Special relativity from an accelerated observer perspective

Eric Gourgoulhon
Laboratoire Univers et Théories (LUTH)
CNRS / Observatoire de Paris / Université Paris Diderot
92190 Meudon, France
eric.gourgoulhon@obspm.fr
http://luth.obspm.fr/~luthier/gourgoulhon/
Séminaire Temps \& Espace IMCCE-SYRTE, Observatoire de Paris
14 June 2010

(1) Introduction
(2) Accelerated observers in special relativity
(3) Kinematics
(4) Physics in an accelerated frame
(5) Physics in a rotating frame

Outline

(1) Introduction
(2) Accelerated observers in special relativity
(3) Kinematics

4 Physics in an accelerated frame
(5) Physics in a rotating frame

A brief history of special relativity

- 1898 : H. Poincaré : simultaneity must result from some convention
- 1900: H. Poincaré : synchronization of clocks by exchange of light signals
- 1905: A. Einstein : funding article based on 2 axioms, both related to inertial observers: (i) the relavitity principle, (ii) the constancy of the velocity of light
- 1905: H. Poincaré : mathematical use of time as a fourth dimension
- 1907: A. Einstein : first mention of an accelerated observer (uniform acceleration)
- 1908: H. Minkowsky : 4-dimensional spacetime, generic accelerated observer
- 1909 : M. Born : detailed study of uniformly accelerated motion
- 1909: P. Ehrenfest : paradox on the circumference of a disk set to rotation
- 1911 : A. Einstein, P. Langevin : round-trip motion and differential aging (\Longrightarrow twin paradox)
- 1911: M. Laue : prediction of the Sagnac effect within special relativity
- 1956 : J. L. Synge : fully geometrical exposure of special relativity

Standard exposition of special relativity

Standard textbook presentations of special relativity are based on inertial observers.

For these privileged observers, there exists a global 3+1 decomposition of spacetime, i.e. a split between some time and some 3-dimensional Euclidean space This could make people comfortable to think in a "Newtonian way".

Special relativity differs then from Newtonian physics only in the manner one moves from one inertial observer to another one:

Lorentz transformations \leftrightarrow Galilean transformations

Some drawback of this approach: the twin paradox

In most textbooks the twin paradox is presented by means of a reference inertial observer and his twin who is "piecewise inertial", yielding the result

$$
T^{\prime}=T \sqrt{1-\frac{V^{2}}{c^{2}}} \leq T
$$

Some drawback of this approach: the twin paradox

In most textbooks the twin paradox is presented by means of a reference inertial observer and his twin who is "piecewise inertial", yielding the result

$$
T^{\prime}=T \sqrt{1-\frac{V^{2}}{c^{2}}} \leq T
$$

This requires some infinite acceleration episods.

A (very) skeptic physicist may say that the infinite acceleration spoils the explanation.

Some drawback of this approach: the twin paradox

In most textbooks the twin paradox is presented by means of a reference inertial observer and his twin who is "piecewise inertial", yielding the result

$$
T^{\prime}=T \sqrt{1-\frac{V^{2}}{c^{2}}} \leq T
$$

This requires some infinite acceleration episods.

A (very) skeptic physicist may say that the infinite acceleration spoils the explanation.

A more satisfactory presentation would require an accelerated observer.

Other arguments for considering accelerated observers

- The real world is made of accelerated / rotating observers.

Other arguments for considering accelerated observers

- The real world is made of accelerated / rotating observers.
- Well known relativistic effects arise for accelerated observers: Thomas precession, Sagnac effect.

Other arguments for considering accelerated observers

- The real world is made of accelerated / rotating observers.
- Well known relativistic effects arise for accelerated observers: Thomas precession, Sagnac effect.
- Explaining the above effects by relying only on inertial observers is tricky; it seems logically more appropriate to introduce generic (accelerated) observers first, considering inertial observers as a special subcase.

Other arguments for considering accelerated observers

- The real world is made of accelerated / rotating observers.
- Well known relativistic effects arise for accelerated observers: Thomas precession, Sagnac effect.
- Explaining the above effects by relying only on inertial observers is tricky; it seems logically more appropriate to introduce generic (accelerated) observers first, considering inertial observers as a special subcase.
- Often students learning general relativity discover notions like Fermi-Walker transport or Rindler horizon which have nothing to do with spacetime curvature and actually pertain to the realm of special relativity.

Outline

(2) Accelerated observers in special relativity
(3) Kinematics

4 Physics in an accelerated frame
(5) Physics in a rotating frame

The good framework: Minkowsky spacetime

When limiting the discussion to inertial observers, one can stick to a $3+1$ point of view and avoid to refer to Minkowsky spacetime
On the contrary, the appropriate framework for introducing accelerated observers is Minkowsky spacetime, that is the quadruplet $\left(\mathscr{E}, \boldsymbol{g}, \mathcal{I}^{+}, \boldsymbol{\epsilon}\right)$ where

- \mathscr{E} is a 4-dimensional affine space on \mathbb{R} (associate vector space : E)
- \boldsymbol{g} is the metric tensor, i.e. a bilinear form on E that is symmetric, non-degenerate and has signature $(-,+,+,+)$
- \mathcal{I}^{+}is one of the two sheets of \boldsymbol{g} 's null cone, definiting the time orientation of spacetime
- $\boldsymbol{\epsilon}$ is the Levi-Civita alternating tensor, i.e. a quadrilinear form on E that is antisymmetric and results in ± 1 when applied to any vector basis which is orthonormal with respect to \boldsymbol{g}

The null cone and vector gender

E : space of vectors on spacetime (4-vectors)
Metric tensor:

$$
\begin{array}{llll}
\boldsymbol{g}: & E \times E & \longrightarrow & \mathbb{R} \\
& (\overrightarrow{\boldsymbol{u}}, \overrightarrow{\boldsymbol{v}}) & \longmapsto & \boldsymbol{g}(\overrightarrow{\boldsymbol{u}}, \overrightarrow{\boldsymbol{v}})=: \overrightarrow{\boldsymbol{u}} \cdot \overrightarrow{\boldsymbol{v}}
\end{array}
$$

A vector $\vec{v} \in E$ is

- spacelike iff $\vec{v} \cdot \vec{v}>0$
- timelike iff $\vec{v} \cdot \vec{v}<0$
- null iff $\vec{v} \cdot \vec{v}=0$

Worldlines and the metric tensor

Physical interpretation of the metric tensor 1:

Proper time along a (massive) particle worldline $=$ length given by the metric tensor:

$$
d \tau=\frac{1}{c} \sqrt{-\boldsymbol{g}(d \overrightarrow{\boldsymbol{x}}, d \overrightarrow{\boldsymbol{x}})}
$$

