### The Galactic central black hole and the no-hair theorem

### Éric Gourgoulhon

Laboratoire Univers et Théories (LUTH) CNRS / Observatoire de Paris / Université Paris Diderot Paris Sciences et Lettres Research University 92190 Meudon, France

http://luth.obspm.fr/~luthier/gourgoulhon/

### IPTA 2017 Student Week

CIEP, Sèvres, France 29 June 2017

- 1 The black hole at the Galactic center
- 2 Definition and main properties of black holes
- 3 The Kerr black hole
  - The no-hair theorem

## Outline

### 1 The black hole at the Galactic center

Definition and main properties of black holes

### 3 The Kerr black hole

### 4 The no-hair theorem

## The black hole at the centre of our galaxy : Sgr A\*





### [ESO (2009)]

Mass of Sgr A\* black hole deduced from stellar dynamics :

 $M_{\rm BH} = 4.3 \times 10^6 \, M_{\odot}$ 

FA 2017. 29 June 2017

### Can we see it from the Earth?



Image of a thin accretion disk around a Schwarzschild BH [Vincent, Paumard, Gourgoulhon & Perrin, CQG **28**, 225011 (2011)]

Angular diameter of the event horizon of a Schwarzschild BH of mass M seen from a distance d:

$$\Theta = 6\sqrt{3}\,\frac{GM}{c^2 d} \simeq 2.60 \frac{2R_{\rm S}}{d}$$

Éric Gourgoulhon (LUTH)

IPTA 2017, 29 June 2017

# Can we see it from the Earth?



Image of a thin accretion disk around a Schwarzschild BH [Vincent, Paumard, Gourgoulhon & Perrin, CQG 28, 225011 (2011)] Angular diameter of the event horizon of a Schwarzschild BH of mass M seen from a distance d:

$$\Theta = 6\sqrt{3}\,\frac{GM}{c^2d} \simeq 2.60\frac{2R_{\rm S}}{d}$$

Largest black holes in the Earth's sky :

Sgr A\* :  $\Theta = 53 \ \mu as$ M87 :  $\Theta = 21 \ \mu as$ M31 :  $\Theta = 20 \ \mu as$ 

Remark : black holes in X-ray binaries are  $\sim 10^5$  times smaller, for  $\Theta \propto M/d$ 

# Reaching the $\mu as$ resolution with VLBI



Existing American VLBI network [Doeleman et al. 2011]

Very Large Baseline Interferometry (VLBI) in (sub)millimeter waves

# Reaching the $\mu as$ resolution with VLBI



Existing American VLBI network [Doeleman et al. 2011]

Very Large Baseline Interferometry (VLBI) in (sub)millimeter waves

The best result so far : VLBI observations at 1.3 mm have shown that the size of the emitting region in Sgr A\* is only  $37 \ \mu as$ [Doeleman et al., Nature

**455**, 78 (2008)]

# The near future : the Event Horizon Telescope

To go further :

- $\bullet$  shorten the wavelength :  $1.3~mm \rightarrow 0.8~mm$
- increase the number of stations; in particular add ALMA



Atacama Large Millimeter Array (ALMA) part of the Event Horizon Telescope (EHT) to be completed by 2020 August 2015 : VLBI observations involving ALMA and VLBA

Éric Gourgoulhon (LUTH)

Galactic central BH and no-hair theorem

IPTA 2017, 29 June 2017

# VLBA and EHT observations of M87



[Kino et al., ApJ 803, 30 (2015)]

IPTA 2017, 29 June 2017

17 8/39

## Near-infrared optical interferometry : GRAVITY



# GRAVITY instrument at VLTI (2016)

Beam combiner (the four 8 m telescopes + four auxiliary telescopes)

astrometric precision on orbits :  $10 \ \mu as$ 

[Gillessen et al. 2010]

cf. Guy Perrin's talk next Wednesday

Éric Gourgoulhon (LUTH)

Galactic central BH and no-hair theorem

IPTA 2017, 29 June 2017

### Near-infrared optical interferometry : GRAVITY



July 2015 : GRAVITY shipped to Chile and successfully assembled at the Paranal Observatory Fall 2016 : observations have started !

