Numerical relativity and sources of gravitational waves

Eric Gourgoulhon

Laboratoire de I'Univers et de ses Théories (LUTH)
CNRS / Observatoire de Paris
F-92195 Meudon, France
eric.gourgoulhon@obspm.fr
based on collaboration with
Michal Bejger, Silvano Bonazzola, Dorota Gondek-Rosińska, Philippe Grandclément,
Pawel Haensel, José Luis Jaramillo, François Limousin
Jérôme Novak \& J. Leszek Zdunik

Post-YKIS2005 program

Yukawa Institute for Theoretical Physics, Kyoto 29 July 2005

Outline

(1) Introduction
(2) A short review of $3+1$ general relativity
(3) A constrained scheme for $3+1$ numerical relativity
(4) Constraining the nuclear matter EOS from GW observations

Outline

(1) Introduction

(2) A short review of $3+1$ general relativity
(3) A constrained scheme for $3+1$ numerical relativity
4) Constraining the nuclear matter EOS from GW observations

Historical context: Cauchy problem of GR

- Darmois (1927), Lichnerowicz (1939): Cauchy problem for analytic initial data

Historical context: Cauchy problem of GR

- Darmois (1927), Lichnerowicz (1939): Cauchy problem for analytic initial data
- Lichnerowicz (1944): First 3+1 formalism, conformal decomposition of spatial metric

Historical context: Cauchy problem of GR

- Darmois (1927), Lichnerowicz (1939): Cauchy problem for analytic initial data
- Lichnerowicz (1944): First 3+1 formalism, conformal decomposition of spatial metric
- Fourès-Bruhat (1952): Cauchy problem for C^{5} initial data: local existence and uniqueness in harmonic coordinates

Historical context: Cauchy problem of GR

- Darmois (1927), Lichnerowicz (1939): Cauchy problem for analytic initial data
- Lichnerowicz (1944): First 3+1 formalism, conformal decomposition of spatial metric
- Fourès-Bruhat (1952): Cauchy problem for C^{5} initial data: local existence and uniqueness in harmonic coordinates
- Fourès-Bruhat (1956): 3+1 formalism (moving frame)

Historical context: Cauchy problem of GR

- Darmois (1927), Lichnerowicz (1939): Cauchy problem for analytic initial data
- Lichnerowicz (1944): First 3+1 formalism, conformal decomposition of spatial metric
- Fourès-Bruhat (1952): Cauchy problem for C^{5} initial data: local existence and uniqueness in harmonic coordinates
- Fourès-Bruhat (1956): 3+1 formalism (moving frame)
- Arnowitt, Deser \& Misner (1962): 3+1 formalism (Hamiltonian analysis of GR)

Historical context: Cauchy problem of GR

- Darmois (1927), Lichnerowicz (1939): Cauchy problem for analytic initial data
- Lichnerowicz (1944): First 3+1 formalism, conformal decomposition of spatial metric
- Fourès-Bruhat (1952): Cauchy problem for C^{5} initial data: local existence and uniqueness in harmonic coordinates
- Fourès-Bruhat (1956): 3+1 formalism (moving frame)
- Arnowitt, Deser \& Misner (1962): 3+1 formalism (Hamiltonian analysis of GR)
- York (1972): gravitational dynamical degrees of freedom carried by the conformal spatial metric

Historical context: Cauchy problem of GR

- Darmois (1927), Lichnerowicz (1939): Cauchy problem for analytic initial data
- Lichnerowicz (1944): First 3+1 formalism, conformal decomposition of spatial metric
- Fourès-Bruhat (1952): Cauchy problem for C^{5} initial data: local existence and uniqueness in harmonic coordinates
- Fourès-Bruhat (1956): 3+1 formalism (moving frame)
- Arnowitt, Deser \& Misner (1962): 3+1 formalism (Hamiltonian analysis of GR)
- York (1972): gravitational dynamical degrees of freedom carried by the conformal spatial metric
- Ó Murchadha \& York (1974): Conformal transverse-traceless (CTT) method for solving the constraint equations