4-velocity $\overrightarrow{\boldsymbol{u}}=$ unit timelike future-directed tangent to the worldline :

$$
\vec{u}:=\frac{1}{c} \frac{d \vec{x}}{d \tau}, \quad \boldsymbol{g}(\vec{u}, \vec{u})=-1
$$

Worldlines and the metric tensor

Physical interpretation of the metric tensor 1:

Proper time along a (massive) particle worldline $=$ length given by the metric tensor:

$$
d \tau=\frac{1}{c} \sqrt{-\boldsymbol{g}(d \overrightarrow{\boldsymbol{x}}, d \overrightarrow{\boldsymbol{x}})}
$$

4-velocity $\overrightarrow{\boldsymbol{u}}=$ unit timelike future-directed tangent to the worldline :

$$
\overrightarrow{\boldsymbol{u}}:=\frac{1}{c} \frac{d \overrightarrow{\boldsymbol{x}}}{d \tau}, \quad \boldsymbol{g}(\overrightarrow{\boldsymbol{u}}, \overrightarrow{\boldsymbol{u}})=-1
$$

Physical interpretation of the metric tensor 2:

The worldline of massless particles (e.g. photons) are null lines of \boldsymbol{g} (i.e. straight lines with a null tangent vector)

Einstein-Poincaré simultaneity

Observer \mathcal{O} of worldline \mathscr{L}_{0}
A event on \mathscr{L}_{0}, B distant event

Using only proper times measured by \mathcal{O} and a round-trip light signal:

Einstein-Poincaré definition of simultaneity

B is simultaneous with $A \Longleftrightarrow t=\frac{1}{2}\left(t_{1}+t_{2}\right)$
t : proper time of A
t_{1} (resp. t_{2}): proper time of signal emission (resp. reception)

Einstein-Poincaré simultaneity

Observer \mathcal{O} of worldline \mathscr{L}_{0}
A event on \mathscr{L}_{0}, B distant event

Using only proper times measured by \mathcal{O} and a round-trip light signal:

Einstein-Poincaré definition of simultaneity

B is simultaneous with $A \Longleftrightarrow t=\frac{1}{2}\left(t_{1}+t_{2}\right)$
t : proper time of A
t_{1} (resp. t_{2}): proper time of signal emission (resp. reception)

Geometrical characterization

If B is "closed" to \mathcal{O} 's worldline,
B is simultaneous with $A \Longleftrightarrow \overrightarrow{\boldsymbol{u}}(A) \cdot \overrightarrow{A B}=0$

Local rest space of an observer

Observer \mathcal{O} : worldline \mathscr{L}_{0}, 4-velocity $\overrightarrow{\boldsymbol{u}}$, proper time t

Given an event $A \in \mathscr{L}_{0}$ of proper time t,

- hypersurface of simultaneity of A for \mathcal{O} : set $\Sigma_{\boldsymbol{u}}(t)$ of all events simultaneous to A according to \mathcal{O}
- local rest space of \mathcal{O} : hyperplane $\mathscr{E}_{\boldsymbol{u}}(t)$ tangent to $\Sigma_{\boldsymbol{u}}(t)$ at A
According to the geometrical characterization of Einstein-Poincaré simultaneity:

$$
\mathscr{E}_{\boldsymbol{u}}(t) \text { is the spacelike hyperplane orthogonal to } \overrightarrow{\boldsymbol{u}}(t)
$$

Notation: $E_{u}(t)=3$-dimensional vector space associated with the affine space $\mathscr{E}_{\boldsymbol{u}}(t) ; E_{\boldsymbol{u}}(t)$ is a subspace of E

Local frame of an observer

An observer is defined not only by its wordline, but also by an orthonormal basis $\left(\vec{e}_{1}(t), \vec{e}_{2}(t), \vec{e}_{3}(t)\right)$ of its local rest space $E_{\boldsymbol{u}}(t)$ at each instant t

$\left(\overrightarrow{\boldsymbol{e}}_{\alpha}(t)\right)=\left(\overrightarrow{\boldsymbol{u}}(t), \overrightarrow{\boldsymbol{e}}_{1}(t), \overrightarrow{\boldsymbol{e}}_{2}(t), \overrightarrow{\boldsymbol{e}}_{3}(t)\right)$ is then an orthonormal basis of E : it is \mathcal{O} 's local frame.

Coordinates associated with an observer

Observer \mathcal{O} :

- proper time t
- local frame $\left(\vec{e}_{\alpha}(t)\right)$
$M \in \mathscr{E}$ "close" to \mathcal{O} 's worldline \mathscr{L}_{0}
Coordinates $\left(t, x^{1}, x^{2}, x^{3}\right)$ of M with respect to \mathcal{O} :
- t defined by

$$
M \in \mathscr{E}_{\boldsymbol{u}}(t)
$$

- $\left(x^{1}, x^{2}, x^{3}\right)$ defined by

$$
\overrightarrow{O(t) M}=x^{i} \overrightarrow{\boldsymbol{e}}_{i}(t)
$$

Misner, Thorne \& Wheeler's generalization (1973) of coordinates introduced by Synge (1956) (called by him Fermi coordinates)

Reference space of observer \mathcal{O}

3-dim. Euclidean space $R_{\mathcal{O}}$ with mapping

Variation of the local frame $(1 / 2)$

Expand $d \overrightarrow{\boldsymbol{e}}_{\alpha} / d t$ on the basis $\left(\overrightarrow{\boldsymbol{e}}_{\alpha}\right): \frac{d \overrightarrow{\boldsymbol{e}}_{\alpha}}{d t}=\Omega^{\beta}{ }_{\alpha} \overrightarrow{\boldsymbol{e}}_{\beta}$
Introduce Ω endomorphism of E whose matrix in the $\left(\overrightarrow{\boldsymbol{e}}_{\alpha}\right)$ basis is $\left(\Omega^{\alpha}{ }_{\beta}\right)$. Then

$$
\frac{d \overrightarrow{\boldsymbol{e}}_{\alpha}}{d t}=\boldsymbol{\Omega}\left(\overrightarrow{\boldsymbol{e}}_{\alpha}\right)
$$

From the property $\overrightarrow{\boldsymbol{e}}_{\alpha} \cdot \overrightarrow{\boldsymbol{e}}_{\beta}=\eta_{\alpha \beta}$ and $d \eta_{\alpha \beta} / d t=0$ one gets immediately

$$
\boldsymbol{\Omega}\left(\vec{e}_{\alpha}\right) \cdot \vec{e}_{\beta}=-\vec{e}_{\alpha} \cdot \boldsymbol{\Omega}\left(\vec{e}_{\beta}\right)
$$

\Longrightarrow the bilinear form $\underline{\Omega}$ defined by $\forall(\overrightarrow{\boldsymbol{v}}, \overrightarrow{\boldsymbol{w}}) \in E^{2}, \quad \underline{\boldsymbol{\Omega}}(\overrightarrow{\boldsymbol{v}}, \overrightarrow{\boldsymbol{w}}):=\overrightarrow{\boldsymbol{v}} \cdot \boldsymbol{\Omega}(\overrightarrow{\boldsymbol{w}})$ is antisymmetric, i.e. $\underline{\Omega}$ is a 2 -form.