#### [MPE/GRAVITY team]

### Outline

### The black hole at the Galactic center

### 2 Definition and main properties of black holes

### 3 The Kerr black hole

### The no-hair theorem

Definition and main properties of black holes

# What is a black hole?



... for the layman :

A **black hole** is a region of spacetime from which nothing, not even light, can escape.

The (immaterial) boundary between the black hole interior and the rest of the Universe is called the **event horizon**.

12 / 39

[Alain Riazuelo, 2007]

# What is a black hole?



Textbook definition [Hawking & Ellis (1973)]

black hole :  $\mathcal{B}:=\mathscr{M}-J^-(\mathscr{I}^+)$ 

where

- $(\mathcal{M}, \boldsymbol{g}) = \text{asymptotically flat}$ manifold
- $\mathscr{I}^+ = (\text{complete})$  future null infinity

• 
$$J^-(\mathscr{I}^+) = \text{causal past of } \mathscr{I}^+$$

i.e. black hole = region of spacetime from which light rays cannot escape to infinity

event horizon :  $\mathcal{H} := \partial J^{-}(\mathscr{I}^{+})$ (boundary of  $J^{-}(\mathscr{I}^{+})$ )

 $\mathcal{H} \text{ smooth} \Longrightarrow \mathcal{H} \text{ null hypersurface}$ 

# What is a black hole?



Textbook definition [Hawking & Ellis (1973)]

black hole :  $\mathcal{B} := \mathscr{M} - J^{-}(\mathscr{I}^{+})$ 

where

- $(\mathcal{M}, \boldsymbol{g}) = \text{asymptotically flat}$  manifold
- $\mathscr{I}^+ = (\text{complete})$  future null infinity

• 
$$J^-(\mathscr{I}^+) = \text{causal past of } \mathscr{I}^+$$

i.e. black hole = region of spacetime from which light rays cannot escape to infinity

event horizon :  $\mathcal{H} := \partial J^{-}(\mathscr{I}^{+})$ (boundary of  $J^{-}(\mathscr{I}^{+})$ )

 $\mathcal{H} \text{ smooth} \Longrightarrow \mathcal{H} \text{ null hypersurface}$ 

Definition and main properties of black holes

### What is a black hole?

... for the astrophysicist : a very deep gravitational potential well

Release of potential gravitational energy by **accretion** on a black hole : up to 42% of the mass-energy  $mc^2$  of accreted matter !

 ${\sf NB}$  : thermonuclear reactions release less than 1%  $mc^2$ 



Matter falling in a black hole forms an **accretion disk** [Lynden-Bell (1969), Shakura & Sunayev (1973)]

[J.-A. Marck (1996)]

• In general relativity, a black hole contains a region where the spacetime curvature diverges : the singularity (*NB* : this is not the primary definition of a black hole). The singularity is inaccessible to observations, being hidden by the event horizon.

- In general relativity, a black hole contains a region where the spacetime curvature diverges : the singularity (*NB* : this is not the primary definition of a black hole). The singularity is inaccessible to observations, being hidden by the event horizon.
- The singularity marks the limit of validity of general relativity : to describe it, a quantum theory of gravitation would be required.

- In general relativity, a black hole contains a region where the spacetime curvature diverges : the singularity (*NB* : this is not the primary definition of a black hole). The singularity is inaccessible to observations, being hidden by the event horizon.
- The singularity marks the limit of validity of general relativity : to describe it, a quantum theory of gravitation would be required.
- The event horizon  $\mathcal{H}$  is a global structure of spacetime : no physical experiment whatsoever can detect the crossing of  $\mathcal{H}$ .