Historical context: Cauchy problem of GR

- Darmois (1927), Lichnerowicz (1939): Cauchy problem for analytic initial data
- Lichnerowicz (1944): First 3+1 formalism, conformal decomposition of spatial metric
- Fourès-Bruhat (1952): Cauchy problem for C^{5} initial data: local existence and uniqueness in harmonic coordinates
- Fourès-Bruhat (1956): 3+1 formalism (moving frame)
- Arnowitt, Deser \& Misner (1962): 3+1 formalism (Hamiltonian analysis of GR)
- York (1972): gravitational dynamical degrees of freedom carried by the conformal spatial metric
- Ó Murchadha \& York (1974): Conformal transverse-traceless (CTT) method for solving the constraint equations
- Smarr \& York (1978): Radiation gauge for numerical relativity: elliptic-hyperbolic system with asymptotic TT behavior

Historical context: Cauchy problem of GR

- Darmois (1927), Lichnerowicz (1939): Cauchy problem for analytic initial data
- Lichnerowicz (1944): First 3+1 formalism, conformal decomposition of spatial metric
- Fourès-Bruhat (1952): Cauchy problem for C^{5} initial data: local existence and uniqueness in harmonic coordinates
- Fourès-Bruhat (1956): 3+1 formalism (moving frame)
- Arnowitt, Deser \& Misner (1962): 3+1 formalism (Hamiltonian analysis of GR)
- York (1972): gravitational dynamical degrees of freedom carried by the conformal spatial metric
- Ó Murchadha \& York (1974): Conformal transverse-traceless (CTT) method for solving the constraint equations
- Smarr \& York (1978): Radiation gauge for numerical relativity: elliptic-hyperbolic system with asymptotic TT behavior
- York (1999): Conformal thin-sandwich (CTS) method for solving the constraint equations

Historical context: Numerical relativity

- Smarr (1977): 2-D (axisymmetric) head-on collision of two black holes: first numerical solution beyond spherical symmetry of the Cauchy problem for asymptotically flat spacetimes

Historical context: Numerical relativity

- Smarr (1977): 2-D (axisymmetric) head-on collision of two black holes: first numerical solution beyond spherical symmetry of the Cauchy problem for asymptotically flat spacetimes
- Nakamura (1983), Stark \& Piran (1985): 2-D (axisymmetric) gravitational collapse to a black hole

Historical context: Numerical relativity

- Smarr (1977): 2-D (axisymmetric) head-on collision of two black holes: first numerical solution beyond spherical symmetry of the Cauchy problem for asymptotically flat spacetimes
- Nakamura (1983), Stark \& Piran (1985): 2-D (axisymmetric) gravitational collapse to a black hole
- Bona \& Masso (1989), Choquet-Bruhat \& York (1995), Kidder, Scheel \& Teukolsky (2001), and many others: (First-order) (symmetric) hyperbolic formulations of Einstein equations within the 3+1 formalism

Historical context: Numerical relativity

- Smarr (1977): 2-D (axisymmetric) head-on collision of two black holes: first numerical solution beyond spherical symmetry of the Cauchy problem for asymptotically flat spacetimes
- Nakamura (1983), Stark \& Piran (1985): 2-D (axisymmetric) gravitational collapse to a black hole
- Bona \& Masso (1989), Choquet-Bruhat \& York (1995), Kidder, Scheel \& Teukolsky (2001), and many others: (First-order) (symmetric) hyperbolic formulations of Einstein equations within the $3+1$ formalism
- Shibata \& Nakamura (1995), Baumgarte \& Shapiro (1999): BSSN formulation: conformal decomposition of the $3+1$ equations and promotion of some connection function as an independent variable

Historical context: Numerical relativity

- Smarr (1977): 2-D (axisymmetric) head-on collision of two black holes: first numerical solution beyond spherical symmetry of the Cauchy problem for asymptotically flat spacetimes
- Nakamura (1983), Stark \& Piran (1985): 2-D (axisymmetric) gravitational collapse to a black hole
- Bona \& Masso (1989), Choquet-Bruhat \& York (1995), Kidder, Scheel \& Teukolsky (2001), and many others: (First-order) (symmetric) hyperbolic formulations of Einstein equations within the $3+1$ formalism
- Shibata \& Nakamura (1995), Baumgarte \& Shapiro (1999): BSSN formulation: conformal decomposition of the $3+1$ equations and promotion of some connection function as an independent variable
- Shibata (2000): 3-D full computation of binary neutron star merger: first full GR 3-D solution of the Cauchy problem of astrophysical interest

Outline

(1) Introduction
(2) A short review of $3+1$ general relativity
(3) A constrained scheme for $3+1$ numerical relativity