Variation of the local frame $(1 / 2)$

Expand $d \overrightarrow{\boldsymbol{e}}_{\alpha} / d t$ on the basis $\left(\overrightarrow{\boldsymbol{e}}_{\alpha}\right): \frac{d \overrightarrow{\boldsymbol{e}}_{\alpha}}{d t}=\Omega^{\beta}{ }_{\alpha} \overrightarrow{\boldsymbol{e}}_{\beta}$
Introduce Ω endomorphism of E whose matrix in the $\left(\vec{e}_{\alpha}\right)$ basis is $\left(\Omega^{\alpha}{ }_{\beta}\right)$. Then

$$
\frac{d \overrightarrow{\boldsymbol{e}}_{\alpha}}{d t}=\boldsymbol{\Omega}\left(\overrightarrow{\boldsymbol{e}}_{\alpha}\right)
$$

From the property $\overrightarrow{\boldsymbol{e}}_{\alpha} \cdot \overrightarrow{\boldsymbol{e}}_{\beta}=\eta_{\alpha \beta}$ and $d \eta_{\alpha \beta} / d t=0$ one gets immediately

$$
\boldsymbol{\Omega}\left(\vec{e}_{\alpha}\right) \cdot \vec{e}_{\beta}=-\vec{e}_{\alpha} \cdot \boldsymbol{\Omega}\left(\vec{e}_{\beta}\right)
$$

\Longrightarrow the bilinear form $\underline{\Omega}$ defined by $\forall(\overrightarrow{\boldsymbol{v}}, \overrightarrow{\boldsymbol{w}}) \in E^{2}, \quad \underline{\boldsymbol{\Omega}}(\overrightarrow{\boldsymbol{v}}, \overrightarrow{\boldsymbol{w}}):=\overrightarrow{\boldsymbol{v}} \cdot \boldsymbol{\Omega}(\overrightarrow{\boldsymbol{w}})$ is antisymmetric, i.e. $\underline{\boldsymbol{\Omega}}$ is a 2 -form.
$\Longrightarrow \exists$ a unique 1-form a and a unique vector $\vec{\omega}$ such that

$$
\underline{\boldsymbol{\Omega}}=c \underline{\boldsymbol{u}} \otimes \boldsymbol{a}-c \boldsymbol{a} \otimes \underline{\boldsymbol{u}}-\boldsymbol{\epsilon}(\overrightarrow{\boldsymbol{u}}, \overrightarrow{\boldsymbol{\omega}}, . . .), \quad \boldsymbol{a} \cdot \overrightarrow{\boldsymbol{u}}=0, \quad \overrightarrow{\boldsymbol{\omega}} \cdot \overrightarrow{\boldsymbol{u}}=0
$$

This is similar to the electric / magnetic decomposition of the electromagnetic field tensor \boldsymbol{F} with respect to an observer:

$$
\boldsymbol{F}=\underline{\boldsymbol{u}} \otimes \boldsymbol{E}-\boldsymbol{E} \otimes \underline{\boldsymbol{u}}+\boldsymbol{\epsilon}(\overrightarrow{\boldsymbol{u}}, c \overrightarrow{\boldsymbol{B}}, ., .), \quad \boldsymbol{E} \cdot \overrightarrow{\boldsymbol{u}}=0, \quad \overrightarrow{\boldsymbol{B}} \cdot \overrightarrow{\boldsymbol{u}}=0
$$

Accelerated observers in special relativity

Variation of the local frame $(2 / 2)$

Accordingly

$$
\begin{equation*}
\frac{d \overrightarrow{\boldsymbol{e}}_{\alpha}}{d t}=\underbrace{c\left(\overrightarrow{\boldsymbol{a}} \cdot \overrightarrow{\boldsymbol{e}}_{\alpha}\right) \overrightarrow{\boldsymbol{u}}-c\left(\overrightarrow{\boldsymbol{u}} \cdot \overrightarrow{\boldsymbol{e}}_{\alpha}\right) \overrightarrow{\boldsymbol{a}}}_{\text {Fermi-Walker }}+\underbrace{\overrightarrow{\boldsymbol{\omega}} \times_{\boldsymbol{u}} \overrightarrow{\boldsymbol{e}}_{\alpha}}_{\text {spatial rotation }} \tag{1}
\end{equation*}
$$

with $\vec{v} \times_{u} \vec{w}:=\vec{\epsilon}(\vec{u}, \vec{v}, \vec{w},$.

Variation of the local frame (2/2)

Accordingly

$$
\begin{equation*}
\frac{d \overrightarrow{\boldsymbol{e}}_{\alpha}}{d t}=\underbrace{c\left(\overrightarrow{\boldsymbol{a}} \cdot \overrightarrow{\boldsymbol{e}}_{\alpha}\right) \overrightarrow{\boldsymbol{u}}-c\left(\overrightarrow{\boldsymbol{u}} \cdot \overrightarrow{\boldsymbol{e}}_{\alpha}\right) \overrightarrow{\boldsymbol{a}}}_{\text {Fermi-Walker }}+\underbrace{\overrightarrow{\boldsymbol{\omega}} \times_{\boldsymbol{u}} \overrightarrow{\boldsymbol{e}}_{\alpha}}_{\text {spatial rotation }} \tag{1}
\end{equation*}
$$

with $\overrightarrow{\boldsymbol{v}} \times_{u} \overrightarrow{\boldsymbol{w}}:=\vec{\epsilon}(\overrightarrow{\boldsymbol{u}}, \vec{v}, \overrightarrow{\boldsymbol{w}},$.

- Since $\vec{a} \cdot \vec{u}=0, \vec{u} \cdot \vec{u}=-1$ and $\vec{\omega} \times_{u} \vec{u}=0$, applying (1) to $\vec{e}_{0}=\vec{u}$ yields

$$
\frac{d \overrightarrow{\boldsymbol{u}}}{d t}=c \overrightarrow{\boldsymbol{a}}
$$

\vec{a} is thus the 4 -acceleration of observer \mathcal{O}

Variation of the local frame (2/2)

Accordingly

$$
\begin{equation*}
\frac{d \overrightarrow{\boldsymbol{e}}_{\alpha}}{d t}=\underbrace{c\left(\overrightarrow{\boldsymbol{a}} \cdot \overrightarrow{\boldsymbol{e}}_{\alpha}\right) \overrightarrow{\boldsymbol{u}}-c\left(\overrightarrow{\boldsymbol{u}} \cdot \overrightarrow{\boldsymbol{e}}_{\alpha}\right) \overrightarrow{\boldsymbol{a}}}_{\text {Fermi-Walker }}+\underbrace{\overrightarrow{\boldsymbol{\omega}} \times_{\boldsymbol{u}} \overrightarrow{\boldsymbol{e}}_{\alpha}}_{\text {spatial rotation }} \tag{1}
\end{equation*}
$$

with $\overrightarrow{\boldsymbol{v}} \times_{u} \overrightarrow{\boldsymbol{w}}:=\vec{\epsilon}(\overrightarrow{\boldsymbol{u}}, \vec{v}, \overrightarrow{\boldsymbol{w}},$.