Definition and main properties of black holes

# Main properties of black holes (2/3)

The event horizon as a null cone



• Viewed by a distant observer, the horizon approach is perceived with an infinite redshift, or equivalently, by an infinite time dilation

Definition and main properties of black holes

- Viewed by a distant observer, the horizon approach is perceived with an infinite redshift, or equivalently, by an infinite time dilation
- A black hole is not an infinitely dense object : on the contrary it is made of vacuum (except maybe at the singularity); if one defines its "mean density" by  $\bar{\rho} = M/(4/3\pi R^3)$ , then

$$\implies$$
 a black hole is a compact object :  $\frac{M}{R}$  large, not  $\frac{M}{R^3}$  !

- Viewed by a distant observer, the horizon approach is perceived with an infinite redshift, or equivalently, by an infinite time dilation
- A black hole is not an infinitely dense object : on the contrary it is made of vacuum (except maybe at the singularity); if one defines its "mean density" by  $\bar{\rho} = M/(4/3\pi R^3)$ , then
  - for the Galactic centre BH (Sgr A\*) :  $\bar{\rho}\sim 10^6~{\rm kg}\,{\rm m}^{-3}\sim 2~10^{-4}\,\rho_{\rm white~dwarf}$
  - $\implies$  a black hole is a compact object :  $\frac{M}{R}$  large, not  $\frac{M}{R^3}$  !

- Viewed by a distant observer, the horizon approach is perceived with an infinite redshift, or equivalently, by an infinite time dilation
- A black hole is not an infinitely dense object : on the contrary it is made of vacuum (except maybe at the singularity); if one defines its "mean density" by  $\bar{\rho} = M/(4/3\pi R^3)$ , then
  - for the Galactic centre BH (Sgr A\*) :  $\bar{
    ho} \sim 10^6 \ {\rm kg \, m^{-3}} \sim 2 \ 10^{-4} \ 
    ho_{\sf white \ \sf dwarf}$
  - for the BH at the centre of M87 :  $\bar{\rho} \sim 2 \text{ kg m}^{-3} \sim 2 \text{ 10}^{-3} \rho_{\text{water}}!$
  - $\implies$  a black hole is a compact object :  $\frac{M}{R}$  large, not  $\frac{M}{R^3}$  !

- Viewed by a distant observer, the horizon approach is perceived with an infinite redshift, or equivalently, by an infinite time dilation
- A black hole is not an infinitely dense object : on the contrary it is made of vacuum (except maybe at the singularity); if one defines its "mean density" by  $\bar{\rho} = M/(4/3\pi R^3)$ , then
  - for the Galactic centre BH (Sgr A\*) :  $\bar{\rho} \sim 10^6 \text{ kg m}^{-3} \sim 2 \ 10^{-4} \rho_{\text{white dwarf}}$  for the BH at the centre of M87 :  $\bar{\rho} \sim 2 \text{ kg m}^{-3} \sim 2 \ 10^{-3} \rho_{\text{water}}$ !

  - $\implies$  a black hole is a compact object :  $\frac{M}{R}$  large, not  $\frac{M}{R^3}$ !
- Due to the non-linearity of general relativity, black holes can form in spacetimes without any matter, by collapse of gravitational wave packets.

### Outline

### The black hole at the Galactic center

Definition and main properties of black holes

### 3 The Kerr black hole

### The no-hair theorem

# The Kerr solution

### Roy Kerr (1963)

$$g_{\alpha\beta} \,\mathrm{d}x^{\alpha} \,\mathrm{d}x^{\beta} = -\left(1 - \frac{2GMr}{c^{2}\rho^{2}}\right) c^{2}\mathrm{d}t^{2} - \frac{4GMar\sin^{2}\theta}{c^{2}\rho^{2}} c\,\mathrm{d}t\,\mathrm{d}\varphi + \frac{\rho^{2}}{\Delta}\,\mathrm{d}r^{2}$$
$$+\rho^{2}\mathrm{d}\theta^{2} + \left(r^{2} + a^{2} + \frac{2GMa^{2}r\sin^{2}\theta}{c^{2}\rho^{2}}\right)\sin^{2}\theta\,\mathrm{d}\varphi^{2}$$

where

$$ho^2:=r^2+a^2\cos^2 heta$$
 ,  $\Delta:=r^2-rac{2GM}{c^2}r+a^2$  and  $r\in(-\infty,\infty)$ 

