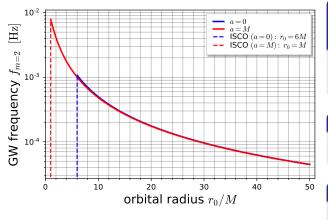

Detecting bodies orbiting the Galactic Center black hole Sgr A* with LISA

Éric Gourgoulhon¹, Alexandre Le Tiec¹, Frédéric Vincent², Niels Warburton³

based on A&A 627, A92 (2019) [arXiv:1903.02049]

22nd International Conference on General Relativity and Gravitation 13th Edoardo Amaldi Conference on Gravitational Waves

Valencia, Spain 12 July 2019



¹ LUTH, Observatoire de Paris, Université PSL, CNRS, Univ. Paris Diderot, 92190 Meudon, France

² LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Univ. Paris Diderot, 92190 Meudon, France

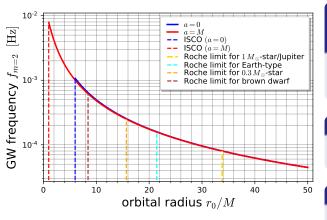
³ School of Mathematics and Statistics, University College Dublin, Belfield, Dublin 4, Ireland

GW frequencies from circular orbits around Sgr A*

Angular velocity of circular equatorial orbits around a Kerr BH

$$\omega_0 = \frac{M^{1/2}}{r_0^{3/2} + a M^{1/2}}$$

Dominant GW frequency


$$f_{m=2} = 2f_0 = \frac{\omega_0}{\pi}$$

Sgr A* mass

$$\begin{array}{rcl} M & = & 4.10 \times 10^6 \, M_{\odot} \\ & = & 20.2 \; \mathrm{s} \end{array}$$

[Gravity team, A&A **615**, L15

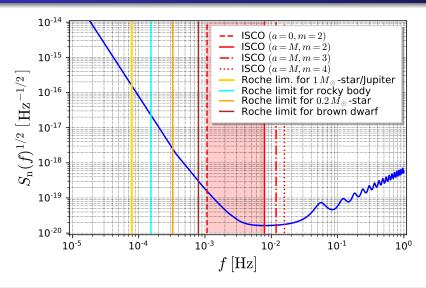
GW frequencies from circular orbits around Sgr A*

Roche radius: $r_{\rm R} \simeq 1.14 \left(\frac{M}{\rho}\right)^{1/3}$

Angular velocity of circular equatorial orbits around a Kerr BH

$$\omega_0 = \frac{M^{1/2}}{r_0^{3/2} + aM^{1/2}}$$

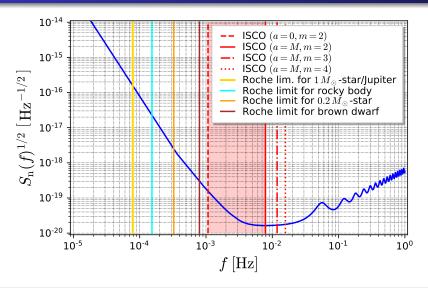
Dominant GW frequency


$$f_{m=2} = 2f_0 = \frac{\omega_0}{\pi}$$

Sgr A* mass

$$M = 4.10 \times 10^6 M_{\odot}$$

= 20.2 s


[Gravity team, A&A **615**, L15

Frequencies of Sgr A* close orbits are in LISA band

ISCO for a = M: $f_{m=2} = 7.9 \text{ mHz}$

Frequencies of Sgr A* close orbits are in LISA band

ISCO for a = M: $f_{m=2} = 7.9 \text{ mHz} \leftarrow \text{coincides with LISA max. sensitivity!}$