- Since $\overrightarrow{\boldsymbol{a}} \cdot \overrightarrow{\boldsymbol{u}}=0, \overrightarrow{\boldsymbol{u}} \cdot \overrightarrow{\boldsymbol{u}}=-1$ and $\overrightarrow{\boldsymbol{\omega}} \times{ }_{\boldsymbol{u}} \overrightarrow{\boldsymbol{u}}=0$, applying (1) to $\overrightarrow{\boldsymbol{e}}_{0}=\overrightarrow{\boldsymbol{u}}$ yields

$$
\frac{d \overrightarrow{\boldsymbol{u}}}{d t}=c \overrightarrow{\boldsymbol{a}}
$$

\vec{a} is thus the 4 -acceleration of observer \mathcal{O}

- The vector $\overrightarrow{\boldsymbol{\omega}}$ is called the 4 -rotation of observer \mathcal{O}

Variation of the local frame (2/2)

Accordingly

$$
\begin{equation*}
\frac{d \overrightarrow{\boldsymbol{e}}_{\alpha}}{d t}=\underbrace{c\left(\overrightarrow{\boldsymbol{a}} \cdot \overrightarrow{\boldsymbol{e}}_{\alpha}\right) \overrightarrow{\boldsymbol{u}}-c\left(\overrightarrow{\boldsymbol{u}} \cdot \overrightarrow{\boldsymbol{e}}_{\alpha}\right) \overrightarrow{\boldsymbol{a}}}_{\text {Fermi-Walker }}+\underbrace{\overrightarrow{\boldsymbol{\omega}} \times_{\boldsymbol{u}} \overrightarrow{\boldsymbol{e}}_{\alpha}}_{\text {spatial rotation }} \tag{1}
\end{equation*}
$$

with $\overrightarrow{\boldsymbol{v}} \times_{u} \overrightarrow{\boldsymbol{w}}:=\vec{\epsilon}(\overrightarrow{\boldsymbol{u}}, \vec{v}, \overrightarrow{\boldsymbol{w}},$.

- Since $\overrightarrow{\boldsymbol{a}} \cdot \overrightarrow{\boldsymbol{u}}=0, \overrightarrow{\boldsymbol{u}} \cdot \overrightarrow{\boldsymbol{u}}=-1$ and $\overrightarrow{\boldsymbol{\omega}} \times{ }_{\boldsymbol{u}} \overrightarrow{\boldsymbol{u}}=0$, applying (1) to $\overrightarrow{\boldsymbol{e}}_{0}=\overrightarrow{\boldsymbol{u}}$ yields

$$
\frac{d \overrightarrow{\boldsymbol{u}}}{d t}=c \overrightarrow{\boldsymbol{a}}
$$

\vec{a} is thus the 4 -acceleration of observer \mathcal{O}

- The vector $\overrightarrow{\boldsymbol{\omega}}$ is called the 4 -rotation of observer \mathcal{O}

Variation of the local frame (2/2)

Accordingly

$$
\begin{equation*}
\frac{d \overrightarrow{\boldsymbol{e}}_{\alpha}}{d t}=\underbrace{c\left(\overrightarrow{\boldsymbol{a}} \cdot \overrightarrow{\boldsymbol{e}}_{\alpha}\right) \overrightarrow{\boldsymbol{u}}-c\left(\overrightarrow{\boldsymbol{u}} \cdot \overrightarrow{\boldsymbol{e}}_{\alpha}\right) \overrightarrow{\boldsymbol{a}}}_{\text {Fermi-Walker }}+\underbrace{\overrightarrow{\boldsymbol{\omega}} \times_{\boldsymbol{u}} \overrightarrow{\boldsymbol{e}}_{\alpha}}_{\text {spatial rotation }} \tag{1}
\end{equation*}
$$

with $\overrightarrow{\boldsymbol{v}} \times{ }_{\boldsymbol{u}} \overrightarrow{\boldsymbol{w}}:=\overrightarrow{\boldsymbol{\epsilon}}(\overrightarrow{\boldsymbol{u}}, \overrightarrow{\boldsymbol{v}}, \overrightarrow{\boldsymbol{w}},$.

- Since $\overrightarrow{\boldsymbol{a}} \cdot \overrightarrow{\boldsymbol{u}}=0, \overrightarrow{\boldsymbol{u}} \cdot \overrightarrow{\boldsymbol{u}}=-1$ and $\overrightarrow{\boldsymbol{\omega}} \times_{\boldsymbol{u}} \overrightarrow{\boldsymbol{u}}=0$, applying (1) to $\overrightarrow{\boldsymbol{e}}_{0}=\overrightarrow{\boldsymbol{u}}$ yields

$$
\frac{d \overrightarrow{\boldsymbol{u}}}{d t}=c \overrightarrow{\boldsymbol{a}}
$$

$\overrightarrow{\boldsymbol{a}}$ is thus the 4-acceleration of observer \mathcal{O}

- The vector $\overrightarrow{\boldsymbol{\omega}}$ is called the 4-rotation of observer \mathcal{O}

As for the 4-velocity, the 4-acceleration and the 4-rotation are absolute quantities

$$
\mathcal{O} \text { inertial observer } \Longleftrightarrow \overrightarrow{\boldsymbol{a}}=0 \text { and } \overrightarrow{\boldsymbol{\omega}}=0 \Longleftrightarrow \frac{d \overrightarrow{\boldsymbol{e}}_{\alpha}}{d t}=0
$$

Non-globlality of the local frame

The local frame of observer \mathcal{O} is valid within a range $r \ll a^{-1}=\|\overrightarrow{\boldsymbol{a}}\|_{g}^{-1}=(\overrightarrow{\boldsymbol{a}} \cdot \overrightarrow{\boldsymbol{a}})^{-1 / 2}$
$a=\gamma / c^{2}$ with γ acceleration of \mathcal{O} relative to a tangent inertial observer
$\gamma=10 \mathrm{~m} \mathrm{~s}^{-2} \Longrightarrow c^{2} / \gamma \simeq 9 \times 10^{15} \mathrm{~m} \simeq 1$ light-year!