 $\rightarrow$  spacetime manifold :  $\mathscr{M} = \mathbb{R}^2 \times \mathbb{S}^2 \setminus \{r = 0 \& \theta = \pi/2\}$ 

 $\rightarrow$  2 parameters : M : gravitational mass;  $a := \frac{J}{cM}$  reduced angular momentum

# The Kerr solution

### Roy Kerr (1963)

$$g_{\alpha\beta} \,\mathrm{d}x^{\alpha} \,\mathrm{d}x^{\beta} = -\left(1 - \frac{2GMr}{c^{2}\rho^{2}}\right) c^{2}\mathrm{d}t^{2} - \frac{4GMar\sin^{2}\theta}{c^{2}\rho^{2}} c\,\mathrm{d}t\,\mathrm{d}\varphi + \frac{\rho^{2}}{\Delta}\,\mathrm{d}r^{2}$$
$$+\rho^{2}\mathrm{d}\theta^{2} + \left(r^{2} + a^{2} + \frac{2GMa^{2}r\sin^{2}\theta}{c^{2}\rho^{2}}\right)\sin^{2}\theta\,\mathrm{d}\varphi^{2}$$

where

$$ho^2:=r^2+a^2\cos^2 heta$$
 ,  $\Delta:=r^2-rac{2GM}{c^2}r+a^2$  and  $r\in(-\infty,\infty)$ 

 $\rightarrow$  spacetime manifold :  $\mathscr{M} = \mathbb{R}^2 \times \mathbb{S}^2 \setminus \{r = 0 \& \theta = \pi/2\}$ 

 $\rightarrow$  2 parameters : M : gravitational mass;  $a := \frac{J}{cM}$  reduced angular momentum

 $\rightarrow$  Schwarzschild solution as the subcase a = 0:

 $g_{\alpha\beta} \,\mathrm{d}x^{\alpha} \,\mathrm{d}x^{\beta} = -\left(1 - \frac{2GM}{c^2 r}\right) c^2 \mathrm{d}t^2 + \left(1 - \frac{2GM}{c^2 r}\right)^{-1} \mathrm{d}r^2 + r^2 \left(\mathrm{d}\theta^2 + \sin^2\theta \,\mathrm{d}\varphi^2\right) \mathrm{d}r^2 + \frac{1}{c^2 r} \mathrm{d}r^2 \mathrm{d}r^2 + \frac{1}{c^2 r} \mathrm{d}r^2 \mathrm{d}r^2$ IPTA 2017, 29 June 2017 19 / 39

### Basic properties of Kerr metric

- Asymptotically flat  $(r 
  ightarrow \pm \infty)$
- Stationary : metric components independent from  $\boldsymbol{t}$
- Axisymmetric : metric components independent from  $\varphi$
- Not static when  $a \neq 0$
- Contains a black hole  $\iff 0 \le a \le m$ , where  $m := GM/c^2$ event horizon :  $r = r_+ := m + \sqrt{m^2 - a^2}$
- Contains a curvature singularity at  $ho=0\iff r=0$  and  $heta=\pi/2$

### Physical meaning of the parameters M and J

 mass M : not a measure of the "amount of matter" inside the black hole, but rather a characteristic of the external gravitational field
 → measurable from the orbital period of a test particle in far circular orbit around the black hole (Kepler's third law)

### Physical meaning of the parameters M and J

- mass M : not a measure of the "amount of matter" inside the black hole, but rather a characteristic of the external gravitational field
   → measurable from the orbital period of a test particle in far circular orbit around the black hole (Kepler's third law)
- angular momentum J = aMc characterizes the *gravito-magnetic* part of the gravitational field

 $\rightarrow$  measurable from the precession of a gyroscope orbiting the black hole (*Lense-Thirring effect*)

### Physical meaning of the parameters M and J

- mass M : not a measure of the "amount of matter" inside the black hole, but rather a characteristic of the external gravitational field
   → measurable from the orbital period of a test particle in far circular orbit around the black hole (Kepler's third law)
- angular momentum J = aMc characterizes the *gravito-magnetic* part of the gravitational field