4 Constraining the nuclear matter EOS from GW observations

$3+1$ decomposition of spacetime

Foliation of spacetime by a family of spacelike hypersurfaces $\left(\Sigma_{t}\right)_{t \in \mathbb{R}}$; on each hypersurface, pick a coordinate system $\left(x^{i}\right)_{i \in\{1,2,3\}} \Longrightarrow$ $\left(x^{\mu}\right)_{\mu \in\{0,1,2,3\}}=\left(t, x^{1}, x^{2}, x^{3}\right)=$ coordinate system on spacetime n : future directed unit normal to Σ_{t} :
 $n=-N \mathbf{d} t, N$: lapse function $e_{t}=\partial / \partial t$: time vector of the natural basis associated with the coordinates $\left(x^{\mu}\right)$
N : lapse function β : shift vector

Geometry of the hypersurfaces Σ_{t} :

- induced metric $\gamma=\boldsymbol{g}+\boldsymbol{n} \otimes \boldsymbol{n}$
- extrinsic curvature : $\boldsymbol{K}=-\frac{1}{2} \mathcal{L}_{n} \gamma$

$$
g_{\mu \nu} d x^{\mu} d x^{\nu}=-N^{2} d t^{2}+\gamma_{i j}\left(d x^{i}+\beta^{i} d t\right)\left(d x^{j}+\beta^{j} d t\right)
$$

Choice of coordinates within the $3+1$ formalism

$$
\left(x^{\mu}\right)=\left(t, x^{i}\right)=\left(t, x^{1}, x^{2}, x^{3}\right)
$$

Choice of the lapse function $N \Longleftrightarrow$ choice of the slicing $\left(\Sigma_{t}\right)$
Choice of the shift vector $\beta \Longleftrightarrow$ choice of the spatial coordinates $\left(x^{i}\right)$ on each hypersurface Σ_{t}

A well-spread choice of slicing: maximal slicing: $K:=\operatorname{tr} K=0$
[Lichnerowicz 1944]

$3+1$ decomposition of Einstein equation

Orthogonal projection of Einstein equation onto Σ_{t} and along the normal to Σ_{t} :

- Hamiltonian constraint: $\quad R+K^{2}-K_{i j} K^{i j}=16 \pi E$
- Momentum constraint: $\quad D_{j} K^{i j}-D^{i} K=8 \pi J^{i}$
- Dynamical equations :

$$
\begin{aligned}
& \frac{\partial K_{i j}}{\partial t}-\mathcal{L}_{\boldsymbol{\beta}} K_{i j}= \\
& -D_{i} D_{j} N+N\left[R_{i j}-2 K_{i k} K_{j}^{k}+K K_{i j}+4 \pi\left((S-E) \gamma_{i j}-2 S_{i j}\right)\right]
\end{aligned}
$$

$E:=\boldsymbol{T}(\boldsymbol{n}, \boldsymbol{n})=T_{\mu \nu} n^{\mu} n^{\nu}, \quad J_{i}:=-\gamma_{i}{ }^{\mu} T_{\mu \nu} n^{\nu}, \quad S_{i j}:=\gamma_{i}{ }^{\mu} \gamma_{j}{ }^{\nu} T_{\mu \nu}, \quad S:=S_{i}{ }^{i}$ D_{i} : covariant derivative associated with $\gamma, \quad R_{i j}:$ Ricci tensor of $D_{i}, \quad R:=R_{i}{ }^{i}$
Kinematical relation between γ and \boldsymbol{K} :

$$
\frac{\partial \gamma^{i j}}{\partial t}+D^{i} \beta^{j}+D^{j} \beta^{i}=2 N K^{i j}
$$

Resolution of Einstein equation \equiv Cauchy problem

Free vs. constrained evolution in $3+1$ numerical relativity

Einstein equations split into
$\left\{\begin{array}{l}\text { dynamical equations } \\ \text { Hamiltonian }\end{array} \frac{\partial}{\partial t} K_{i j}=\ldots\right.$

Hamiltonian constraint $R+K^{2}-K_{i j} K^{i j}=16 \pi E$
momentum constraint $\quad D_{j} K_{i}{ }^{j}-D_{i} K=8 \pi J_{i}$

- 2-D computations(80's and 90's):
- partially constrained schemes: Bardeen \& Piran (1983), Stark \& Piran (1985), Evans (1986)
- fully constrained schemes: Evans (1989), Shapiro \& Teukolsky (1992), Abrahams et al. (1994)
- 3-D computations (from mid 90's): Almost all based on free evolution schemes: BSSN, symmetric hyperbolic formulations, etc...
\Longrightarrow problem: exponential growth of constraint violating modes

"Standard issue" 1 :

The constraints usually involve elliptic equations and 3-D elliptic solvers are CPU-time expensive!