Outline

(2) Accelerated observers in special relativity
(3) Kinematics

4 Physics in an accelerated frame
(5) Physics in a rotating frame

Lorentz factor

Observer \mathcal{O} : worldline \mathscr{L} 4-velocity \vec{u} 4-acceleration $\overrightarrow{\boldsymbol{a}}$ 4-rotation $\vec{\omega}$ proper time t local rest space $\mathscr{E}_{\boldsymbol{u}}(t)$

Massive particle \mathscr{P} : worldline \mathscr{L}^{\prime} 4-velocity $\overrightarrow{\boldsymbol{u}}^{\prime}$ proper time t^{\prime}

Lorentz factor of \mathscr{P} with respect to $\mathcal{O}: \Gamma:=\frac{d t}{d t^{\prime}}$
One can show

$$
\Gamma=-\frac{\overrightarrow{\boldsymbol{u}} \cdot \overrightarrow{\boldsymbol{u}}^{\prime}}{1+\overrightarrow{\boldsymbol{a}} \cdot \overrightarrow{O M}}
$$

Relative velocity

Monitoring the motion of particle \mathscr{P} within \mathcal{O} 's local coordinates $\left(t, x^{i}\right)$:

$$
\overrightarrow{O(t) M(t)}=x^{i}(t) \overrightarrow{\boldsymbol{e}}_{i}(t)
$$

The velocity of \mathscr{P} relative to \mathcal{O} is

$$
\overrightarrow{\boldsymbol{V}}(t):=\frac{d x^{i}}{d t} \overrightarrow{\boldsymbol{e}}_{i}(t)
$$

By construction $\overrightarrow{\boldsymbol{V}}(t) \in E_{\boldsymbol{u}}(t): \overrightarrow{\boldsymbol{u}} \cdot \overrightarrow{\boldsymbol{V}}=0$
The 4-velocity of \mathscr{P} is expressible in terms of Γ and \vec{V} as

$$
\begin{equation*}
\overrightarrow{\boldsymbol{u}}^{\prime}=\Gamma\left[(1+\overrightarrow{\boldsymbol{a}} \cdot \overrightarrow{O M}) \overrightarrow{\boldsymbol{u}}+\frac{1}{c}\left(\overrightarrow{\boldsymbol{V}}+\overrightarrow{\boldsymbol{\omega}} \times_{u} \overrightarrow{O M}\right)\right] \tag{2}
\end{equation*}
$$

The normalization relation $\overrightarrow{\boldsymbol{u}}^{\prime} \cdot \overrightarrow{\boldsymbol{u}}^{\prime}=-1$ is then equivalent to

$$
\begin{equation*}
\Gamma=\left[(1+\overrightarrow{\boldsymbol{a}} \cdot \overrightarrow{O M})^{2}-\frac{1}{c^{2}}\left(\overrightarrow{\boldsymbol{V}}+\overrightarrow{\boldsymbol{\omega}} \times_{u} \overrightarrow{O M}\right) \cdot\left(\overrightarrow{\boldsymbol{V}}+\overrightarrow{\boldsymbol{\omega}} \times_{u} \overrightarrow{O M}\right)\right]^{-1 / 2} \tag{3}
\end{equation*}
$$

Relative acceleration

The acceleration of \mathscr{P} relative to \mathcal{O} is

$$
\vec{\gamma}(t):=\frac{d^{2} x^{i}}{d t^{2}} \vec{e}_{i}(t)
$$

By construction $\vec{\gamma}(t) \in E_{\boldsymbol{u}}(t): \overrightarrow{\boldsymbol{u}} \cdot \vec{\gamma}=0$
The 4-acceleration of \mathscr{P} reads

$$
\begin{aligned}
\overrightarrow{\boldsymbol{a}}^{\prime}= & \frac{\Gamma^{2}}{c^{2}}\left\{\vec{\gamma}+\overrightarrow{\boldsymbol{\omega}} \times_{u}\left(\overrightarrow{\boldsymbol{\omega}} \times_{u} \overrightarrow{O M}\right)+2 \overrightarrow{\boldsymbol{\omega}} \times_{u} \overrightarrow{\boldsymbol{V}}+\frac{d \overrightarrow{\boldsymbol{\omega}}}{d t} \times_{u} \overrightarrow{O M}\right. \\
& +c^{2}(1+\overrightarrow{\boldsymbol{a}} \cdot \overrightarrow{O M}) \overrightarrow{\boldsymbol{a}}+\frac{1}{\Gamma} \frac{d \Gamma}{d t}\left(\overrightarrow{\boldsymbol{V}}+\overrightarrow{\boldsymbol{\omega}} \times_{u} \overrightarrow{O M}\right) \\
& \left.+c\left[2 \overrightarrow{\boldsymbol{a}} \cdot\left(\overrightarrow{\boldsymbol{V}}+\overrightarrow{\boldsymbol{\omega}} \times_{u} \overrightarrow{O M}\right)+\frac{d \overrightarrow{\boldsymbol{a}}}{d t} \cdot \overrightarrow{O M}+\frac{1}{\Gamma} \frac{d \Gamma}{d t}(1+\overrightarrow{\boldsymbol{a}} \cdot \overrightarrow{O M})\right] \overrightarrow{\boldsymbol{u}}\right\}
\end{aligned}
$$

Special case of an inertial observer

If \mathcal{O} is inertial, $\overrightarrow{\boldsymbol{a}}=0, \overrightarrow{\boldsymbol{\omega}}=0$, and we recover well known formulæ :

$$
\begin{gathered}
\overrightarrow{\boldsymbol{u}}^{\prime}=\Gamma\left(\overrightarrow{\boldsymbol{u}}+\frac{1}{c} \overrightarrow{\boldsymbol{V}}\right) \\
\Gamma=\left(1-\frac{1}{c^{2}} \overrightarrow{\boldsymbol{V}} \cdot \overrightarrow{\boldsymbol{V}}\right)^{-1 / 2} \\
\overrightarrow{\boldsymbol{a}}^{\prime}=\frac{\Gamma^{2}}{c^{2}}\left[\vec{\gamma}+\frac{\Gamma^{2}}{c^{2}}(\vec{\gamma} \cdot \overrightarrow{\boldsymbol{V}})(\overrightarrow{\boldsymbol{V}}+c \overrightarrow{\boldsymbol{u}})\right] \\
\overrightarrow{\boldsymbol{a}}^{\prime}=\frac{1}{c^{2}} \vec{\gamma} \quad(\overrightarrow{\boldsymbol{V}}=0)
\end{gathered}
$$

Outline

(1) Introduction
(2) Accelerated observers in special relativity
(3) Kinematics
(4) Physics in an accelerated frame
(5) Physics in a rotating frame

