and ϕ is the solution of the Poisson equation $\Delta \phi=h$. The trace h is determined in order to enforce the condition $\operatorname{det} \tilde{\gamma}_{i j}=\operatorname{det} f_{i j}$ (definition of Ψ) by

$$
\begin{align*}
h= & -h^{r r} h^{\theta \theta}-h^{r r} h^{\varphi \varphi}-h^{\theta \theta} h^{\varphi \varphi}+\left(h^{r \theta}\right)^{2}+\left(h^{r \varphi}\right)^{2}+\left(h^{\theta \varphi}\right)^{2}-h^{r r} h^{\theta \theta} h^{\varphi \varphi} \\
& -2 h^{r \theta} h^{r \varphi} h^{\theta \varphi}+h^{r r}\left(h^{\theta \varphi}\right)^{2}+h^{\theta \theta}\left(h^{r \varphi}\right)^{2}+h^{\varphi \varphi}\left(h^{r \theta}\right)^{2} \tag{2}
\end{align*}
$$

Equations (1) and (2) constitute a coupled system which can be solved by iterations (starting from $h^{i j}=\bar{h}^{i j}$), at the price of solving the Poisson equation $\Delta \phi=h$ at each step. In practise a few iterations are sufficient to reach machine accuracy.
(iii) Finally $\tilde{\gamma}^{i j}=f^{i j}+h^{i j}$.

Numerical implementation

Numerical code based on the C++ library Lorene (http://www.lorene.obspm.fr) with the following main features:

- multidomain spectral methods based on spherical coordinates (r, θ, φ), with compactified external domain (\Longrightarrow spatial infinity included in the computational domain for elliptic equations)
- very efficient outgoing-wave boundary conditions, ensuring that all modes with spherical harmonics indices $\ell=0, \ell=1$ and $\ell=2$ are perfectly outgoing
[Novak \& Bonazzola, J. Comp. Phys. 197, 186 (2004)]
(recall: Sommerfeld boundary condition works only for $\ell=0$, which is too low for gravitational waves)
[see M. Chirvasa's poster for alternative outgoing-wave conditions]

Results on a pure gravitational wave spacetime

Initial data: similar to [Baumgarte \& Shapiro, PRD 59, 024007 (1998)], namely a momentarily static $\left(\partial \tilde{\gamma}^{i j} / \partial t=0\right)$ Teukolsky wave $\ell=2, m=2$:

$$
\left\{\begin{array}{l}
\chi(t=0)=\frac{\chi_{0}}{2} r^{2} \exp \left(-\frac{r^{2}}{r_{0}^{2}}\right) \sin ^{2} \theta \sin 2 \varphi \quad \text { with } \quad \chi_{0}=10^{-3} \\
\mu(t=0)=0
\end{array}\right.
$$

Preparation of the initial data by means of the conformal thin sandwich procedure

Evolution of $h^{\varphi \varphi}$ in the plane $\theta=\frac{\pi}{2}$

[^0]
Test: conservation of the ADM mass

Number of coefficients in each domain: $N_{r}=17, N_{\theta}=9, N_{\varphi}=8$ For $d t=510^{-3} r_{0}$, the ADM mass is conserved within a relative error lower than 10^{-4}

Late time evolution of the ADM mass

At $t>10 r_{0}$, the wave has completely left the computation domain
Nothing happens until the run is switched off at $t=300 r_{0}!\Longrightarrow$ long term stability

Another test: check of the $\frac{\partial \Psi}{\partial t}$ relation

The relation $\frac{\partial}{\partial t} \ln \Psi-\beta^{k} \mathcal{D}_{k} \ln \Psi=\frac{1}{6} \mathcal{D}_{k} \beta^{k}$ (trace of the definition of the extrinsic curvature as the time derivative of the spatial metric) is not enforced in our scheme. \Longrightarrow This provides an additional test:

Conclusions and future prospects

- Dirac gauge + maximal slicing reduces the Einstein equations into a system of
- two scalar elliptic equations (including the Hamiltonian constraint)
- one vector elliptic equations (the momentum constraint)
- two scalar wave equations (evolving the two dynamical degrees of freedom of the gravitational field)
- The usage of spherical coordinates and spherical components of tensor fields is crucial in reducing the dynamical Einstein equations to two scalar wave equations
- The unimodular character of the conformal metric $\left(\operatorname{det} \tilde{\gamma}_{i j}=\operatorname{det} f_{i j}\right)$ is ensured in our scheme
- First numerical results show that Dirac gauge + maximal slicing seems a promising choice for stable evolutions of $3+1$ Einstein equations and gravitational wave extraction
- It remains to be tested on black hole spacetimes !
[cf. J.L. Jaramillo's talk for boundary conditions on black hole horizons]
GR17, Dublin, 18-23 July 2004

[^0]: GR17, Dublin, 18-23 July 2004