Previous studies of Sgr A* as a source for LISA

- Freitag (2003) [ApJ 583, L21]: GW from orbiting stars at quadrupole order; low-mass main-sequence (MS) stars are good candidates for LISA
- Barack & Cutler (2004) [PRD 69, 082005]: $0.06M_{\odot}$ MS star observed $10^6 {\rm yr}$ before plunge \Longrightarrow SNR = 11 in 2 yr of LISA data \Longrightarrow Sgr A*'s spin within 0.5% accuracy
- Berry & Gair (2013) [MNRAS 429, 589]: extreme-mass-ratio burst (single periastron passage on a highly eccentric orbit) \Longrightarrow GW burst \Longrightarrow LISA detection of $10M_{\odot}$ for periastron <65M; event rate could be $\sim 1\,\mathrm{yr}^{-1}$
- Linial & Sari (2017) [MNRAS 469, 2441]: GW from orbiting MS stars undergoing Roche lobe overflow ⇒ detectability by LISA; possibility of a reverse chirp signal (outspiral)
- Kühnel et al. (2018) [arXiv:1811.06387]: GW from an ensemble of macroscopic dark matter candidates orbiting Sgr A*, such as primordial BHs, with masses in the range $10^{-13}-10^3~M_{\odot}$
- Amaro-Seoane (2019) [arXiv:1903.10871]: Extremely Large Mass-Ratio Inspirals (X-MRI) \Longrightarrow brown dwarfs orbiting Sgr A* should be detected in great numbers by LISA: ~ 20 in band at any time

Our study

All previous studies have been performed in a Newtonian framework (quadrupole formula). Now, for orbits close to the ISCO, relativistic effects are expected to be important.

- ⇒ we have adopted a fully relativistic framework:
 - Sgr A* is modeled as a Kerr BH and GW are computed via the theory of perturbations of the Kerr metric
 - tidal effects are evaluated via the theory of Roche potential in the Kerr metric developed by Dai & Blandford (2013) [MNRAS 434, 2948]

Our study

All previous studies have been performed in a Newtonian framework (quadrupole formula). Now, for orbits close to the ISCO, relativistic effects are expected to be important.

- ⇒ we have adopted a fully relativistic framework:
 - Sgr A* is modeled as a Kerr BH and GW are computed via the theory of perturbations of the Kerr metric
 - tidal effects are evaluated via the theory of Roche potential in the Kerr metric developed by Dai & Blandford (2013) [MNRAS 434, 2948]

Limitation: circular equatorial orbits; valid for

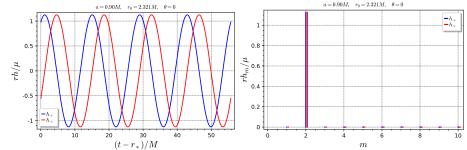
- inspiralling compact objects arising from the tidal disruption of a binary (zero-eccentricity EMRI)
- main-sequence stars formed in an accretion disk
- compact objects resulting from the most massive of such stars
- ullet $\sim 1/4$ of the population of brown dwarfs studied by Amaro-Seoane (2019)

computed as linear perturbations of Kerr metric (Teukolsky 1973)

Detweiler (1978)

$$h_{+} - ih_{\times} = \frac{2\mu}{r} \sum_{\ell=2}^{\infty} \sum_{\substack{m=-\ell\\m\neq 0}}^{\ell} \frac{Z_{\ell m}^{\infty}(r_{0})}{(m\omega_{0})^{2}} {}_{-2}S_{\ell m}^{am\omega_{0}}(\theta, \varphi) e^{-im(\omega_{0}(t-r_{*})+\varphi_{0})}$$

 μ : mass of orbiting object; (t,r,θ,φ) : Boyer-Lindquist coordinates of the observer $_{-2}S_{\ell m}^{am\omega_0}(\theta,\varphi)$: spheroidal harmonics of spin weight -2

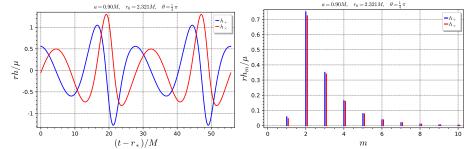

computed as linear perturbations of Kerr metric (Teukolsky 1973)