Uniformly accelerated observer

Definition: the observer \mathcal{O} is uniformly accelerated iff

- its worldline stays in a plane $\Pi \subset \mathscr{E}$
- the norm of its 4-acceleration is constant $a:=\|\overrightarrow{\boldsymbol{a}}\|_{g}=\sqrt{\overrightarrow{\boldsymbol{a}} \cdot \overrightarrow{\boldsymbol{a}}}=$ const
- its 4-rotation vanishes : $\overrightarrow{\boldsymbol{\omega}}=0$

Worldline in terms of the coordinates $\left(c t_{*}, x_{*}, y_{*}, z_{*}\right)$ associated with an inertial observer \mathcal{O}_{*} :

$$
\left\{\begin{array}{l}
c t_{*}=a^{-1} \sinh (a c t) \\
x_{*}=a^{-1}[\cosh (a c t)-1] \\
y_{*}=0 \\
z_{*}=0
\end{array}\right.
$$

$$
\left(a x_{*}+1\right)^{2}-\left(a c t_{*}\right)^{2}=1
$$

$$
\overrightarrow{\boldsymbol{u}}(t)=\cosh (a c t) \overrightarrow{\boldsymbol{e}}_{0}^{*}+\sinh (a c t) \overrightarrow{\boldsymbol{e}}_{1}^{*}
$$

$$
\overrightarrow{\boldsymbol{a}}(t)=a\left[\sinh (a c t) \overrightarrow{\boldsymbol{e}}_{0}^{*}+\cosh (a c t) \overrightarrow{\boldsymbol{e}}_{1}^{*}\right]
$$

Coordinates associated with the accelerated observer

Relation between the coordinates (t, x, y, z) associated with \mathcal{O} and the inertial coordinates $\left(t_{*}, x_{*}, y_{*}, z_{*}\right)$:

$$
\left\{\begin{aligned}
c t_{*} & =\left(x+a^{-1}\right) \sinh (a c t) \\
x_{*} & =\left(x+a^{-1}\right) \cosh (a c t)-a^{-1} \\
y_{*} & =y \\
z_{*} & =z .
\end{aligned}\right.
$$

$$
\text { with } x>-a^{-1}
$$

The coordinates (t, x, y, z) are called Rindler coordinates

Time dilation at rest

Observer \mathcal{O}^{\prime} at rest with respect to \mathcal{O}, located at coord. $(x, y, z)=\left(x_{0}, 0,0\right)$

$$
\Longrightarrow \overrightarrow{\boldsymbol{V}}=0
$$

$$
(3) \Longrightarrow \Gamma=\left[1+\overrightarrow{\boldsymbol{a}}(t) \cdot \overrightarrow{O(t) O^{\prime}\left(t^{\prime}\right)}\right]^{-1}
$$

(2) $\Longrightarrow \overrightarrow{\boldsymbol{u}}^{\prime}\left(t^{\prime}\right)=\overrightarrow{\boldsymbol{u}}(t)$
\Longrightarrow the local rest spaces of \mathcal{O} and \mathcal{O}^{\prime} coincide: $\mathscr{E}_{\boldsymbol{u}^{\prime}}\left(t^{\prime}\right)=\mathscr{E}_{\boldsymbol{u}}(t)$ $\overrightarrow{\boldsymbol{a}}(t)=a \overrightarrow{\boldsymbol{e}}_{1}(t)$ and $\overrightarrow{O(t) O^{\prime}\left(t^{\prime}\right)}=x_{0} \overrightarrow{\boldsymbol{e}}_{1}(t)$ $\Rightarrow \Gamma=\left(1+a x_{0}\right)^{-1} \& d t^{\prime}=\left(1+a x_{0}\right) d t$
Since $x_{0}=$ const, this relation can be integrated:

$$
t^{\prime}=\left(1+a x_{0}\right) t
$$

Time dilation at rest

Observer \mathcal{O}^{\prime} at rest with respect to \mathcal{O}, located at coord. $(x, y, z)=\left(x_{0}, 0,0\right)$

$$
\Longrightarrow \overrightarrow{\boldsymbol{V}}=0
$$

$$
(3) \Longrightarrow \Gamma=\left[1+\overrightarrow{\boldsymbol{a}}(t) \cdot \overrightarrow{O(t) O^{\prime}\left(t^{\prime}\right)}\right]^{-1}
$$

(2) $\Longrightarrow \overrightarrow{\boldsymbol{u}}^{\prime}\left(t^{\prime}\right)=\overrightarrow{\boldsymbol{u}}(t)$
\Longrightarrow the local rest spaces of \mathcal{O} and \mathcal{O}^{\prime} coincide: $\mathscr{E}_{\boldsymbol{u}^{\prime}}\left(t^{\prime}\right)=\mathscr{E}_{\boldsymbol{u}}(t)$ $\overrightarrow{\boldsymbol{a}}(t)=a \overrightarrow{\boldsymbol{e}}_{1}(t)$ and $\overrightarrow{O(t) O^{\prime}\left(t^{\prime}\right)}=x_{0} \overrightarrow{\boldsymbol{e}}_{1}(t)$ $\Rightarrow \Gamma=\left(1+a x_{0}\right)^{-1} \& d t^{\prime}=\left(1+a x_{0}\right) d t$

Since $x_{0}=$ const, this relation can be integrated:

$$
t^{\prime}=\left(1+a x_{0}\right) t
$$

Analogous to Einstein effect in general relativity

Photon trajectories

Null geodesics in terms of inertial coordinates:

$$
c t_{*}= \pm\left(x_{*}-b\right), \quad b \in \mathbb{R}
$$

in terms of \mathcal{O} 's coordinates:

$$
c t= \pm a^{-1} \ln \left(\frac{1+a x}{1+a b}\right)
$$

$x=-a^{-1}:$ Rindler horizon

Redshift

Reception by \mathcal{O} of a photon emitted by \mathcal{O}^{\prime} at $t^{\prime}=0$

If \vec{p} is the photon 4-momentum, the energy measured by \mathcal{O} is

$$
E_{\mathrm{rec}}=-c \overrightarrow{\boldsymbol{p}} \cdot \overrightarrow{\boldsymbol{u}}\left(t_{\mathrm{rec}}\right)
$$

with

$$
\vec{p}=\frac{E_{\mathrm{em}}}{c}\left(\overrightarrow{\boldsymbol{u}}^{\prime}(0)+\overrightarrow{\boldsymbol{n}}^{\prime}\right)=\frac{E_{\mathrm{em}}}{c}\left(\overrightarrow{\boldsymbol{e}}_{0}^{*}-\overrightarrow{\boldsymbol{e}}_{1}^{*}\right)
$$

$$
\overrightarrow{\boldsymbol{u}}\left(t_{\text {rec }}\right)=\cosh \left(a c t_{\text {rec }}\right) \overrightarrow{\boldsymbol{e}}_{0}^{*}+\sinh \left(a c t_{\text {rec }}\right) \overrightarrow{\boldsymbol{e}}_{1}^{*}
$$

$$
c t_{\mathrm{rec}}=a^{-1} \ln \left(1+a x_{\mathrm{em}}\right)
$$

$$
\Longrightarrow E_{\mathrm{rec}}=E_{\mathrm{em}}\left(1+a x_{\mathrm{em}}\right)
$$