 $\rightarrow$  measurable from the precession of a gyroscope orbiting the black hole (*Lense-Thirring effect*)

## Physical meaning of the parameters M and J

 mass M : not a measure of the "amount of matter" inside the black hole, but rather a characteristic of the external gravitational field
 → measurable from the orbital period of a test particle in far circular orbit around the black hole (Kepler's third law)

• angular momentum J = aMc characterizes the gravito-magnetic part of the gravitational field

 $\rightarrow$  measurable from the precession of a gyroscope orbiting the black hole (*Lense-Thirring effect*)

*Remark :* the radius of a black hole is not a well defined concept : it *does not* correspond to some distance between the black hole "centre" and the event horizon. A well defined quantity is the area of the event horizon, A. The radius can be then defined from it : for a Schwarzschild black hole :

$$R := \sqrt{\frac{A}{4\pi}} = \frac{2GM}{c^2} \simeq 3\left(\frac{M}{M_{\odot}}\right) \, \mathrm{km}$$

### Kerr spacetime



# Kerr spacetime : ergoregion and Carter time machine



Meridional view of a section t = const of Kerr spacetime with a/m = 0.90

# Conformal diagram of Kerr spacetime with $\mathscr{M} = \mathbb{R}^2 \times \mathbb{S}^2 \setminus \mathscr{R}$



# Carter-Penrose diagram of the maximal analytic extension



Éric Gourgoulhon (LUTH)

Galactic central BH and no-hair theorem IPTA 2017, 29 June 2017

# Outline

The black hole at the Galactic center

2 Definition and main properties of black holes

3 The Kerr black hole

### The no-hair theorem

# The no-hair theorem

Dorochkevitch, Novikov & Zeldovitch (1965), Israel (1967), Carter (1971), Hawking (1972)

Within 4-dimensional general relativity, a stationary black hole in an otherwise empty universe is necessarily a Kerr-Newmann black hole, which is an electro-vacuum solution of Einstein equation described by only 3 parameters :

- the total mass M
- the total specific angular momentum a = J/(Mc)
- the total electric charge Q

 $\implies$  "a black hole has no hair" (John A. Wheeler)

# The no-hair theorem

# Dorochkevitch, Novikov & Zeldovitch (1965), Israel (1967), Carter (1971), Hawking (1972)

Within 4-dimensional general relativity, a stationary black hole in an otherwise empty universe is necessarily a Kerr-Newmann black hole, which is an electro-vacuum solution of Einstein equation described by only 3 parameters :

- the total mass M
- the total specific angular momentum a = J/(Mc)
- the total electric charge Q
- $\implies$  "a black hole has no hair" (John A. Wheeler)

Astrophysical black holes have to be electrically neutral :

• Q = 0: Kerr solution (1963)

Other special cases :

- a = 0: Reissner-Nordström solution (1916, 1918)
- a = 0 and Q = 0: Schwarzschild solution (1916)
- a = 0, Q = 0 and M = 0: Minkowski metric (1907)

### The no-hair theorem : the precise mathematical statement

### Any spacetime $(\mathscr{M}, \boldsymbol{g})$ that

- is 4-dimensional
- is asymptotically flat
- is stationary
- is a solution of the vacuum Einstein equation
- contains a black hole with a connected regular horizon
- does not contain any closed timelike curve in the domain of outer communications
- is analytic

has a domain of outer communications that is isometric to the domain of outer communications of the Kerr spacetime.

domain of outer communications : black hole exterior

## The no-hair theorem : the precise mathematical statement

### Any spacetime $(\mathscr{M}, \boldsymbol{g})$ that

- is 4-dimensional
- is asymptotically flat
- is stationary
- is a solution of the vacuum Einstein equation
- contains a black hole with a connected regular horizon
- does not contain any closed timelike curve in the domain of outer communications
- is analytic

has a domain of outer communications that is isometric to the domain of outer communications of the Kerr spacetime.

domain of outer communications : black hole exterior

Possible improvements : remove the hypotheses of analyticity and non-existence of closed timelike curves

# The no-hair theorem : the precise mathematical statement

### Any spacetime $(\mathscr{M}, \boldsymbol{g})$ that

- is 4-dimensional
- is asymptotically flat
- is stationary
- is a solution of the vacuum Einstein equation
- contains a black hole with a connected regular horizon
- does not contain any closed timelike curve in the domain of outer communications
- is analytic

has a domain of outer communications that is isometric to the domain of outer communications of the Kerr spacetime.