Detweiler (1978)

$$h_{+} - ih_{\times} = \frac{2\mu}{r} \sum_{\ell=2}^{\infty} \sum_{\substack{m=-\ell\\m\neq 0}}^{\ell} \frac{Z_{\ell m}^{\infty}(r_{0})}{(m\omega_{0})^{2}} {}_{-2}S_{\ell m}^{am\omega_{0}}(\theta, \varphi) e^{-im(\omega_{0}(t-r_{*})+\varphi_{0})}$$

 μ : mass of orbiting object; (t,r,θ,φ) : Boyer-Lindquist coordinates of the observer $_{-2}S_{\ell m}^{am\omega_0}(\theta,\varphi)$: spheroidal harmonics of spin weight -2

Example for $a=0.9\,M$, $r_0=r_{\rm ISCO}(a)$ and viewing angle $\theta=0$ (face-on)

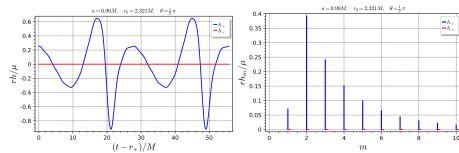

computed as linear perturbations of Kerr metric (Teukolsky 1973)

Detweiler (1978)

$$h_{+} - ih_{\times} = \frac{2\mu}{r} \sum_{\ell=2}^{\infty} \sum_{\substack{m=-\ell\\m\neq 0}}^{\ell} \frac{Z_{\ell m}^{\infty}(r_{0})}{(m\omega_{0})^{2}} {}_{-2}S_{\ell m}^{am\omega_{0}}(\theta, \varphi) e^{-im(\omega_{0}(t-r_{*})+\varphi_{0})}$$

 μ : mass of orbiting object; (t,r,θ,φ) : Boyer-Lindquist coordinates of the observer ${}_{-2}S^{am\omega_0}_{\ell m}(\theta,\varphi)$: spheroidal harmonics of spin weight -2

Example for $a=0.9\,M$, $r_0=r_{\rm ISCO}(a)$ and viewing angle $\theta=\pi/4$


computed as linear perturbations of Kerr metric (Teukolsky 1973)

Detweiler (1978)

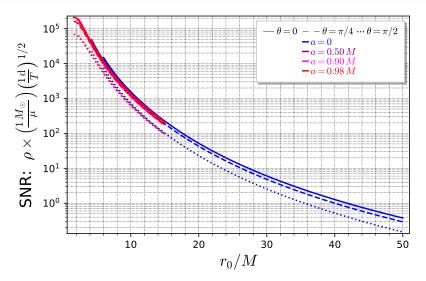
$$h_{+} - ih_{\times} = \frac{2\mu}{r} \sum_{\ell=2}^{\infty} \sum_{\substack{m=-\ell\\m\neq 0}}^{\ell} \frac{Z_{\ell m}^{\infty}(r_{0})}{(m\omega_{0})^{2}} {}_{-2}S_{\ell m}^{am\omega_{0}}(\theta, \varphi) e^{-im(\omega_{0}(t-r_{*})+\varphi_{0})}$$

 μ : mass of orbiting object; (t,r,θ,φ) : Boyer-Lindquist coordinates of the observer $_{-2}S_{\ell m}^{am\omega_0}(\theta,\varphi)$: spheroidal harmonics of spin weight -2

Example for $a=0.9\,M$, $r_0=r_{\rm ISCO}(a)$ and viewing angle $\theta=\pi/2$ (edge-on)