Redshift

Reception by \mathcal{O} of a photon emitted by \mathcal{O}^{\prime} at $t^{\prime}=0$

If \vec{p} is the photon 4-momentum, the energy measured by \mathcal{O} is

$$
E_{\mathrm{rec}}=-c \overrightarrow{\boldsymbol{p}} \cdot \overrightarrow{\boldsymbol{u}}\left(t_{\mathrm{rec}}\right)
$$

with

$$
\overrightarrow{\boldsymbol{p}}=\frac{E_{\mathrm{em}}}{c}\left(\overrightarrow{\boldsymbol{u}}^{\prime}(0)+\overrightarrow{\boldsymbol{n}}^{\prime}\right)=\frac{E_{\mathrm{em}}}{c}\left(\overrightarrow{\boldsymbol{e}}_{0}^{*}-\overrightarrow{\boldsymbol{e}}_{1}^{*}\right)
$$

$$
\overrightarrow{\boldsymbol{u}}\left(t_{\mathrm{rec}}\right)=\cosh \left(a c t_{\mathrm{rec}}\right) \overrightarrow{\boldsymbol{e}}_{0}^{*}+\sinh \left(a c t_{\mathrm{rec}}\right) \overrightarrow{\boldsymbol{e}}_{1}^{*}
$$

$$
c t_{\mathrm{rec}}=a^{-1} \ln \left(1+a x_{\mathrm{em}}\right)
$$

$$
\Longrightarrow E_{\mathrm{rec}}=E_{\mathrm{em}}\left(1+a x_{\mathrm{em}}\right)
$$

\Longrightarrow spectral shift $z=\frac{1}{1+a x_{\mathrm{em}}}-1 \quad\left\{\begin{array}{l}z>0 \text { for } x_{\mathrm{em}}<0 \\ z<0 \text { for } x_{\mathrm{em}}>0\end{array}\right.$

Thomas precession

$\mathcal{O}_{*}=$ inertial observer ; proper time t_{*}; (local) frame (\vec{e}_{α}^{*})
$\mathcal{O}=$ accelerated observer without rotation; proper time t; local frame $\left(\overrightarrow{\boldsymbol{e}}_{\alpha}(t)\right)$

\boldsymbol{S}_{t} : the boost from $\overrightarrow{\boldsymbol{e}}_{0}^{*}$ to $\overrightarrow{\boldsymbol{e}}_{0}(t):$

Let

$$
\begin{aligned}
& \overrightarrow{\boldsymbol{\varepsilon}}_{\alpha}\left(t_{*}\right):=\boldsymbol{S}_{t}^{-1}\left(\overrightarrow{\boldsymbol{e}}_{\alpha}(t)\right) \\
\Longleftrightarrow & \overrightarrow{\boldsymbol{e}}_{\alpha}(t)=\boldsymbol{S}_{t}\left(\overrightarrow{\boldsymbol{\varepsilon}}_{\alpha}\left(t_{*}\right)\right)
\end{aligned}
$$

$\vec{\varepsilon}_{0}=\vec{e}_{0}^{*}$
$\left(\vec{\varepsilon}_{i}\right)=\operatorname{triad}$ in \mathcal{O}_{*} 's rest space which is "quasi-parallel" to the triad $\left(\vec{e}_{i}\right)$ of \mathcal{O} 's local rest frame.

Thomas precession

Evolution of \mathcal{O} 's local rest frame:

$$
\overrightarrow{\boldsymbol{e}}_{\alpha}(t+d t)=\boldsymbol{\Lambda}\left(\overrightarrow{\boldsymbol{e}}_{\alpha}\right)
$$

According to (1) with $\overrightarrow{\boldsymbol{\omega}}=0, \boldsymbol{\Lambda}\left(\overrightarrow{\boldsymbol{e}}_{\alpha}\right)=\overrightarrow{\boldsymbol{e}}_{\alpha}+c d t\left[\left(\overrightarrow{\boldsymbol{a}} \cdot \overrightarrow{\boldsymbol{e}}_{\alpha}\right) \overrightarrow{\boldsymbol{u}}-\left(\overrightarrow{\boldsymbol{u}} \cdot \overrightarrow{\boldsymbol{e}}_{\alpha}\right) \overrightarrow{\boldsymbol{a}}\right]$
$\boldsymbol{\Lambda}$ is an infinitesimal boost
Hence

$$
\overrightarrow{\boldsymbol{e}}_{\alpha}(t+d t)=\boldsymbol{\Lambda} \circ \boldsymbol{S}_{t}\left(\vec{\varepsilon}_{\alpha}\left(t_{*}\right)\right)
$$

Now in general, the composition of the boosts Λ and S_{t} is a boost times a rotation - Thomas rotation:

$$
\boldsymbol{\Lambda} \circ \boldsymbol{S}_{t}=\boldsymbol{S}^{\prime} \circ \boldsymbol{R}
$$

In the present case, $\boldsymbol{R}\left(\vec{e}_{0}^{*}\right)=\vec{e}_{0}^{*}$, so that necessarily $\boldsymbol{S}^{\prime}=S_{t+d t}$. Hence

$$
\begin{aligned}
& \overrightarrow{\boldsymbol{e}}_{\alpha}(t+d t)=\boldsymbol{S}_{t+d t} \circ \boldsymbol{R}\left(\vec{\varepsilon}_{\alpha}\left(t_{*}\right)\right) \\
& \Longrightarrow \vec{\varepsilon}_{\alpha}\left(t_{*}+d t_{*}\right)=\boldsymbol{R}\left(\vec{\varepsilon}_{\alpha}\left(t_{*}\right)\right)
\end{aligned}
$$

Thomas precession

Thus

$$
\frac{d \vec{\varepsilon}_{i}}{d t_{*}}=\vec{\omega}_{\mathrm{T}} \times{ }_{e_{\mathrm{o}}^{*}} \vec{\varepsilon}_{i}
$$