### domain of outer communications : black hole exterior

Possible improvements : remove the hypotheses of analyticity and non-existence of closed timelike curves (analyticity released recently but only for slowly rotating black holes [Alexakis, Ionescu & Klainerman, Duke Math. J. **163**, 2603 (2014)])

Éric Gourgoulhon (LUTH)

Galactic central BH and no-hair theorem

rem IPTA 2017, 29 June 2017

017 28 / 39

# The Kerr metric is specific to black holes

### Spherically symmetric (non-rotating) case :

### Birkhoff theorem

Within 4-dimensional general relativity, the spacetime outside any spherically symmetric body is described by Schwarzschild metric

 $\implies$  No possibility to distinguish a non-rotating black hole from a non-rotating dark star by monitoring orbital motion or fitting accretion disk spectra

# The Kerr metric is specific to black holes

### Spherically symmetric (non-rotating) case :

### Birkhoff theorem

Within 4-dimensional general relativity, the spacetime outside any spherically symmetric body is described by Schwarzschild metric

 $\implies$  No possibility to distinguish a non-rotating black hole from a non-rotating dark star by monitoring orbital motion or fitting accretion disk spectra

### Rotating axisymmetric case :

No Birkhoff theorem

Moreover, no "reasonable" matter source has ever been found for the Kerr metric (the only known source consists of two counter-rotating thin disks of collisionless particles [Bicak & Ledvinka, PRL 71, 1669 (1993)])

 $\implies$  The Kerr metric is specific to rotating black holes (in 4-dimensional general relativity)

### Lowest order no-hair theorem : quadrupole moment

Asymptotic expansion (large r) of the metric in terms of multipole moments  $(\mathcal{M}_k, \mathcal{J}_k)_{k \in \mathbb{N}}$  [Geroch (1970), Hansen (1974)] :

- $\mathcal{M}_k$  : mass  $2^k$ -pole moment
- $\mathcal{J}_k$  : angular momentum  $2^k$ -pole moment
- $\implies$  For the Kerr metric, all the multipole moments are determined by (M,a) :
  - $\mathcal{M}_0 = M$
  - $\mathcal{J}_1 = aM = J/c$

• 
$$\mathcal{M}_2 = -a^2 M = -\frac{J^2}{c^2 M}$$
 (\*)

 $\leftarrow \mathsf{mass} \mathsf{ quadrupole} \mathsf{ moment}$ 

- $\mathcal{J}_3 = -a^3 M$
- $\mathcal{M}_4 = a^4 M$
- • •

### Lowest order no-hair theorem : quadrupole moment

Asymptotic expansion (large r) of the metric in terms of multipole moments  $(\mathcal{M}_k, \mathcal{J}_k)_{k \in \mathbb{N}}$  [Geroch (1970), Hansen (1974)] :

- $\mathcal{M}_k$  : mass  $2^k$ -pole moment
- $\mathcal{J}_k$  : angular momentum  $2^k$ -pole moment
- $\implies$  For the Kerr metric, all the multipole moments are determined by (M,a) :
  - $\mathcal{M}_0 = M$
  - $\mathcal{J}_1 = aM = J/c$ •  $\mathcal{M}_2 = -a^2M = -\frac{J^2}{c^2M}$  (\*)  $\leftarrow$  mass quadrupole moment
  - $\mathcal{J}_3 = -a^3 M$
  - $\mathcal{M}_4 = a^4 M$
  - • •

Measuring the three quantities M, J,  $\mathcal{M}_2$  provides a compatibility test w.r.t. the Kerr metric, by checking (\*)

## Theoretical alternatives to the Kerr black hole

### Within general relativity

The compact object is not a black hole but

- boson stars
- gravastar
- dark stars
- ...