Implementation: the kerrgeodesic_gw package

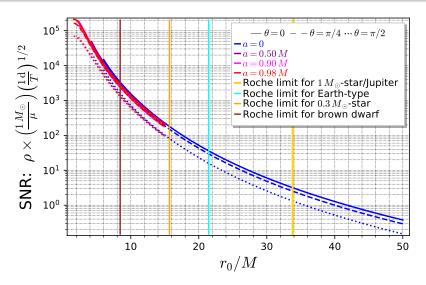
All computations (GW waveforms, SNR in LISA, energy fluxes, inspiralling time, etc.) have been implemented as a Python package for the open-source mathematics software system SageMath:


kerrgeodesic_gw

kerrgeodesic_gw is

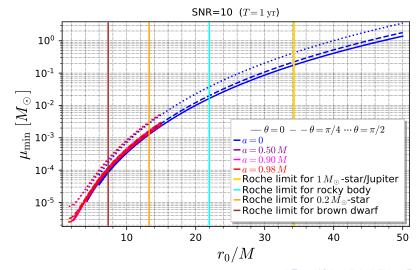
- entirely open-source:
 - https:
 - //github.com/BlackHolePerturbationToolkit/kerrgeodesic_gw
- is distributed via the PyPi (the Python Package Index): https://pypi.org/project/kerrgeodesic-gw/ so that the installation in SageMath is very easy: sage -pip install kerrgeodesic_gw
- is part of the *Black Hole Perturbation Toolkit*: http://bhptoolkit.org/

Signal-to-noise ratio in the LISA detector

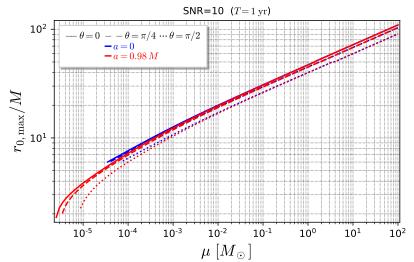

as a function of the circular orbit radius r_0

[Gourgoulhon, Le Tiec, Vincent & Warburton, A&A 627, A92 (2019)]

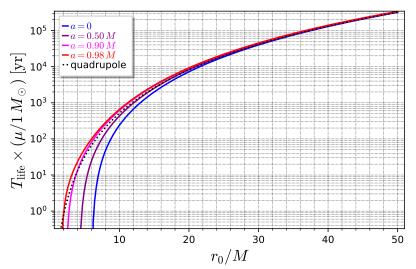
Signal-to-noise ratio in the LISA detector


as a function of the circular orbit radius r_0

[Gourgoulhon, Le Tiec, Vincent & Warburton, A&A 627, A92 (2019)]


Minimal detectable mass by LISA

Detection criteria: $SNR \ge 10$ Observation time: T = 1 yr


Maximum orbital radius for LISA detection

Maximum orbital radius $r_{0,\rm max}$ for a SNR = 10 detection by LISA in one year of data, as a function of the mass μ of the object orbiting around Sgr A*:

Life time of circular orbits (slow inspiral)

 $T_{
m life}$: time for a compact object to reach the ISCO on the slow inspiral induced by gravitational radiation reaction

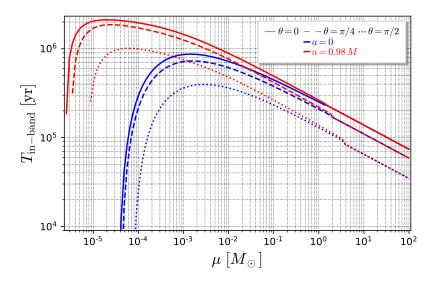
Time spent in LISA band

Inspiral time from orbit r_0 to orbit r_1 due to reaction to gravitational radiation:

$$T_{\rm ins}(r_0,r_1) = \frac{M^2}{2\mu} \int_{r_1/M}^{r_0/M} \frac{1 - 6/x + 8\bar{a}/x^{3/2} - 3\bar{a}^2/x^2}{\left(1 - 3/x + 2\bar{a}/x^{3/2}\right)^{3/2}} \frac{{\rm d}x}{x^2(\tilde{L}_{\infty}(x) + \tilde{L}_{\rm H}(x))}$$

where $\tilde{L}_{\infty,H}(x):=(M/\mu)^2L_{\infty,H}(xM)$ and L_{∞} (resp. $L_{\rm H}$) is the total GW power emitted at infinity (resp. through the BH event horizon) by a particle of mass μ orbiting at r=xM