Cartesian vs. spherical coordinates in $3+1$ numerical relativity

- 1-D and 2-D computations: massive usage of spherical coordinates (r, θ, φ)
- 3-D computations: almost all based on Cartesian coordinates (x, y, z), although spherical coordinates are better suited to study objects with spherical topology (black holes, neutron stars). Two exceptions:
- Nakamura et al. (1987): evolution of pure gravitational wave spacetimes in spherical coordinates (but with Cartesian components of tensor fields)
- Stark (1989): attempt to compute 3D stellar collapse in spherical coordinates

"Standard issue" 2 :

Spherical coordinates are singular at $r=0$ and $\theta=0$ or π !

"Standard issues" 1 and 2 can be overcome

"Standard issues" 1 and 2 are neither mathematical nor physical

 they are technical ones\Longrightarrow they can be overcome with appropriate techniques

Spectral methods allow for

- an automatic treatment of the singularities of spherical coordinates (issue 2)
- fast 3-D elliptic solvers in spherical coordinates: 3-D Poisson equation reduced to a system of 1-D algebraic equations with banded matrices [Grandclément, Bonazzola, Gourgoulhon \& Marck, J. Comp. Phys. 170, 231 (2001)] (issue 1)

Outline

(1) Introduction

2 A short review of $3+1$ general relativity
(3) A constrained scheme for $3+1$ numerical relativity

Constrained scheme built upon maximal slicing and Dirac gauge
[Bonazzola, Gourgoulhon, Grandclément \& Novak, PRD 70, 104007 (2004)]

Conformal metric and dynamics of the gravitational field

Dynamical degrees of freedom of the gravitational field:

York (1972) : they are carried by the conformal "metric"

$$
\hat{\gamma}_{i j}:=\gamma^{-1 / 3} \gamma_{i j} \quad \text { with } \gamma:=\operatorname{det} \gamma_{i j}
$$

$\hat{\gamma}_{i j}=$ tensor density of weight $-2 / 3$
To work with tensor fields only, introduce an extra structure on Σ_{t} : a flat metric f such that $\frac{\partial f_{i j}}{\partial t}=0$ and $\gamma_{i j} \sim f_{i j}$ at spatial infinity (asymptotic flatness) Define $\tilde{\gamma}_{i j}:=\psi^{-4} \gamma_{i j}$ or $\gamma_{i j}=: \Psi^{4} \tilde{\gamma}_{i j}$ with $\psi:=\left(\frac{\gamma}{f}\right)^{1 / 12}, f:=\operatorname{det} f_{i j}$ $\tilde{\gamma}_{i j}$ is invariant under any conformal transformation of $\gamma_{i j}$ and verifies det $\tilde{\gamma}_{i j}=f$

Notations: $\quad \tilde{\gamma}^{i j}$: inverse conformal metric: $\tilde{\gamma}_{i k} \tilde{\gamma}^{k j}=\delta_{i}{ }^{j}$
$\tilde{D}_{i}:$ covariant derivative associated with $\tilde{\gamma}_{i j}, \tilde{D}^{i}:=\tilde{\gamma}^{i j} \tilde{D}_{j}$
\mathcal{D}_{i} : covariant derivative associated with $f_{i j}, \mathcal{D}^{i}:=f^{i j} \mathcal{D}_{j}$

Dirac gauge: definition

Conformal decomposition of the metric $\gamma_{i j}$ of the spacelike hypersurfaces Σ_{t} :

$$
\gamma_{i j}=: \Psi^{4} \tilde{\gamma}_{i j} \quad \text { with } \quad \tilde{\gamma}^{i j}=: f^{i j}+h^{i j}
$$

where $f_{i j}$ is a flat metric on $\Sigma_{t}, h^{i j}$ a symmetric tensor and ψ a scalar field defined by $\psi:=\left(\frac{\operatorname{det} \gamma_{i j}}{\operatorname{det} f_{i j}}\right)^{1 / 12}$
Dirac gauge (Dirac, 1959) $=$ divergence-free condition on $\tilde{\gamma}^{i j}$:

$$
\mathcal{D}_{j} \tilde{\gamma}^{i j}=\mathcal{D}_{j} h^{i j}=0
$$

where \mathcal{D}_{j} denotes the covariant derivative with respect to the flat metric $f_{i j}$. Compare