The following expression can be established for the rotation vector:

$$
\overrightarrow{\boldsymbol{\omega}}_{\mathrm{T}}=\frac{\Gamma^{2}}{c^{2}(1+\Gamma)} \vec{\gamma} \times_{e_{0}^{*}} \overrightarrow{\boldsymbol{V}}
$$

with
$\overrightarrow{\boldsymbol{V}}=$ velocity of \mathcal{O} with respect to \mathcal{O}_{*}
$\vec{\gamma}=$ acceleration of \mathcal{O} with respect to \mathcal{O}_{*}
$\Gamma=$ Lorentz factor of \mathcal{O} with respect to \mathcal{O}_{*}
Remark: if \mathcal{O} is a uniformly accelerated observer, $\overrightarrow{\boldsymbol{V}}$ and $\vec{\gamma}$ are parallel, so that $\overrightarrow{\boldsymbol{\omega}}_{\mathrm{T}}=0$

Outline

(2) Accelerated observers in special relativity
(3) Kinematics

4 Physics in an accelerated frame
(5) Physics in a rotating frame

Uniformly rotating observer

Observer \mathcal{O} in uniform rotation:

$\overrightarrow{\boldsymbol{a}}=0$ and $\overrightarrow{\boldsymbol{\omega}}=$ const
Local frame of \mathcal{O} :

$$
\begin{aligned}
& \vec{e}_{0}(t)=\vec{e}_{0}^{*} \\
& \overrightarrow{\boldsymbol{e}}_{1}(t)=\cos \omega t \overrightarrow{\boldsymbol{e}}_{1}^{*}+\sin \omega t \overrightarrow{\boldsymbol{e}}_{2}^{*} \\
& \overrightarrow{\boldsymbol{e}}_{2}(t)=-\sin \omega t \overrightarrow{\boldsymbol{e}}_{1}^{*}+\cos \omega t \overrightarrow{\boldsymbol{e}}_{2}^{*} \\
& \overrightarrow{\boldsymbol{e}}_{3}(t)=\vec{e}_{3}^{*}=\omega^{-1} \overrightarrow{\boldsymbol{\omega}}
\end{aligned}
$$

with $\left(\overrightarrow{\boldsymbol{e}}_{\alpha}^{*}\right)$ reference frame of inertial observer \mathcal{O}_{*}
Coordinate system of $\mathcal{O}:(t, x, y, z)$ such that
$\left\{\begin{array}{l}x_{*}=x \cos \omega t-y \sin \omega t \\ y_{*}=x \sin \omega t+y \cos \omega t \\ z_{*}=z\end{array}\right.$

Corotating observer

Observer \mathcal{O}^{\prime} at rest with respect to \mathcal{O}, i.e. at fixed values of $x=r \cos \varphi$ and $y=r \cos \varphi$ ($z=0$)
Worldline in term of inertial coordinates:

$$
\left\{\begin{array}{l}
x_{*}(t)=r \cos (\omega t+\varphi) \\
y_{*}(t)=r \sin (\omega t+\varphi) \\
z_{*}(t)=0
\end{array}\right.
$$

Velocity of \mathcal{O}^{\prime} w.r.t. \mathcal{O}_{*} :
$\overrightarrow{\boldsymbol{V}}=r \omega \overrightarrow{\boldsymbol{n}}, \quad$ with $\quad \overrightarrow{\boldsymbol{n}}:=-\sin \varphi \overrightarrow{\boldsymbol{e}}_{1}+\cos \varphi \overrightarrow{\boldsymbol{e}}_{2}$
4-acceleration of \mathcal{O}^{\prime} :
$\overrightarrow{\boldsymbol{a}}^{\prime}=\frac{\Gamma^{2}}{c^{2}} r \omega^{2} \overrightarrow{\boldsymbol{e}}_{2}^{\prime}, \quad \overrightarrow{\boldsymbol{e}}_{2}^{\prime}=-\cos \varphi \overrightarrow{\boldsymbol{e}}_{1}-\sin \varphi \overrightarrow{\boldsymbol{e}}_{2}$

The problem of clock synchronization

1-parameter family of corotating observers $\mathcal{O}_{(\lambda)}^{\prime}$
Moving from $\mathcal{O}_{(\lambda)}^{\prime}$ to $\mathcal{O}_{(\lambda+d \lambda)}^{\prime}$
$A_{(\lambda)}$: event on $\mathcal{O}_{(\lambda)}^{\prime}$'s worldline
$A_{(\lambda+d \lambda)}$: event on $\mathcal{O}_{(\lambda+d \lambda)}^{\prime}$'s worldline simultaneous to $A_{(\lambda)}$ for $\mathcal{O}_{(\lambda)}^{\prime}$:

$$
\begin{equation*}
\overrightarrow{\boldsymbol{u}}_{(\lambda)}^{\prime} \cdot \overrightarrow{A_{(\lambda)} A_{(\lambda+d \lambda)}}=0 \tag{4}
\end{equation*}
$$

with $\overrightarrow{A_{(\lambda)} A_{(\lambda+d \lambda)}}=c d t \overrightarrow{\boldsymbol{u}}+d \overrightarrow{\boldsymbol{\ell}}+d t \overrightarrow{\boldsymbol{V}}$
$d \vec{\ell}:=d x^{i} \vec{e}_{i}(t)$, separation between $\mathcal{O}_{(\lambda)}^{\prime}$ and $\mathcal{O}_{(\lambda+d \lambda)}^{\prime}$ from the point of view of \mathcal{O}
Expanding (4) yields $d t=\Gamma^{2} \frac{\overrightarrow{\boldsymbol{V}} \cdot d \overrightarrow{\boldsymbol{\ell}}}{c^{2}}$

The problem of clock synchronization

Integrating on a closed contour

Synchronization helix

Sagnac effect

Two signals of same velocity w.r.t. \mathcal{O}
After a round trip, discrepancy between the two arrival times (t^{\prime} : proper time of emitter \mathcal{O}^{\prime}):

$$
\Delta t^{\prime}:=t_{+}^{\prime}-t_{-}^{\prime}=2 \Delta t_{\text {desync }}^{\prime}
$$

$$
\Longrightarrow \Delta t^{\prime}=\frac{2}{c^{2} \Gamma_{(0)}} \oint_{\mathcal{C}} \Gamma^{2} \overrightarrow{\boldsymbol{V}} \cdot d \overrightarrow{\boldsymbol{\ell}}
$$

Sagnac delay

Sagnac experiment

Bibliography

- J.L Synge : Relativity: the Special Theory, North-Holland (Amsterdam) (1956); (2nd edition: 1965)
- C.W. Misner, K.S. Thorne, \& J.A. Wheeler : Gravitation, Freeman (New York) (1973)
- M. Pauri \& M. Vallisneri : Märzke-Wheeler coordinates for accelerated observers in special relativity, Foundations of Physics Letters 13, 401 (2000)
- G. Rizzi \& M. L. Ruggiero (Eds.) : Relativity in Rotating Frames, Kluwer (Dordrecht) (2004)
- E. Gourgoulhon : Relativité restreinte, EDP Sciences / CNRS Editions (Les Ulis) (2010)