Compact object


$$T_{\text{in-band}} = T_{\text{ins}}(r_{0,\text{max}}, r_{\text{ISCO}}) = T_{\text{life}}(r_{0,\text{max}})$$

Main-sequence stars and brown dwarfs

$$T_{\text{in-band}} \ge T_{\text{in-band}}^{\text{ins}} = T_{\text{ins}}(r_{0,\text{max}}, r_{\text{Roche}})$$

Time in LISA band for an inspiralling compact object as a function of the compact object mass μ

Time in LISA band for brown dwarfs and main-sequence stars

Results for

- inclination angle $\theta = 0$
- BH spin a = 0 (outside parentheses) and a = 0.98M (inside parentheses)

	brown dwarf	red dwarf	Sun-type	$2.4M_{\odot}$ -star
μ/M_{\odot}	0.062	0.20	1	2.40
$ ho/ ho_{\odot}$	131.	18.8	1	0.367
$r_{0,\max}/M$	28.2(28.0)	35.0(34.9)	47.1(47.0)	55.6 (55.6)
$f_{m=2}(r_{0,\max})$				
[mHz]	0.105 (0.106)	0.076(0.076)	0.049(0.049)	$0.038 \; (0.038)$
$r_{ m Roche}/M$	7.31(6.93)	13.3(13.0)	34.2(34.1)	47.6(47.5)
$T_{in-band}^{ins} \ [10^5 \ \mathrm{yr}]$	4.98(5.55)	3.72(3.99)	1.83(1.89)	$0.938 \; (0.945)$

Time in LISA band for brown dwarfs and main-sequence stars

Results for

- inclination angle $\theta = 0$
- BH spin a = 0 (outside parentheses) and a = 0.98M (inside parentheses)

	brown dwarf	red dwarf	Sun-type	$2.4M_{\odot}$ -star
μ/M_{\odot}	0.062	0.20	1	2.40
$ ho/ ho_{\odot}$	131.	18.8	1	0.367
$r_{0,\mathrm{max}}/M$	28.2(28.0)	35.0(34.9)	47.1(47.0)	$55.6\ (55.6)$
$f_{m=2}(r_{0,\max})$				
$[\mathrm{mHz}]$	0.105 (0.106)	0.076 (0.076)	0.049(0.049)	0.038 (0.038)
$r_{ m Roche}/M$	7.31(6.93)	13.3(13.0)	34.2(34.1)	47.6(47.5)
$T_{\text{in-band}}^{\text{ins}} [10^5 \text{ yr}]$	4.98(5.55)	3.72(3.99)	1.83 (1.89)	$0.938 \; (0.945)$

Brown dwarfs stay for $\sim 5\times 10^5~\mathrm{yr}$ in LISA band

Conclusions

- GW emission and SNR in LISA for close circular orbits around Sgr A* has been computed in full general relativity.
- \bullet The time spent in LISA band (SNR $\geq 10)$ during the slow inspiral has been evaluated.
- All computations have been implemented in the open-source SageMath package kerrgeodesic_gw, as part of the Black Hole Perturbation Toolkit.
- LISA has the capability to detect orbiting masses close to the ISCO as small as $\sim 10 M_{\rm Earth}$ or even $\sim 1 M_{\rm Earth}$ if Sgr A* is a fast rotator ($a \geq 0.9 M$); this could involve primordial BHs or (hypothetical) very dense artificial objects.
- The longest times in-band, of the order of 10^6 years, are achieved for primordial black holes of mass $\sim 10^{-3} M_{\odot}$ down to $10^{-5} M_{\odot}$ (depending on Sgr A*'s spin), as well as for brown dwarfs, just followed by white dwarfs and low mass main-sequence stars.