### Beyond general relativity

The compact object is a black hole but in a theory that differs from GR :

- Einstein-Gauss-Bonnet with dilaton
- Chern-Simons gravity
- Hořava-Lifshitz gravity
- Einstein-Yang-Mills
- ...

# Is general relativity unique?

Yes if we assume

- a 4-dimensional spacetime
- ullet gravitation only described by a metric tensor g
- ullet field equation involving only derivatives of g up to second order
- diffeomorphism invariance
- $\boldsymbol{\nabla} \cdot \boldsymbol{T} = 0$  ( $\Longrightarrow$  weak equivalence principle)

The above is a consequence of Lovelock theorem (1972).

# Is general relativity unique?

Yes if we assume

- a 4-dimensional spacetime
- ullet gravitation only described by a metric tensor g
- ullet field equation involving only derivatives of g up to second order
- diffeomorphism invariance
- $\boldsymbol{\nabla} \cdot \boldsymbol{T} = 0$  ( $\Longrightarrow$  weak equivalence principle)

The above is a consequence of Lovelock theorem (1972).

However, GR is certainly not the ultimate theory of gravitation :

- it is not a quantum theory
- cosmological constant / dark energy problem

 ${\sf GR}$  is generally considered as a low-energy limit of a more fundamental theory :

- string theory
- loop quantum gravity

• . . .

39

# Extensions of general relativity



### Alternative theories of gravity

Class of metric theories of gravity, described by the action

 $S = S_{\text{grav}} + S_{\text{mat}}(\boldsymbol{g}, \Psi_1, \Psi_2, \ldots)$ 

 $oldsymbol{g}$  : spacetime metric,  $\Psi_1,\Psi_2,\ldots$  : matter fields

 $\implies$  test particles follow geodesics of g

### Alternative theories of gravity

Class of metric theories of gravity, described by the action

 $S = S_{\text{grav}} + S_{\text{mat}}(\boldsymbol{g}, \Psi_1, \Psi_2, \ldots)$ 

 $oldsymbol{g}$  : spacetime metric,  $\Psi_1,\Psi_2,\ldots$  : matter fields

 $\implies$  test particles follow geodesics of g

# General relativity : $S_{\text{grav}} = \frac{1}{16\pi G} \int R \sqrt{-g} \, d^4x \quad \text{(Einstein-Hilbert action)}$ $R : \text{scalar curvature of metric } \boldsymbol{g} : R := g^{\mu\nu} R^{\sigma}_{\ \mu\sigma\nu}$

R : scalar curvature of metric  $g: R := g^{\mu\nu} R^{\sigma}_{\ \mu\sigma\nu}$  $R^{\alpha}_{\ \beta\mu\nu}$  : Riemann curvature tensor of g Gravity action depends on a scalar field  $\phi$  in addition to the spacetime metric  $m{g}$  :

$$S_{\rm grav} = S_{\rm grav}(\boldsymbol{g}, \phi) = \frac{1}{16\pi G} \int \left[ \phi R - \frac{\omega(\phi)}{\phi} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi - \phi^2 V \right] \sqrt{-g} \, \mathrm{d}^4 x$$

Special case : Jordan-Fierz-Brans-Dicke theory :  $\omega(\phi) = \text{const}$ 

No-hair theorem : for a *real* scalar field  $\phi$ , the only black hole solution is Kerr However, for *complex* scalar fields, hairy black hole solutions exist [Herdeiro & Radu, arXiv:1403.2757 (2014)]

# Einstein-Gauss-Bonnet with dilaton

Gravity action is quadratic in the curvature :

$$S_{\text{grav}} = \frac{1}{16\pi G} \int \left[ R + e^{\gamma\phi} \left( R^2 - 4R_{\mu\nu}R^{\mu\nu} + R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma} \right) - \frac{\beta}{2} \left( g^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi + 2V(\phi) \right) \right] \sqrt{-g} \, \mathrm{d}^4x$$