- minimal distortion (Smarr \& York 1978) : $D_{j}\left(\partial \tilde{\gamma}^{i j} / \partial t\right)=0$
- pseudo-minimal distortion (Nakamura 1994) : $\mathcal{D}^{j}\left(\partial \tilde{\gamma}^{i j} / \partial t\right)=0$ Notice: Dirac gauge \Longleftrightarrow BSSN connection functions vanish: $\tilde{\Gamma}^{i}=0$

Dirac gauge: motivation

Expressing the Ricci tensor of conformal metric as a second order operator: In terms of the covariant derivative \mathcal{D}_{i} associated with the flat metric f :

$$
\tilde{\gamma}^{i k} \tilde{\gamma}^{j l} \tilde{R}_{k l}=\frac{1}{2}\left(\tilde{\gamma}^{k l} \mathcal{D}_{k} \mathcal{D}_{l} h^{i j}-\tilde{\gamma}^{i k} \mathcal{D}_{k} H^{j}-\tilde{\gamma}^{j k} \mathcal{D}_{k} H^{i}\right)+\mathcal{Q}(\tilde{\gamma}, \mathcal{D} \tilde{\gamma})
$$

with $H^{i}:=\mathcal{D}_{j} h^{i j}=\mathcal{D}_{j} \tilde{\gamma}^{i j}=-\tilde{\gamma}^{k l} \Delta^{i}{ }_{k l}=-\tilde{\gamma}^{k l}\left(\tilde{\Gamma}^{i}{ }_{k l}-\bar{\Gamma}^{i}{ }_{k l}\right)$
and $\mathcal{Q}(\tilde{\gamma}, \mathcal{D} \tilde{\gamma})$ is quadratic in first order derivatives $\mathcal{D} \boldsymbol{h}$ Dirac gauge: $H^{i}=0 \Longrightarrow$ Ricci tensor becomes an elliptic operator for $h^{i j}$ Similar property as harmonic coordinates for the 4-dimensional Ricci tensor:

$$
{ }^{4} R_{\alpha \beta}=-\frac{1}{2} g^{\mu \nu} \frac{\partial}{\partial x^{\mu}} \frac{\partial}{\partial x^{\nu}} g_{\alpha \beta}+\text { quadratic terms }
$$

Dirac gauge: discussion

- introduced by Dirac (1959) in order to fix the coordinates in some Hamiltonian formulation of general relativity; originally defined for Cartesian coordinates only: $\frac{\partial}{\partial x^{j}}\left(\gamma^{1 / 3} \gamma^{i j}\right)=0$
but trivially extended by us to more general type of coordinates (e.g. spherical) thanks to the introduction of the flat metric $f_{i j}$:
$\mathcal{D}_{j}\left((\gamma / f)^{1 / 3} \gamma^{i j}\right)=0$
- first discussed in the context of numerical relativity by Smarr \& York (1978), as a candidate for a radiation gauge, but disregarded for not being covariant under coordinate transformation $\left(x^{i}\right) \mapsto\left(x^{i^{\prime}}\right)$ in the hypersurface Σ_{t}, contrary to the minimal distortion gauge proposed by them
- fully specifies (up to some boundary conditions) the coordinates in each hypersurface Σ_{t}, including the initial one \Rightarrow allows for the search for stationary solutions

Dirac gauge: discussion (con't)

- leads asymptotically to transverse-traceless (TT) coordinates (same as minimal distortion gauge). Both gauges are analogous to Coulomb gauge in electrodynamics
- turns the Ricci tensor of conformal metric $\tilde{\gamma}_{i j}$ into an elliptic operator for $h^{i j}$ \Longrightarrow the dynamical Einstein equations become a wave equation for $h^{i j}$
- results in a vector elliptic equation for the shift vector β^{i}

Maximal slicing + Dirac gauge

Our choice of coordinates to solve numerically the Cauchy problem:

- choice of Σ_{t} foliation: maximal slicing: $K:=\operatorname{tr} \boldsymbol{K}=0$
- choice of $\left(x^{i}\right)$ coordinates within Σ_{t} : Dirac gauge: $\mathcal{D}_{j} h^{i j}=0$

Note: the Cauchy problem has been shown to be locally strongly well posed for a similar coordinate system, namely constant mean curvature ($K=t$) and spatial harmonic coordinates $\left(\mathcal{D}_{j}\left[(\gamma / f)^{1 / 2} \gamma^{i j}\right]=0\right)$
[Andersson \& Moncrief, Ann. Henri Poincaré 4, 1 (2003)]

$3+1$ Einstein equations in maximal slicing + Dirac gauge

[Bonazzola, Gourgoulhon, Grandclément \& Novak, PRD 70, 104007 (2004)]

- 5 elliptic equations (4 constraints $+K=0$ condition) $\left(\Delta:=\mathcal{D}_{k} \mathcal{D}^{k}\right)$:

$$
\begin{gathered}
\Delta N=\Psi^{4} N\left[4 \pi(E+S)+\tilde{A}_{k l} A^{k l}\right]-h^{k l} \mathcal{D}_{k} \mathcal{D}_{l} N-2 \tilde{D}_{k} \ln \Psi \tilde{D}^{k} N \\
\begin{array}{r}
\Delta\left(\Psi^{2} N\right)= \\
+\Psi^{6} N\left(4 \pi S+\frac{3}{4} \tilde{A}_{k l} A^{k l}\right)-h^{k l} \mathcal{D}_{k} \mathcal{D}_{l}\left(\Psi^{2} N\right) \\
+\Psi^{2}\left[N \left(\frac{1}{16} \tilde{\gamma}^{k l} \mathcal{D}_{k} h^{i j} \mathcal{D}_{l} \tilde{\gamma}_{i j}-\frac{1}{8} \tilde{\gamma}^{k l} \mathcal{D}_{k} h^{i j} \mathcal{D}_{j} \tilde{\gamma}_{i l}\right.\right. \\
\left.\left.+2 \tilde{D}_{k} \ln \Psi \tilde{D}^{k} \ln \Psi\right)+2 \tilde{D}_{k} \ln \Psi \tilde{D}^{k} N\right]
\end{array} \\
\begin{array}{r}
\Delta \beta^{i}+\frac{1}{3} \mathcal{D}^{i}\left(\mathcal{D}_{j} \beta^{j}\right)= \\
\end{array} \begin{array}{r}
-2 A^{i j} \mathcal{D}_{j} N+16 \pi N \Psi^{i} N A^{k l}-h^{k l} \mathcal{D}_{k} \mathcal{D}_{l} \beta^{i}-\frac{1}{3} h^{i k} \mathcal{D}_{k} \mathcal{D}_{l} \beta^{l}
\end{array}
\end{gathered}
$$

$3+1$ equations in maximal slicing + Dirac gauge (cont'd)

- 2 scalar wave equations for two scalar potentials χ and μ :

$$
\begin{aligned}
& -\frac{\partial^{2} \chi}{\partial t^{2}}+\Delta \chi=S_{\chi} \\
& -\frac{\partial^{2} \mu}{\partial t^{2}}+\Delta \mu=S_{\mu}
\end{aligned}
$$

The remaining 3 degrees of freedom are fixed by the Dirac gauge:

From the two potentials χ and μ, construct a TT tensor $\bar{h}^{i j}$ according to the formulas (components with respect to a spherical f-orthonormal frame)
$\bar{h}^{r r}=\frac{\chi}{r^{2}}, \quad \bar{h}^{r \theta}=\frac{1}{r}\left(\frac{\partial \eta}{\partial \theta}-\frac{1}{\sin \theta} \frac{\partial \mu}{\partial \phi}\right), \quad \bar{h}^{r \phi}=\frac{1}{r}\left(\frac{1}{\sin \theta} \frac{\partial \eta}{\partial \phi}+\frac{\partial \mu}{\partial \theta}\right)$, etc...
with $\Delta_{\theta \phi} \eta=-\partial \chi / \partial r-\chi / r$

Numerical implementation

Numerical code based on the C++ library Lorene
(http://www.lorene.obspm.fr) with the following main features:

- multidomain spectral methods based on spherical coordinates (r, θ, φ), with compactified external domain (\Longrightarrow spatial infinity included in the computational domain for elliptic equations)
- very efficient outgoing-wave boundary conditions, ensuring that all modes with spherical harmonics indices $\ell=0, \ell=1$ and $\ell=2$ are perfectly outgoing
[Novak \& Bonazzola, J. Comp. Phys. 197, 186 (2004)]
(recall: Sommerfeld boundary condition works only for $\ell=0$, which is too low for gravitational waves)

Results on a pure gravitational wave spacetime

Initial data: similar to [Baumgarte \& Shapiro, PRD 59, 024007 (1998)], namely a momentarily static ($\partial \tilde{\gamma}^{i j} / \partial t=0$) Teukolsky wave $\ell=2, m=2$:

$$
\left\{\begin{array}{l}
\chi(t=0)=\frac{\chi_{0}}{2} r^{2} \exp \left(-\frac{r^{2}}{r_{0}^{2}}\right) \sin ^{2} \theta \sin 2 \varphi \quad \text { with } \quad \chi_{0}=10^{-3} \\
\mu(t=0)=0
\end{array}\right.
$$

Preparation of the initial data by means of the conformal thin sandwich procedure

Evolution of $h^{\phi \phi}$ in the plane $\theta=\frac{\pi}{2}$

Test: conservation of the ADM mass

Number of coefficients in each domain: $N_{r}=17, N_{\theta}=9, N_{\varphi}=8$
For $d t=510^{-3} r_{0}$, the ADM mass is conserved within a relative error lower than 10^{-4}

Late time evolution of the ADM mass

At $t>10 r_{0}$, the wave has completely left the computation domain \Longrightarrow Minkowski spacetime

Long term stability

Nothing happens until the run is switched off at $t=400 r_{0}$!

Summary

- Dirac gauge + maximal slicing reduces the Einstein equations into a system of
- two scalar elliptic equations (including the Hamiltonian constraint)
- one vector elliptic equations (the momentum constraint)
- two scalar wave equations (evolving the two dynamical degrees of freedom of the gravitational field)
- The usage of spherical coordinates and spherical components of tensor fields is crucial in reducing the dynamical Einstein equations to two scalar wave equations
- The unimodular character of the conformal metric $\left(\operatorname{det} \tilde{\gamma}_{i j}=\operatorname{det} f_{i j}\right)$ is ensured in our scheme
- First numerical results show that Dirac gauge + maximal slicing seems a promising choice for stable evolutions of $3+1$ Einstein equations and gravitational wave extraction
- It remains to be tested on black hole spacetimes !

Outline

(1) Introduction

(2) A short review of $3+1$ general relativity
(3) A constrained scheme for $3+1$ numerical relativity

4 Constraining the nuclear matter EOS from GW observations

Our current poor knowledge of nuclear matter EOS

Constraining the nuclear matter EOS from GW observations of binary coalescence

Methods based on the merger or post-merger signal:

- Measure of the radius from the shape of the GW spectrum in a coalescing BH-NS system [Saijo \& Nakamura, PRL 85, 2665 (2000)]
- Constraining the EOS softness from the post-merger signal in binary NS coalescence (prompt black formation vs. supramassive NS remnant) [Shibata, Taniguchi \& Uryu, PRD 71, 084021 (2005)] [Shibata, PRL 94, 201101 (2005)]

Constraining the nuclear matter EOS from GW observations of the inspiral phase

Evolutionary sequences of irrotational binary NS:

[Bejger, Gondek-Rosińska, Gourgoulhon, Haensel, Taniguchi \& Zdunik, A\&A 431, 297 (2005)]

Constraining the nuclear matter EOS from GW observations of the inspiral phase

GW energy spectrum

[Bejger, Gondek-Rosińska, Gourgoulhon, Haensel, Taniguchi \& Zdunik, A\&A 431, 297 (2005)]

Constraining the nuclear matter EOS from GW observations

Determining the nuclear matter EOS from GW observations

Evolutionary sequences of irrotational binary strange stars:

[Limousin, Gondek-Rosińska \& Gourgoulhon, PRD 71, 064012 (2005)]
[Gondek-Rosińska, Bejger, Bulik, Gourgoulhon, Haensel, Limousin \& Zdunik, preprint: gr-qc/0412010)]