Low energy expansion of string theory

# Chern-Simons gravity

Gravity action is quadratic in the curvature :

$$S_{\text{grav}} = \frac{1}{16\pi G} \int \left[ R + \frac{\alpha}{4} \phi R^*_{\mu\nu\rho\sigma} R^{\mu\nu\rho\sigma} - \frac{\beta}{2} \left( g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi + 2V(\phi) \right) \right] \sqrt{-g} \, \mathrm{d}^4 x$$

Low energy expansion of string theory or loop quantum gravity

- GR  $\implies$  Kerr BH (no-hair theorem)
- $\bullet\,$  extension of GR  $\Longrightarrow$  BH may deviate from Kerr

- GR  $\implies$  Kerr BH (no-hair theorem)
- $\bullet\,$  extension of GR  $\Longrightarrow$  BH may deviate from Kerr

### Observational tests

Search for

• stellar orbits deviating from Kerr timelike geodesics (GRAVITY)

- GR  $\implies$  Kerr BH (no-hair theorem)
- $\bullet\,$  extension of GR  $\Longrightarrow$  BH may deviate from Kerr

### Observational tests

Search for

- stellar orbits deviating from Kerr timelike geodesics (GRAVITY)
- accretion disk spectra different from those arising in Kerr metric (X-ray observatories, e.g. Athena)

- GR  $\implies$  Kerr BH (no-hair theorem)
- $\bullet\,$  extension of GR  $\Longrightarrow$  BH may deviate from Kerr

### Observational tests

Search for

- stellar orbits deviating from Kerr timelike geodesics (GRAVITY)
- accretion disk spectra different from those arising in Kerr metric (X-ray observatories, e.g. Athena)
- images of the black hole silhouette different from that of a Kerr BH (EHT)

- GR  $\implies$  Kerr BH (no-hair theorem)
- $\bullet\,$  extension of GR  $\Longrightarrow$  BH may deviate from Kerr

### Observational tests

Search for

- stellar orbits deviating from Kerr timelike geodesics (GRAVITY)
- accretion disk spectra different from those arising in Kerr metric (X-ray observatories, e.g. Athena)
- images of the black hole silhouette different from that of a Kerr BH (EHT)
- gravitational waves :
  - ring-down phase of binary black hole mergers (LIGO, Virgo)
  - extreme-mass-ratio binaries (LISA)

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- GR  $\implies$  Kerr BH (no-hair theorem)
- $\bullet\,$  extension of GR  $\Longrightarrow$  BH may deviate from Kerr

### Observational tests

Search for

- stellar orbits deviating from Kerr timelike geodesics (GRAVITY)
- accretion disk spectra different from those arising in Kerr metric (X-ray observatories, e.g. Athena)
- images of the black hole silhouette different from that of a Kerr BH (EHT)
- gravitational waves :
  - ring-down phase of binary black hole mergers (LIGO, Virgo)
  - extreme-mass-ratio binaries (LISA)
- pulsar orbiting Sgr A\* : the Holly Grail !

#### The no-hair theorem

# An example : comparison with a boson star

Kerr BH a/M = 0.9



Boson star k = 1,  $\omega = 0.70 \, m/\hbar$ 



イロト イポト イヨト イヨト

[Vincent, Meliani, Grandclément, Gourgoulhon & Straub, CQG 33, 105015 (2016)]

Éric Gourgoulhon (LUTH)

Galactic central BH and no-hair theorem IPTA 2017, 29 June 2017

#### The no-hair theorem

### An example : comparison with a boson star

Kerr BH a/M = 0.9



Boson star k = 1,  $\omega = 0.70 \, m/\hbar$ 



[Vincent, Meliani, Grandclément, Gourgoulhon & Straub, CQG 33, 105015 (2016)]

### More examples next Wednesday ...

Éric Gourgoulhon (LUTH)

Galactic central BH and no-hair theorem

n IPTA 2017, 29 June 2017

ne 2017 39 / 39